106 research outputs found

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Magneto inductive communication system for underwater wireless sensor networks

    Get PDF
    Underwater wireless sensor networks have found a number of applications in underwater environment monitoring, infrastructure monitoring, military applications and ocean exploration. Among the four possible means of underwater wireless communication, namely acoustic, electromagnetic (EM), magneto-inductive (MI) and optics communication, MI communication enjoys the advantages of being low cost and robust equally in air, water and soil. This dissertation presents design and implementation of a low-power and low-cost MI sensor network node that is suited for long-term deployment of underwater and underground infrastructure monitoring, such as bridge scour and levee scour monitoring. The designed MI sensor node combat the directionality of the single coil MI communication by utilizing 3D coil to both transmit and receive. The presented MI sensor node is tested in air and underwater to show robustness and reliability. The sensor node is designed after thorough analysis and evaluation of various MI challenges such as directionality, short range, decoupling due to mis-alignment of coils, and effect of metal structure. A communication range of 40 m has been achieved by the prototype sensor node. The prototyping cost of a sensor node is less than US$100 and will be drastically reduced at volume production. A novel and an energy efficient medium access control (MAC) protocol based on the carrier sense medium access (CSMA) has also been implemented for the designed sensor node to improve throughput in a dense network --Abstract, page iv

    A co-design-based reliable low-latency and energy-efficient transmission protocol for uwsns

    Get PDF
    Recently, underwater wireless sensor networks (UWSNs) have been considered as a powerful technique for many applications. However, acoustic communications in UWSNs bring in huge QoS issues for time-critical applications. Additionally, excessive control packets and multiple copies during the data transmission process exacerbate this challenge. Faced with these problems, we propose a reliable low-latency and energy-efficient transmission protocol for dense 3D underwater wireless sensor networks to improve the QoS of UWSNs. The proposed protocol exploits fewer control packets and reduces data-packet copies effectively through the co-design of routing and media access control (MAC) protocols. The co-design method is divided into two steps. First, the number of handshakes in the MAC process will be greatly reduced via our forwarding-set routing strategy under the guarantee of reliability. Second, with the help of information from the MAC process, network-update messages can be used to replace control packages through mobility prediction when choosing a route. Simulation results show that the proposed protocol has a considerably higher reliability, and lower latency and energy consumption in comparison with existing transmission protocols for a dense underwater wireless sensor network.This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U19A2061, 61772228 and 61902143), National key research and development program of China (Grant No. 2017YFC1502306)

    HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS SENSOR NODES IN NON-HOMOGENOUS ENVIRONMENTS

    Get PDF
    Wireless Sensor Networks (WSN) have emerging applications in homogeneous environments such as free space. In addition, WSNs are finding new applications in non-homogeneous (NH) media. All referred applications entail location information of measured data or observed event. Localization in WSNs is considered as the leading remedy, which refers to the procedure of obtaining the sensor nodes relative location utilizing range measurements. Localization via Time-of-Arrival (ToA) estimation has received considerable attention because of high precision and low complexity implementation, however, the traditional techniques are not feasible in NH media due to frequency dispersion of transmitted ranging waveform. In this work, a novel and effective ToA-based ranging technique for localization in NH media consisting of frequency dispersive sub-media is proposed. First challenges of ToA estimation in NH media regarding frequency dispersion is investigated. Here, a novel technique which improves ToA estimation resolution at fixed bandwidth via maximum rising level detector (MRLD) technique is discussed. The MRLD receiver utilizes oversampling and multiple correlation paths to evaluate with high resolution the path corresponding to the maximum rising level of matched filters output. In order to achieve higher resolution, a novel and effective ToA estimation is introduced that incorporates orthogonal frequency division multiple access (OFDMA) subcarriers. In the proposed technique, pre-allocated orthogonal subcarriers are utilized to construct a ranging waveform which enables high performance ToA estimation in dispersive NH media in frequency domain. Here, we show that each frequency component of propagated waveform is received with different time delay and phase which dramatically increases the number of unknowns in the received signal system model. Then, we propose a novel idea based on frequency domain analysis of the transmitted OFDMA subcarriers to reduce the number of unknowns exploiting feasible approximations. Finally, the proposed ToA technique is applied multiple times at different carrier frequencies to create a system of linear equations which can be solved to compute the available sub-mediums thickness and range. Simulation results prove that the proposed technique offers high resolution range measurements given simulated ToA estimation error at different signal to noise ratio regimes in NH media

    Communication and control of autonomous underwater vehicles using radio frequency-acoustic hybrid MAC schemes

    Get PDF
    In shallow water subsea applications like control of AUVs, there is a growing demand of high-speed wireless communication links for transmitting data between AUVs and base station. Acoustic communication provide very low data rates and high propagation delays not suitable for high gain and high speed control of AUVs and on other hand radio communication is constrained by very high attenuation due to high conductivity and permittivity of water resulting in a very short working range. In this thesis, an Acoustic-RF hybrid communication system is proposed which uses acoustic link for long range communication and switches to Radio Frequency in close range. The system is tested on docking station model where AUVs get their location from transmitter at docking station and control the motors on AUVs to land on docking station. We show that this hybrid system solves the need of robust communication link as well as high data rate and low latency requirement of AUV communication. Three MAC schemes namely TDMA, Slotted ALOHA and Waiting Room are tested and compared in acoustic communication

    Wireless Network Communications Overview for Space Mission Operations

    Get PDF
    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information
    corecore