
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2016 

HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS 

SENSOR NODES IN NON-HOMOGENOUS ENVIRONMENTS SENSOR NODES IN NON-HOMOGENOUS ENVIRONMENTS 

Mohsen Jamalabdollahi 
Michigan Technological University, mjamalab@mtu.edu 

Copyright 2016 Mohsen Jamalabdollahi 

Recommended Citation Recommended Citation 
Jamalabdollahi, Mohsen, "HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS SENSOR 
NODES IN NON-HOMOGENOUS ENVIRONMENTS", Open Access Dissertation, Michigan Technological 
University, 2016. 
https://digitalcommons.mtu.edu/etdr/268 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Signal Processing Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.mtu.edu%2Fetdr%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages


HIGH RESOLUTION TIME-OF-ARRIVAL RANGING OF WIRELESS SENSOR

NODES IN NON-HOMOGENOUS ENVIRONMENTS

By

Mohsen Jamalabdollahi

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2016

Copyright 2016 Mohsen Jamalabdollahi





This dissertation has been approved in partial fulfillment of the requirements for

the Degree of DOCTOR OF PHILOSOPHY in Electrical Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Prof. Seyed (Reza) Zekavat

Committee Member: Prof. Daniel Fuhrmann

Committee Member: Dr. Zhaohui Wang

Committee Member: Dr. Alexander Labovsky

Department Chair: Prof. Daniel Fuhrmann





Dedication

To my Beloved parents

who’s the first priority were their children success.





Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Wireless Sensor Network Localization . . . . . . . . . . . . . . . . 1

1.2 Applications of Localization in Non-Homogenous Media . . . . . . 4

1.2.1 Applications in Environmental Monitoring and Remote Sens-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Applications in Health Care . . . . . . . . . . . . . . . . . 5

1.3 Time-of-Arrival and Orthogonal Frequency Division Multiple Access 7

1.3.1 Time-of-Arrival Estimation . . . . . . . . . . . . . . . . . 7

1.3.2 Orthogonal Frequency Division Multiple Access (OFDMA) 9

1.4 Chapters Contributions . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



2 Joint Neighbor Discovery and ToA Estimation in Wireless Sensor

Networks via OFDMA . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Joint ND and ToA Estimation . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Neighbor Discovery . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 ToA Estimation . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Impact of the Number of Sub-Carriers . . . . . . . . . . . 31

2.4 Experimental Challenges . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Energy Efficiency and Scalability . . . . . . . . . . . . . . 34

2.4.2 OFDMA Limitations . . . . . . . . . . . . . . . . . . . . . 37

2.4.2.1 SFO and CFO . . . . . . . . . . . . . . . . . . . 37

2.4.2.2 PAPR . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . 39

2.5.1 Simulation Parameters and Methods . . . . . . . . . . . . 39

2.5.2 Neighbor Discovery Performance . . . . . . . . . . . . . . 41

2.5.3 ToA Estimation Performance . . . . . . . . . . . . . . . . 44

2.5.4 Energy Efficiency and Scalability Analysis . . . . . . . . . 50

2.6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . 51

2.6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.2 Future Works and Discussion . . . . . . . . . . . . . . . . 52

viii



3 High Resolution ToA Estimation via Optimal Waveform Design 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 System Model and Problem Formulation . . . . . . . . . . . . . . 56

3.3 Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Maximum rising level Detector . . . . . . . . . . . . . . . 60

3.3.2 Waveform Design . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.2.1 Forming the objective function . . . . . . . . . . 66

3.3.2.2 Trust-region Algorithm . . . . . . . . . . . . . . . 68

3.4 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . 72

3.4.1 Simulation Parameters and Methods . . . . . . . . . . . . 72

3.4.2 ToA Estimation Performance . . . . . . . . . . . . . . . . 73

3.4.3 Complexity Analysis vs Performance . . . . . . . . . . . . 75

3.4.4 ToA CRLB . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 High Resolution ToA Estimation in Non-homogenous, Frequency

Dispersive Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Proposed ToA Estimation Technique . . . . . . . . . . . . . . . . 88

4.2.1 Time Frame Detection Technique . . . . . . . . . . . . . . 89

4.2.2 High Resolution ToA Estimation . . . . . . . . . . . . . . 91

4.3 Simulations Result and Discussions . . . . . . . . . . . . . . . . . 103

ix



4.3.1 Details of Simulated NH Media . . . . . . . . . . . . . . . 103

4.3.2 Proposed Approximations Analysis . . . . . . . . . . . . . 107

4.3.2.1 Overall delays linearity . . . . . . . . . . . . . . . 107

4.3.2.2 Fine delay linearity . . . . . . . . . . . . . . . . . 109

4.3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . 110

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Range Measurements in Non-homogenous, Frequency Dispersive

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Proposed Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Simulations Result and Discussions . . . . . . . . . . . . . . . . . 124

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . 129

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Proofs and Derivations . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1 Probabilities of Miss-Detection and False-Alarm . . . . . . . . . . 151

A.2 Probability of Error for ToA Estimation . . . . . . . . . . . . . . 156

A.3 First Order Derivative of WISL Objective Function . . . . . . . . 160

x



A.4 Second Order Derivative of WISL Objective Function . . . . . . . 163

A.5 Details of ToA CRLB Calculation . . . . . . . . . . . . . . . . . . 164

A.6 Derivation of the Maximum Likelihood Estimator . . . . . . . . . 166

A.7 Deriving Straight-Line Range . . . . . . . . . . . . . . . . . . . . 168

B Publication Copyright Letter for Chapter 2 . . . . . . . . . . . . 171

xi





List of Figures

1.1 Absolute value of matched filter output. (a) propagated signal in free

space (b) propagated signal in human body . . . . . . . . . . . . 8

1.2 Transceiver block diagram for OFDM. . . . . . . . . . . . . . . . 9

2.1 Detection of sensor nodes signature in frequency domain. . . . . . 25

2.2 Objective function for ToA estimation for different numbers of trans-

mitted sub-carrier(s). . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Probability of miss detection for neighbor discovery in MPFS channel

using variable threshold. . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Probability of false alarm for neighbor discovery in MPFS channel

using variable threshold. . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Probability of miss detection for neighbor discovery in AWGN channel

using fixed value threshold. . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Probability of false alarm for neighbor discovery in AWGN channel

using fixed value threshold. . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Effect of allocated sub-carriers on the probability of miss detection. 45

2.8 Effect of allocated sub-carriers on the probability of false alarm. . 45

xiii



2.9 Normalized mean square error (NMSE) of ToA estimation in AWGN

channel considering different numbers of neighbor nodes. . . . . . 47

2.10 Normalized mean square error (NMSE) of ToA estimation in multi-

path channel considering different numbers of neighbor nodes. . . 47

2.11 Impact of increasing the number of transmitted sub-carriers in prob-

ability of error in ToA estimation. . . . . . . . . . . . . . . . . . . 48

2.12 Impact of increasing the number of transmitted sub-carriers in NMSE

of ToA estimator v.s. multi-band chirp signal . . . . . . . . . . . 48

2.13 Normalized mean square error (NMSE) of ToA estimation in multi-

path channel considering different numbers of neighbor nodes, v.s.

multi-band chirp signal . . . . . . . . . . . . . . . . . . . . . . . . 49

2.14 Total current consumption value (mA), applying the TDMA based

multi-band chirp and proposed method . . . . . . . . . . . . . . . 50

3.1 The block diagram of the proposed MRLD transceiver. . . . . . . 63

3.2 Autocorrelation level corresponding to the over-sampled signal with

M = 4 and fine-resolution kτ0 = 3. . . . . . . . . . . . . . . . . . . 65

3.3 Autocorrelation level of designed waveform, (a) N = 128, (b)N = 256

, (c) N = 512, (d) N = 1024. . . . . . . . . . . . . . . . . . . . . . 71

3.4 MSE of ToA exploiting different numbers of correlation paths M vs

SCAN with the same bandwidth (1MHz) in flat fading channel. . 76

xiv



3.5 MSE of ToA exploiting different numbers of correlation paths M vs

SCAN with the same bandwidth (1MHz) in MPFS channels. . . . 76

3.6 Impact of proposed MRLD technique on coarse ToA estimation. . 77

3.7 Total required complex operations by the proposed technique. . . 77

3.8 Impact of increasing the number of parallel paths M vs waveform

length N , on the performance of proposed technique. . . . . . . . 78

4.1 Three different scenarios of received waveform, (a) close to the time

fame start, (b) close to the end of time frame, (c) in the middle of

time frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Applied NH media, (a) underwater-airborne, (b) four layers under-

ground containing different water content in volume ρ. . . . . . . 106

4.3 Average time error imposed by linear approximation proposed in Re-

mark 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Average time error imposed by linear approximation proposed in Re-

mark 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Impact of the number of allocated subcarriers and transmitted signal

length on the estimated ToA average error in human body, (a) N =

512, (b) N = 1024, (c) N = 2048, and (d) N = 4096. . . . . . . . 111

xv



4.6 Impact of the number of allocated subcarriers and transmitted signal

length on the estimated ToA average error in airborne to underwater

channel, (a) N = 512, (b) N = 1024, (c) N = 2048, and (d) N =

4096. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7 Impact of the number of allocated subcarriers and transmitted signal

length on the estimated ToA average error in underground channel,

(a) N = 512, (b) N = 1024, (c) N = 2048, and (d) N = 4096. . . 115

5.1 3D model of signal propagation in NH media. . . . . . . . . . . . 121

5.2 Impact of the number of applied measurements Q and ToA measure-

ments error on the estimated range, (a) underwater-airborne channel,

(b) underground channel. . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Impact of the number of applied measurements Q and DoA measure-

ments error on the estimated range, (a) underwater-airborne channel,

(b) underground channel. . . . . . . . . . . . . . . . . . . . . . . . 127

xvi



List of Tables

2.1 Active transmission (Tx) and reception (Tr) and the total

number of real-value instructions at target (Tar.) and neigh-

bor (Nei.) nodes for ND and ToA estimation of the proposed

method (Pro.) and multi-band chirp exploiting the time-slot

based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Simulation parameters and applied values . . . . . . . . . . 41

3.1 Simulation parameters and applied values . . . . . . . . . . 73

4.1 Simulation parameters and applied values . . . . . . . . . . 104

4.2 Example of applied relative permittivities vs number of al-

located sub-carriers (bandwidth) for N = 1024. . . . . . . . 105

4.3 Relative permittivities at different applied carrier frequen-

cies (GHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xvii





Preface

The goal of this dissertation is to address ranging of wireless senor nodes in non-

homogenous media. Materials in chapter 2 is published, and materials in chapters

3, 4 and 5 are submitted for publication.

Publications list as follow:

1. Mohsen Jamalabdollahi, Seyed Reza Zekavat, Joint Neighbor Discovery and

Time of Arrival Estimation in Wireless Sensor Networks via OFDMA, DOI

10.1109/JSEN.2015.2449079, IEEE Sensors Journal, June 2015.

This paper is original work of M. Jamalabdollahi as researcher, writer and

corresponding author. Professor S. R. Zekavat is contributed as research ad-

visor. He helped with preparation of this manuscript by several meetings and

reviewing and revising the manuscript. The copy right permission is granted

from IEEE and is available in Appendix B.

2. Mohsen Jamalabdollahi, Seyed Reza Zekavat, High Resolution ToA Estima-

tion via Optimal Waveform Design, Submitted, Second round of review, IEEE

Transaction on Communications, July 2016.

This paper is original work of M. Jamalabdollahi as researcher, writer and

xix



corresponding author. Professor S. R. Zekavat is contributed as research ad-

visor. He helped with preparation of this manuscript by several meetings and

reviewing and revising the manuscript.

3. Mohsen Jamalabdollahi, Seyed Reza Zekavat, High Resolution ToA Estima-

tion in Non-homogenous, Time and Frequency Dispersive Channels, Submit-

ted, IEEE Transaction on Signal Processing, March 2016.

This paper is original work of M. Jamalabdollahi as researcher, writer and

corresponding author. Professor S. R. Zekavat is contributed as research ad-

visor. He helped with preparation of this manuscript by several meetings and

reviewing and revising the manuscript.

4. Mohsen Jamalabdollahi, Seyed Reza Zekavat, Range Measurements in Non-

homogenous, Time and Frequency Dispersive Channels via Time and Direction

of Arrival Merger, Accepted, IEEE Transaction on Geoscience and Remote

Sensing, July 2016.

This paper is original work of M. Jamalabdollahi as researcher, writer and

corresponding author. Professor S. R. Zekavat is contributed as research ad-

visor. He helped with preparation of this manuscript by several meetings and

reviewing and revising the manuscript.

xx



Abstract

Wireless Sensor Networks (WSN) have emerging applications in homogeneous en-

vironments such as free space. In addition, WSNs are finding new applications in

non-homogeneous (NH) media. All referred applications entail location information

of measured data or observed event. Localization in WSNs is considered as the

leading remedy, which refers to the procedure of obtaining the sensor nodes rela-

tive location utilizing range measurements. Localization via Time-of-Arrival (ToA)

estimation has received considerable attention because of high precision and low

complexity implementation, however, the traditional techniques are not feasible in

NH media due to frequency dispersion of transmitted ranging waveform.

In this work, a novel and effective ToA-based ranging technique for localization in

NH media consisting of frequency dispersive sub-media is proposed. First challenges

of ToA estimation in NH media regarding frequency dispersion is investigated. Here,

a novel technique which improves ToA estimation resolution at fixed bandwidth via

maximum rising level detector (MRLD) technique is discussed. The MRLD receiver

utilizes oversampling and multiple correlation paths to evaluate with high resolution

the path corresponding to the maximum rising level of matched filters output.

xxi



In order to achieve higher resolution, a novel and effective ToA estimation is intro-

duced that incorporates orthogonal frequency division multiple access (OFDMA)

subcarriers. In the proposed technique, pre-allocated orthogonal subcarriers are

utilized to construct a ranging waveform which enables high performance ToA es-

timation in dispersive NH media in frequency domain. Here, we show that each

frequency component of propagated waveform is received with different time delay

and phase which dramatically increases the number of unknowns in the received

signal system model. Then, we propose a novel idea based on frequency domain

analysis of the transmitted OFDMA subcarriers to reduce the number of unknowns

exploiting feasible approximations.

Finally, the proposed ToA technique is applied multiple times at different carrier

frequencies to create a system of linear equations which can be solved to compute

the available sub-mediums thickness and range. Simulation results prove that the

proposed technique offers high resolution range measurements given simulated ToA

estimation error at different signal to noise ratio regimes in NH media.

xxii



Chapter 1

Introduction

1.1 Wireless Sensor Network Localization

Wireless Sensor Networks (WSN) have emerging applications in homogeneous en-

vironments such as free space [1][2][3]. Examples are environmental monitoring

[4][5, 6, 7, 8][9], search and rescue [10][11][12], health [13][14][15] and body area

networking [16][17][18], road traffic monitoring [19][20][21], and pollution sensing

[22, 23]. In addition, WSNs are finding new applications in non-homogeneous (NH)

channels. Examples are endoscopy capsule localization [24, 25] cancer detection

[26, 27, 28], drug-delivery [29][30, 31, 32, 33][34], underwater monitoring and surveil-

lance [35] and underground and mine safety and monitoring [36, 37]. Here, the term

1



non-homogenous refers to a medium composed of diverse dispersive mediums such as

water, ice, soil, human body organs, ionosphere layers, and free space. All referred

applications entail location information of measured data or observed event. Local-

ization in WSNs is considered as the leading remedy, which refers to the procedure

of obtaining the sensor nodes location utilizing range measurements (range based)

[27, 38],[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

Range-based approaches offer higher localization accuracy [38, 39, 40], [41, 42, 43,

44], and require minimal network connectivity, which compared to range free tech-

niques makes them attractive for many applications such as drug delivery, and can-

cer detection. Range based localization techniques for WSN include received signal

strength (RSS) [39, 41, 42, 43][44][59], time-of-arrival (ToA) [38][45, 46, 47, 48][49],

time-difference-of-arrival (TDOA) [27, 50, 51, 52][53], and direction-of-arriving

(DOA) [54][55, 56, 57, 58]. In all offered ranging methods, ToA estimation has

received considerable attention because of high precision and low complexity imple-

mentation [40],[38].

Although, a few works [60][61, 62, 63][64], have discussed ranging and localization

in dispersive mediums such as underwater or seismic, and body [25, 65], however, no

work can be observed that investigates ranging algorithms within non-homogenous

mediums. To the best of author knowledge, high resolution ToA estimation ex-

ploiting wideband microwave signals in NH media or single medium in frequency

2



dispersion band is an open problem. Many researchers propose acoustics commu-

nication for ToA estimation in underwater or underground media [66]. Although

acoustics communication offers high resolution for underwater ToA estimation, it

cannot be applied to airborne-underwater channels due to strong reflections and

attenuation in water/air boundary [67]. A few works [61][63], [64], [68],[69] pro-

pose ToA estimation in dispersive medium for specific scenarios which cannot be

extended to NH media. In [68] and [69], time delays estimation of buried target

echoes for ground penetration radar (GPR) is addressed, meanwhile, the received

echoes do not represent frequency dispersion assuming low conductivity and small

layer thickness of sub-media. Although, these assumptions can be feasible for dry

media, however, when the water content of media exceeds 10% by weight, the fre-

quency dispersion must be considered due to the dielectric relaxation of water [70].

In [61], the transmitter location is estimated by combining the measured ToA data

with the knowledge about shape and position of the medium which is not a feasi-

ble assumption in NH media. Authors in [63], propose sensor node localization via

ToA measurements meanwhile the procedure of ToA estimation in soil as frequency

dispersive medium is not discussed. In [64], ToA estimation of short range seismic

signals in dispersive environments is addressed, however the system model does not

represent the frequency dispersion due to low bandwidth of applied seismic signals.

Thus, In this thesis, the following problem are defined and address:

3



1.2 Applications of Localization in Non-

Homogenous Media

1.2.1 Applications in Environmental Monitoring and Re-

mote Sensing

Range measurements in NH media opens a new research area in localization and

scanning technologies such as Light/Laser Detection and Ranging (LiDAR) and

GPR in frequency dispersive media where no resolution restriction is needed to

prevent frequency dispersion of ultra wide band waveforms. As the first example,

underwater scanning scenario via airborne sensors is considered. Here, the airborne-

underwater channel is a NH media and requires the proposed technique for ToA and

straight line range measurements for localization. Although acoustics communica-

tion offers high resolution for underwater ToA estimation, it cannot be applied to

airborne-underwater channels due to strong reflections and attenuation in water-air

boundary. Underwater target/sensor detection and or localization via airborne radar

is a special case of this type of media with verity of applications such as military or

environmental monitoring.

Multilayer underground channel with different water content is another example of

4



NH media. Here, a buried sensor node in the multilayer ground is considered where

the thickness of available layers and the straight line range between sensor node and

receiver on the ground surface is achievable via the proposed technique. Although,

GPR can propose the thickness of multilayer underground channels, it cannot be

applied to straight line range measurements. Mine tunnel safety via senor nodes is

an important application of this scenario where each sensor node needs underground

range measurements for localization.

1.2.2 Applications in Health Care

Human body is an NH medium which requires straight-line range measurement for

localization. Localization of endoscopy capsules or cancer detection and/or drug

delivery exploiting wireless nano-sensor networks are applications of 3D localization

of a sensor node within NH channels of human body. As the first application,

one can propose approaches on localization and tracking of endoscopy capsules by

applying the proposed straight line range measurements technique. The expected

improvements in endoscopy capsule localization and tracking can be subsequently

exploited to develop a simple platform for clinical evaluation of the human digestive

system that are unreachable or extremely invasive when viewed via cable endoscopy.

5



In addition, there are other futuristic applications for WSNs in health care. Re-

cently, with advances in Micro-Electrical-Mechanical Systems (MEMS), the idea of

nano-sensors has been developed. Nano-sensors have diverse applications, including

applications in the human body such as cancer detection and drug delivery. Existing

cancer detection methods, such as magnetic resonance imaging (MRI), computed

tomography scans, and mammography, are not ideal for whole-body cancer screen-

ing due to their high cost and/or low sensitivity. Moreover, these methods possess

low accuracy, particularly at the early stages of cancer tumor developmentexactly

the time when treatment could be most effective. To tackle the drawbacks of ex-

isting methods, the idea of a cancer detection approach that incorporates magnetic

nano-particles (MNPs) has gained attention. However, MNPs are not active devices

and cannot use networking features (e.g., cooperative sensing and data sharing) that

greatly improve the efficiency and performance of cancer cell detection. Nano-sensor

networks are formed by a large number of nano-sensors with processing, communica-

tion, and networking capabilities. The processing, communication and networking

capabilities make each nano-sensor a powerful particle. Meanwhile, localization of

these particles intensifies their capabilities on cancer detection and/pr drug delivery

which cannot be achieved without range measurement techniques in NH media.

6



1.3 Time-of-Arrival and Orthogonal Frequency

Division Multiple Access

1.3.1 Time-of-Arrival Estimation

Time-of-Arrival (ToA) is the most popular and precise range measurement. Rather

than localization, ToA estimation has other applications in radar systems or wire-

less cellular networks. ToA estimation techniques are divided into two different

categories, the traditional matched filter-based techniques, and the super resolution

techniques. The former incorporates a pre-designed waveform with autocorrelation

properties close to the delta function at the output of matched filter. In later, ToA

is calculated via maximizing the pseudo-spectrum of the corresponding signal sub-

space achievable via decomposition of the matched filter output in frequency domain

[71, 72]. Examples of super resolution techniques are independent component anal-

ysis (ICA) [73], maximum likelihood (ML) [74], multiple signal classification (MU-

SIC) [75]-[77] and estimation of signal parameter via rotational invariance technique

(ESPRIT) [78]. However, the resolution of all proposed techniques depends on the

transmitted waveform bandwidth [73]. Figure 1.1(a) depicts the output of matched
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Figure 1.1: Absolute value of matched filter output. (a) propagated signal
in free space (b) propagated signal in human body

filter output regarding transmission of Golomb signal in multipath wireless chan-

nels. As shown, the estimated ToA which corresponds to the time index of filter

output maximum is equal to the actual delay. However, for NH media different sce-

nario is observed exploiting traditional matched filter technique as shown in Figure

1.1(b). Here, the transmitted signal is propagated over human body. As shown,

the received signal is dispersed which causes sidelobes which moves the maximum

value into other time indexes. Therefore, proposing a new ToA estimation approach
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Figure 1.2: Transceiver block diagram for OFDM.

consistent with NH media including frequency dispersive sub-media is necessary.

1.3.2 Orthogonal Frequency Division Multiple Access

(OFDMA)

The idea of Orthogonal Frequency Division Multiplexing (OFDM) backs to 70’s

[79, 80, 81, 82, 83]. OFDM enjoys the very fact that circular convolution in discrete

time domain can be represented by multiplication in frequency domain. This simple

idea is extensively widespread in digital communication system such as WiFi [84],

WiMax [85], LTE [86], and etc. Figure 1.2 represents the block diagram of OFDM

transmitter and receiver. Here each data symbol is transmitted with an orthogonal
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subcarrier (OFDMA sub-carrier) which has less bandwidth than the original signal.

Therefore, frequency selective channels perform as frequency flat fading for each

transmitted sub-carrier which removes the inter symbol interference in the received

signal in frequency domain. The term Orthogonal Frequency Division Multiple

Access (OFDMA) is special case of OFDM system where a part of available subcar-

rier are allocated into each user which enables multiple access through the wireless

channel. For more information on OFDM(A) we refer reader to [87].

1.4 Chapters Contributions

In this section the contributions of each chapter are discussed.

1. Joint Neighbor Discovery and Time of Arrival Estimation in Wire-

less Sensor Networks via OFDMA: Chapter 2 introduces joint neighbor

discovery (ND) and coarse time-of-arrival (ToA) estimation in wireless sensor

networks (WSN) via orthogonal frequency division multiple access (OFDMA).

In the proposed technique, each sensor node exploits at least one orthogonal

sub-carrier as its allocated signature, to respond the ND and ToA estima-

tion requests transmitted by target nodes. The target node utilizes the or-

thogonality across sub-carriers to detect the transmitted signatures and their

corresponding delays. This technique is energy efficient as it avoids multiple
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transmissions and receptions inherent in traditional neighbor discovery pro-

tocols and ToA estimation techniques in WSN. Moreover, in this technique,

network initiation process does not require channel information or time syn-

chronization across sensor nodes. The performance of the proposed method

is studied by evaluating the probabilities of false alarm and miss detection of

the neighbor discovery. In addition, ToA estimation error is calculated theo-

retically and via simulations. Moreover, the impact of available bandwidth on

the performance and energy efficiency of ND and ToA estimation are investi-

gated. Simulation results confirm the energy efficiency and the feasibility of

the proposed method even at low signal to noise ratio (SNR) regimes and in

multi-path and frequency selective (MPFS) channels.

2. High Resolution ToA Estimation via Optimal Waveform Design:

Chapter 3 introduces a novel method to improve the Time of Arrival (ToA)

estimation resolution for a fixed available bandwidth in the presence of un-

known multipath frequency selective (MPFS) channels. Here, the maximum

rising level detector (MRLD) technique is proposed which utilizes oversam-

pling and multiple correlation paths to evaluate with high resolution the path

corresponding to the maximum rising level of matched filters output. How-

ever, employing such technique demands for transmission of waveform that

creates a very high rising level at autocorrelation center. This chapter pro-

poses an efficient technique to design proper waveforms (very high rising level
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at autocorrelation center) via minimization of weighted integrated sidelobe

level (WISL), exploiting the trust-region algorithm. The performance of the

proposed technique is evaluated via simulations of ToA mean square error

(MSE), and compared to the state-of-the-art approaches considering the same

bandwidth, and Cramer-Rao lower bound (CRLB) as benchmark. Simulations

confirm that ToA resolution is improved as the number of correlation paths

increases and verify the feasibility of the proposed technique compared to the

available approaches for MPFS channels.

3. High Resolution ToA Estimation in Non-homogenous, Frequency

Dispersive Channels: Chapter 4 introduces a novel and effective time-of-

arrival (ToA) estimation in Non-homogenous (NH) media consisting of fre-

quency dispersive sub-media via orthogonal frequency division multiple access

(OFDMA) subcarriers. In the proposed technique, pre-allocated orthogonal

subcarriers are utilized to construct a ranging waveform which enables high

performance ToA estimation in dispersive NH media in frequency domain.

First, time and frequency domain system models for propagation of arbitrary

waveform in frequency dispersive media is proposed. Here, we show that each

frequency component of propagated waveform is received with different time

delay and phase which dramatically increases the number of unknowns in

the received signal system model. Then, we propose a novel idea based on fre-

quency domain analysis of the transmitted OFDMA subcarriers which reduces
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the number of unknowns exploiting feasible approximations. The exploited

approximations are discussed via theoretical evaluations and simulations for

diverse scenarios to prove the feasibility of the proposed technique. Simulation

results prove that the proposed technique offers high resolution ToA estima-

tion in NH media with diverse required resolution and/or propagation distance

such as human body or airborne-underwater channels.

4. Range Measurements in Non-homogenous, Frequency Dispersive

Channels: Chapter 5 introduces a novel and effective range measurements in

Non-homogenous (NH) media consisting of frequency dispersive sub-media via

time-of-arrival (ToA). The proposed ToA technique is exploited for multiple

ToA measurements at different carrier frequencies. The proposed measure-

ments leads to a system of linear equations which can be solved to reveal the

available sub-mediums thickness and range. Simulation results prove that the

proposed technique offers high resolution range measurements given simulated

ToA estimation error at different signal to noise ratio regimes in NH media.

The proposed problems have significant theoretical and technological impacts. The

proposed thesis defines new measures unique to NH environments critical to many

futuristic applications in harsh environments that include but not limited to health
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care, underwater, and seismology sensors, as well as sensors used for explore and ex-

traction in oil and mine industries. The criteria for optimizing ranging and localiza-

tion distribution to enable energy efficiency are implementable in many cooperative

scenarios in WSN such as routing, tracking and etc.

14



Chapter 2

Joint Neighbor Discovery and ToA

Estimation in Wireless Sensor

Networks via OFDMA 1

2.1 Introduction

Time-of-arrival (ToA) estimation has received considerable attention because of high

precision and low complexity [38],[40]. Although, ToA based ranging methods are

precise and seem proper for sensor networks, clock synchronization across sensor

1The material contained in this chapter was previously published in IEEE Sensor Journal, vol. 15,
pp. 5821-5833, 2015
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nodes remain a significant issue for these techniques in ToA based ranging ap-

proaches. To mitigate this problem, TDoA method which subtracts the pairwise

ToA measurements to eliminate the clock offset have been proposed [46], however,

this subtraction increases the measurement noise by 3 dB [38]. In wireless local

positioning system (WLPS) [88], the round trip scenario for ToA measurements is

proposed which mitigates the clock synchronization problem, however it is not ef-

ficient for dense sensor networks due to the high probability of collision of signals

submitted by nodes. In [89], [90] authors utilize time-slot based approaches to avoid

signal collision. Although these methods are feasible at dense networks, they are

not energy efficient due to the high required numbers of signal transmissions and

receptions. Note that, up to 80% of energy in wireless sensor nodes is consumed by

the radio communication process [91].

Time-of-arrival (ToA) estimation techniques are divided into two different cate-

gories, the traditional techniques that are based on the matched filter output, and

the super resolution techniques. The former incorporates a pre-designed waveform

with autocorrelation properties close to the delta function at the output of matched

filter. Although correlation based techniques propose excellent performance in the

presence of unknown multipath frequency selective (MPFS) channels, however, their

proposed ToA resolution is limited by transmitted waveform bandwidth. In later,

ToA is calculated via maximizing the pseudo-spectrum of the corresponding signal

sub-space achievable via decomposition of the matched filter output in frequency
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domain [71, 72]. Examples of super resolution techniques are independent compo-

nent analysis (ICA) [92], maximum likelihood (ML) [74], multiple signal classifica-

tion (MUSIC) [75]-[77] and estimation of signal parameter via rotational invariance

technique (ESPRIT) [78]. However, the frequency domain techniques only improve

the ToA resolution in flat fading channels or in the presence of multiple resolvable

paths which are not feasible assumptions in many ToA applications. Moreover,

these works investigate the single user while in WSN, it is more energy efficient

to apply a procedure for all neighbors simultaneously and to avoid multiple signal

transmissions for ranging [90].

Applying the aforementioned ToA estimation techniques require the information of

the number of available sensor nodes and their ID within the radio range of target

node. The process of discovering the available sensors within the radio range of

a target nodes is called neighbor discovery (ND). Neighbor discovery in WSN has

been addressed in many works [93][94, 95, 96, 97, 98][99]. Some of ND approaches

[93][94][95], propose a protocol based technique, which needs multiple number of

radio transmissions and receptions that can not be considered energy efficient [91].

Other approaches apply a signal processing technique to reduce the energy con-

sumption [96]-[98]. Here, authors apply direct sequence code division multiple access

(DS-CDMA) and compressed sensing approaches respectively, to address neighbor

discovery over flat channels, however the case of multi-path and frequency selective

(MPFS) channel still remains open. Luo and et al. [99] have considered the Rayleigh
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fading case, however, the system model does not include the signal specification and

how they tackle multiuser interference. Moreover, none of the proposed techniques

integrates the ND and ranging processes.

Here, we propose a novel energy efficient neighbor discovery and ToA estimation

achievable via orthogonal frequency division multiple access (OFDMA). This main-

tains energy efficiency because the proposed technique requires only one transmis-

sion and one reception for ND and ToA estimation procedures per sensor node. The

orthogonality of transmitted signatures by sensor nodes, enables the receiver to dis-

cover available neighbors and the propagation delay of each detected signature over

MPFS channels. Moreover, the orthogonality of transmitted signatures addresses

the problem of received signal collision for ToA estimation. The idea of exploiting

OFDM(A) is studied by many works [100],[82, 101, 102] and [83], however, none of

these works have addressed ND or ToA estimation. In addition to the experimental

challenges of OFDMA, the performance of the proposed method is investigated by

evaluating the probabilities of miss detection and false alarm for neighbor discovery

theoretically and via simulations over AWGN and MPFS channels. Moreover, the

probability of correct coarse ToA estimation is investigated theoretically and via sim-

ulations. Furthermore, the impacts of allocated bandwidth to each sensor node on

the performance of ToA estimation and ND are investigated. The normalized mean

square error (NMSE) of ToA has been simulated and compared to multi-band chirp

signal proposed in [78]. Finally, the energy efficiency and the scalability of proposed
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method is studied by simulation of consumed energy for the proposed technique and

the multi-band chirp signal [78] employing the time-slot based approaches [89], [90]

at MAC layer, and the probability of sub-carrier collision respectively.

The rest of this chapter is organized as follow. Section 2.2 introduces the system

model. The proposed algorithm for joint neighbor discovery and ToA estimation is

presented in Section 2.3. Section 2.4 discusses the experimental challenges of the

proposed technique. Section 2.5 represents simulation results and discussions and

finally Section 2.6 concludes this chapter.

2.2 System Model

Consider a WSN with MT sensor nodes in which the target node initiates ND and

ToA estimation process by transmitting a request signal through the network. Ap-

plying round-trip ranging, each neighbor node responds to the received request

signal via its allocated signature defined based on OFDMA transmission, without

any delay. Here, the received baseband signal by the target node over an L-path

channel corresponds to:

r(t) =

MT∑
m=1

γ(m)

L−1∑
l=0

h
(m)
l s(m)(t− τ (m)

l ) + v(t), (2.1)
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where, MT , h
(m)
l and τ

(m)
l , s(m)(t) and v(t) represent total number of sensor nodes,

the gain and delay of the lth tap of channel impulse response between the mth sensor

node and target node, transmitted signature by the mth sensor node and additive

white zero mean Gaussian noise, respectively. Moreover, γ(m), is the active sensor

coefficient which equals to 1 when the mth sensor node is the neighbor of the target

node (ith sensor node) and 0, otherwise. Applying (2.1) to the analog to digital

converter with the sampling rate of fs = 1/Ts where Ts is considered as sample

interval of baseband signal leads to:

r(k) =

MT∑
m=1

γ(m)

L−1∑
l=0

h
(m)
l s(m)(kTs − τ (m)

l )

+ v(kTs), for 0 ≤ k ≤ Ls − 1,

(2.2)

where Ls denotes the length of the received signal, MT ,L, h
(m)
l , τ

(m)
l and γ(m) are

defined in (2.1) and s(m)(kTs) and v(kTs) represent the kth sample of the transmitted

signature by the mth sensor node and additive noise, respectively. Given R and c

as the maximum possible radio range of sensor nodes and the universal physical

constant speed of light, respectively, the target node samples the channel for the

duration of T = 2R/c to receive response from all available neighbor nodes. Thus,

the length of the received signal by target node (Ls) is:

Ls = T/Ts + TProc/Ts + Lsymb, (2.3)
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where Ts and Ls are defined in (2.1) and Lsymb and TProc denote the length of sensors

signature for all sensor nodes and the required time for processing of transmitted

request and responding it in neighboring nodes, respectively. The target node aims

to estimate γ(m) and τ
(m)
0 for m ∈ M where M(M ≤ MT ) denotes the number

of all available neighbor nodes among MT sensor nodes within the network. In

the following section, the structure of each sensor’s response and the algorithm for

estimation of γ(m) and τ
(m)
0 based on the orthogonality of transmitted signature

(s(m)(t)) is discussed.

2.3 Joint ND and ToA Estimation

The orthogonality of pre-allocated signature of each sensor node is the key to the

proposed ND and ToA estimation methods. In OFDMA, orthogonal baseband sub-

carriers are dynamically allocated to each user for data transmission. These sub-

carriers are considered as the unique signature of each user. Therefore, the mth

sensor node’s signature (s(m)(k)) is represented by:

s(m)(k) =
∑
p∈Nm

ej2πp∆fkTs for 1 ≤ k ≤ N, (2.4)

where Nm denotes the set of Ns sub-carrier indexes allocated to the mth sensor

node’s signature with length N and ∆f represents the sub-carrier spacing, and Ts
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is defined in (2.1). To maintain orthogonality across the sensor node’s signature

with N samples and sample duration Ts, the sub-carrier spacing must satisfy ∆f =

1/(NTs). Applying ∆f = 1/(NTs) into (2.4), leads to s(m)(k) = ej2πmk/N for

Ns = 1. Here, for simplicity, one sub-carrier is considered for each senor node’s

signature; however, the same procedure can be applied in the case of Ns > 1.

Considering s(m) = [s(m)(1), s(m)(2), ..., s(m)(N)]T , the orthogonality across sensor

node’s signature implies that:

(
s(m)

)H
s(n) =


N for n = m,

0 for n 6= m,

(2.5)

where (.)H denotes transpose-conjugate, and N is the length of sensor’s signature.

Considering the allocated signature defined in (2.4), the following subsections intro-

duce our proposed methods for ND and ToA estimation in WSN.

2.3.1 Neighbor Discovery

The neighbor discovery process starts with the transmission of an initiation request

from the target node through the network. Without loss of generality, consider

the mth sensor node as the target node which transmits the initiation request sig-

nal. Applying the round-trip based scenario for joint neighbor discovery and ToA
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estimation, it is desired that all neighbor nodes receive the initiation request and

respond to it by transmitting their signature with no delay. Considering (2.1) as

the corresponding system model for Ls samples of received signal, the target node

multiplies the received signal by W to detect the transmitted neighbors signature,

where W = [w1,w2, ...,wMT
] is an MT × Ls DFT matrix such that:

wn(k) = e−j2πn∆fkTs for 0 ≤ k ≤ Ls, (2.6)

represents the kth entry of column vector wn and ∆f and Ts are the sub-carrier

spacing and sampling time used in (2.4). Applying ∆f = 1/(NTs) into (2.6) leads

to:

wn = [1, e−j2πn/N , e−j2π2n/N , ..., e−j2πnLs/N ]T , (2.7)

Here, (2.7) implies that, the nth row of DFT matrix (W) is the conjugate of Ls-

sample expansion of the nth sensor node’s signature where Ls is defined in (2.3).

In other words, the nth row of DFT matrix contains the matched filter of the nth

sensor node’s signature, followed by a long cyclic prefix with length Ls − N . This

maintains orthogonality across all Ls samples of the received signal and the nth

row of W regardless of which sample of the received signal corresponds to the first

sample of nth sensor’s signature. Considering y = Wr, the nth entry of vector y is
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represented by:

yn = wT
n r =

Ls−1∑
k=0

MT∑
m=1

γ(m)

L−1∑
l=0

h
(m)
l wn(k)s(m)(kTs − τ (m)

l ) +
Ls−1∑
k=0

wn(k)v(kTs), (2.8)

where MT ,L, γ(m), h
(m)
l , τ

(m)
l , s(m)(t) and v(t) are defined in (2.1) and Ls and

wn(k) are defined in (2.3) and (2.6), respectively. The orthogonality of sub-carriers

corresponds to:

Ls−1∑
k=0

wn(k)s(m)(kTs − τ (m)
l ) =


Ne−j2π∆fτ

(m)
l n = m,

0 otherwise ,

(2.9)

where N denotes the length of transmitted signature, h
(m)
l , τ

(m)
l and v(t) are defined

in (2.1) and Ls and wn(k) are defined in (2.3) and (2.6), respectively. Applying (2.9)

into (2.8), the nth entry of y is represented by:

yn = wT
n r =


N
∑L−1

l=0 h
(n)
l e−j2π∆fτ

(n)
l +

∑Ls−1
k=0 wn(k)v(kTs) n = m,

∑Ls−1
k=0 wn(k)v(kTs) n 6= m,

(2.10)

where N denotes the length of transmitted signature, L, h
(m)
l , τ

(m)
l and v(t) are

defined in (2.1) and Ls and wn(k) are defined in (2.3) and (2.6), respectively. The

target node, calculates the absolute value of all MT entries of y and compares

them with a threshold to discover the transmitted signatures. Figure 2.1 depicts

24



Figure 2.1: Detection of sensor nodes signature in frequency domain.

an example of calculated y at receiver. As shown the transmitted subcarrier are

detectable defining proper threshold value. Although, it can be observed that due to

the channel fading and noise, miss detection and false alarm are possible. Defining

z = |y|, the probabilities of miss detection (Pm) and false alarm (Pf ) in AWGN

channel, respectively correspond to (see Appendix A.1 for proof):

Pm := P (zn < λ|s(n) is within r) = 1−Q1

(
N

σ
√
Ls
,

λ

σ
√
Ls

)
, (2.11)

Pf := P (zn > λ|s(n) is not in r) = e
−( λ2

2Lsσ2
)
, (2.12)

where zn = |yn| and s(n) is defined in (2.5), N and Ls are defined in (2.10) and

Q1, σ2 and λ represent the Marcum Q function, variance of additive white Gaussian

noise and the value of threshold, respectively. There are two different approaches on
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selecting the value of λ. The first approach considers λ a function of noise variance

such as λ = λ0σ, where λ0 denotes a constant value and can be achieved using (2.11)

and (2.12) for specific value of Pm or Pf . This approach however, needs an estima-

tion of the noise variance which requires a complex procedure specifically when the

system is not synchronized. The second approach considers a constant value such

as λ = λ0. In Section 2.5.2 the impacts of both approaches are investigated.

In the case of MPFS channels, the probability of miss detection (Pm) is (see Ap-

pendix A.1 for proof):

Pm = 1− e−
λ2

2σ2z , (2.13)

where λ and σ2 denote detection threshold and variance of additive noise, respec-

tively. Moreover, σ2
z = (Lsσ

2 + LN2σ2
h) where N and σ2

h represent the length of

transmitted signature and variance of Inphase and Quadrature components of chan-

nel impulse response, respectively. However, the probability of false alarm in (2.12)

remains unchanged since there is no transmitted signature. As the ND procedure

completes, the target node starts ToA estimation process for those sensor nodes

which have been discovered.
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2.3.2 ToA Estimation

Similar to the ND problem, the target node can estimate the coarse ToA from the

Ls samples of received signal r. Here, we only focus on coarse ToA estimation

and ignore fine ToA estimation. The coarse ToA of the nth transmitted signature

τ
(n)
0 can be defined as a factor of sampling time (Ts) such as τ

(n)
0 = k∗Ts, where

k∗ is an integer value defined as the index of ToA. Therefore, the problem of ToA

estimation is equivalent to the estimation of k∗. By discovering the nth sensor node

signature (s(n)) in ND process, the estimated ToA of its signature, τ̂
(n)
0 is calculated

by τ̂
(n)
0 = k̂∗Ts, where k̂∗ represents the estimation of k∗ and corresponds to:

k̂∗ = argmax
k

{∣∣∣(s(n)
)H

rk:k+N−1

∣∣∣} , (2.14)

where rk:k+N−1, |.| and (.)H denote the N consecutive samples of r defined at (2.1)

from the kth through the (k+N−1)th sample, the absolute value and, the transpose-

conjugate operations, respectively. The target node needs to calculate the term∣∣∣(s(n)
)H

rk:k+N−1

∣∣∣ for all 1 ≤ k ≤ Ls and search for its maximum. Considering the

nth sensor’s signature, ideal channel (h = 1 and L = 1), absence of noise and the
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ToA of the nth transmitted signature such that τ
(n)
0 = k∗Ts, it can be shown that:

ck =



∣∣∣∑k+N−1
k′=k∗ e

−j2πn(k′−k+1)
N e

j2πn(k′−k∗+1)
N

∣∣∣ , k∗ −N + 1 ≤ k ≤ k∗,∣∣∣∑k∗+N−1
k′=k e

−j2πn(k′−k+1)
N e

j2πn(k′−k∗+1)
N

∣∣∣ , k∗ ≤ k ≤ k∗ +N − 1,

0 otherwise ,

(2.15)

where we define ck =
∣∣∣(s(n)

)H
rk:k+N−1

∣∣∣. Applying some mathematical manipula-

tions, (2.15) corresponds to:

ck =



∣∣∣e j2πn(k−k∗)N

∑k+N−1
k′=k∗

∣∣∣ k∗ −N + 1 ≤ k ≤ k∗,∣∣∣e j2πn(k−k∗)N

∑k∗+N−1
k′=k

∣∣∣ k∗ ≤ k ≤ k∗ +N − 1,

0 otherwise ,

(2.16)

which can be simplified to:

ck =



k − (k∗ −N) k∗ −N + 1 ≤ k ≤ k∗,

(k∗ +N)− k k∗ ≤ k ≤ k∗ +N − 1,

0 otherwise ,

(2.17)

where N and k∗ denote the length of transmitted signature and the index of ToA,

respectively. This indicates that the maximum value of c = [c1, c2, ..., cLs ] occurs at

k = k∗ for all 1 ≤ k ≤ Ls. It can be shown that when there are more than one
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transmitted signatures within r, the value of c would be none-zero for k ≤ k∗ −N

and/or k∗+N ≤ k. This value is negligible when comparing to the maximum peak

value of c which causes an error floor at high SNRs.

In the case of multi-path channels, following the same procedure such as (2.15)-(2.17)

leads to:

ck =



(k − (k∗ + l −N))
∣∣∣∑L−1

l=0 hle
j2πn(k−k∗−l)

N

∣∣∣ , k∗ −N + 1 ≤ k ≤ k∗ − 1,

(k − (k∗ + l −N))
∣∣∣∑L−1

l=0 hle
j2πn(k−k∗−l)

N

∣∣∣ , k∗ ≤ k ≤ k∗ + L− 1,

((k∗ + l +N)− k)
∣∣∣∑L−1

l=0 hle
j2πn(k−k∗−l)

N

∣∣∣ , k∗ + L ≤ k ≤ k∗ +N + L− 1,

0 otherwise,

(2.18)

where e
j2πn(k−k∗−l)

N represents the (k− l)th element of s(n) which is zero for k− l ≤ 0.

Here, unlike (2.17), there is no guarantee that the maximum value of c occurs at

k = k∗ for all 1 ≤ k ≤ Ls. However, the term (k − (k∗ + l −N)) in acts as a

weight function which increases the probability of having the maximum value of c

at k = k∗. Next subsection studies the improvement of this probability via increasing

the number of transmitted sub-carriers within the sensor node’s signature.

To evaluate the accuracy of the proposed technique, two different measures have

been considered: (1) the probability of error (Pe) in the estimation of k∗, and (2.1)

the Normalized Mean Square Error (NMSE) in ToA estimation. The probability of
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error that is defined as Pe = P (k̂∗ 6= k∗), corresponds to Pe = 1− Pc, and:

Pc = P [ck∗ > c1, c2, ..., ck∗−1, ck∗+1, ..., cLs−N ] , (2.19)

where Pc is the probability of correct estimation of k∗ and ck has defined in (2.15).

To evaluate the performance of detected ToA theoretically an upper bound for Pc

is calculated (see Appendix A.2 for proof):

Pc ≤
∫ ∞

0

N−1∏
k=1

(
1−Q1

(
k√

(N − k)σ2
,

ck∗√
(N − k)σ2

))2

(
1− e−

c2
k∗

2Nσ2

)(Ls−3N+1)

pck∗ (ck∗) dck∗ ,

(2.20)

for:

pck∗ (ck∗) =
ck∗

Nσ2
I0(

Nck∗

2Nσ2
)e−(

c2
k∗+N

2

2Nσ2
), (2.21)

where N and k∗ are defined in (2.17), I0(.) and σ2 represent the zero order Bessel

function and the variance of complex Gaussian noise added to the received signal,

respectively.

Considering K independent estimations of τ (m), NMSE corresponds to:

NMSE =

∑K
n=1

∑M
m=1

∣∣∣τ (m)
n − τ̂ (m)

n

∣∣∣2
MKτ 2

max

, (2.22)

where τ
(m)
n and τ̂

(m)
n denote the ToA of the mth sensor node and its estimation at
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the nth iteration, respectively. Moreover, τmax, M and K represent the propagation

delay associated to the maximum range of sensor nodes, the number of target node’s

neighbors and the number of independent runs, respectively (see Table II).

2.3.3 Impact of the Number of Sub-Carriers

This section discusses the impact of increasing the number of sub-carriers (Ns)

allocated to each sensor’s signature on the performance of ND and ToA estimation.

The proposed ND procedure assumes that the target node would detect a sensor’s

signature if it detects at least one of the allocated sub-carriers to the signature of it’s

neighbors. It can be shown that the probabilities of miss detection is (see Appendix

A.1 for proof):

Pm =

[
1−Q1

(
N

σ
√
Ls
,

λ

σ
√
Ls

)]Ns
, (2.23)

where N , Ls,λ and σ are defined in (2.11). However, the probability of false alarm

in (2.12) remains unchanged since there is no transmitted signature.

The probability of correct ToA estimation in the case of one allocated sub-carriers

is discussed in (2.20) based on the value of ck =
∣∣∣(s(n)

)H
rk:k+N−1

∣∣∣, where ck is

proposed in (2.18). Figure 2.2 sketches the value of c
(Ns)
k =

∏Ns
p=1

∣∣∣(s(p)
)H

rk:k+N−1

∣∣∣
for different numbers of transmitted sub-carriers (Ns). Applying the same approach
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to (2.18), c
(Ns)
k leads to:

c
(Ns)
k =



(k − (k∗ + l −N))Ns
∏Ns

p=1

∣∣∣∣∑Ns
p′=1

∑L−1
l=0 hle

j2πn(p
′)(k−k∗−l)
N

∣∣∣∣
k∗ −N + 1 ≤ k ≤ k∗ − 1,

(k − (k∗ + l −N))Ns
∏Ns

p=1

∣∣∣∣∑Ns
p′=1

∑L−1
l=0 hle

j2πn(p
′)(k−k∗−l)
N

∣∣∣∣
k∗ ≤ k ≤ k∗ + L− 1,

((k∗ + l +N)− k)Ns
∏Ns

p=1

∣∣∣∣∑Ns
p′=1

∑L−1
l=0 hle

j2πn(p
′)(k−k∗−l)
N

∣∣∣∣
k∗ + L ≤ k ≤ k∗ +N + L− 1,

0 otherwise,

(2.24)

As shown in Fig. 2.2, for Ns = 1 (one sub-carrier in signature) the cost function has

a triangular shape which is not an ideal form for ToA estimation. However, if the

transmitted signature contains higher number of sub-carriers, c
(Ns)
k converges to a

delta function as Ns increases. Therefore, considering Ns transmitted sub-carriers,

the proposed objective function in (2.14) can be revised to:

k̂∗ = argmax
k

{
Ns∏
p=1

∣∣∣(s(n,p)
)H

rk:k+N−1

∣∣∣} , (2.25)

where s(n,p) represents the pth transmitted sub-carrier by the nth sensor node and r is

defined in (2.1). A large number of sub-carrier allocation methods for OFDMA have
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been proposed in the literature. Here, the proposed form in [103] is incorporated in

which pairs of allocated signatures such as {k, k/NT − 2 or k/NT + 2} are selected

where k and NT are random sub-carriers and the total number of sub-carriers in

hand, respectively.

Considering Ns transmitted sub-carriers within the sensor node’s signature, (2.20)

changes to (see Appendix A.2 for proof):

Pc =

∫ ∞
0

...

∫ ∞
0

(
P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1

])(Ls−3N+1)

(
N−1∏
k=1

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
k∗−N+k

])2

f
c
(1)
k∗

(
c

(1)
k∗

)
...f

c
(Ns)
k∗

(
c

(Ns)
k∗

)
dc

(1)
k∗ ...dc

(Ns)
k∗ ,

(2.26)

Here , P
[∏Ns

p=1 c
(p)
k∗ >

∏Ns
p=1 c

(p)
1

]
is quite close to one since

(∏Ns
p=1 c

(p)
k∗

)
is

much larger than
(∏Ns

p=1 c
(p)
1

)
. However, the dominant part in (2.26) is

P
[∏Ns

p=1 c
(p)
k∗ >

∏Ns
p=1 c

(p)
k∗−N+k

]
which leads to the upper bound proposed in

(63). Increasing Ns in (62) increases γ =
∏Ns
p=1 c

(p)
k∗∏Ns

p=2 c
(p)
k∗−N+k

which decreases

Q1

(
k√

(N−k)σ2
, γ√

(N−k)σ2

)
and increases the proposed upper bound for Pc.
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Figure 2.2: Objective function for ToA estimation for different numbers of
transmitted sub-carrier(s).

2.4 Experimental Challenges

2.4.1 Energy Efficiency and Scalability

In order to investigate the energy efficiency of the proposed technique, the consumed

energy (RF transceiver and processing) of the entire ND and ToA estimation is

calculated and compared to the existing state-of-the-art techniques for ND and ToA

estimation, considering a popular sensor node platform (the CC2500 transceiver

[104] and MSP430 processor [105]). Here, the multi-band chirp signal is selected as

the transmitter employing the time-slot based approaches [89], [90] at MAC layer.
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To this end, the total value of consumed current (mA) by target/neighbor node is

calculated applying the following equations:

It = TtxItx + TrxIrx + TaIa + TiIi, (2.27)

where It represents the total value of consumed current (mA) and Itx, Irx, Ia and

Ii denote the current consumption for the radio transmission and reception, and

the processor at active and idle modes, respectively. Moreover, Ttx, Trx, Ta and

Ti represent the time period (normalized to 1 sec.) of the radio transmission and

reception, and the period of processor’s active and idle modes, respectively. The

current consumption of the CC2500 transceiver [104] and MSP430 processor [105]

are considered as follow: Itx = 22, Irx = 14, Ia = 0.23 at Qp = 1MHz and Ii = 0.009

all in mA. Table 2.1 presents the total time for transmission and reception and the

total number of real-value instructions (multiplication, summation or comparison).

In order to calculate the time periods, we used the length of the transmitted and

received signal multiplied by sampling time (Ts). For the processor active time we

exploited Ta = (Q/Qp)Ts where Q and Qp represent the total required instructions

defined in Table 2.1 and the total instructions per second of the processor Qp =

1MHz, respectively. Simulation results (Section 2.5.4) confirm that the total value

of consumed current (IT = I
(target)
t +MI

(neighbor)
t ) exploiting the proposed approach

is much less than the multi-band chirp signal that uses the time-slot based MAC

such as [89], [90].
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Table 2.1
Active transmission (Tx) and reception (Tr) and the total number

of real-value instructions at target (Tar.) and neighbor (Nei.)
nodes for ND and ToA estimation of the proposed method (Pro.)
and multi-band chirp exploiting the time-slot based approaches

Method Tx Tr Q

Pro. (Tar.) NTs 2LsTs 10NLs + 10MNNs(Ls−N)

Pro. (Nei.) NTs LsTs (Ls−N)(10N − 1)

[78] (Tar.) NNsTs N2NsTs N((Ls−N)(10NNs− 1) +N)

[78] (Nei.) NNsTs LsTs (Ls−N)(10N − 1)

Another important factor for any protocol at WSNs is the scalability. The scalabil-

ity in WSNs indicates the ability of the proposed technique to support the network

expansion (by node density or quantity) [106]. Here, a PHY layer technique is pro-

posed for ND and ToA estimation which should be combined with a sub-carrier

allocation algorithm at its MAC layer. The proposed technique could be applied to

any network size (any node density of number) considering a proper sub-carrier allo-

cation (unique allocation to all neighbors of any sensor) algorithm. In other words,

the scalability of the proposed method should be evaluated by the scalability of the

exploited sub-carrier allocation approach. The sub-carrier allocation for OFDMA

based wireless communications is well discussed in the literature. These algorithms

cannot be applied to WSN due to its limitations such as unknown location of each

sensor node and the deficiency of base stations. Nevertheless, it is straightforward

to infer that the probability of sub-carriers collision imposed by network expansion

is increased by increasing the total number of sub-carriers NT . However, beside the

bandwidth limitations, increasing the value of NT to support the network expansion
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increases the energy consumption of the proposed method as shown in Table 2.1.

Therefore, it can be concluded that the scalability of the proposed method leads to

a tradeoff between the probability of sub-carriers collision (performance/scalability)

and the network energy efficiency.

2.4.2 OFDMA Limitations

Despite the advantageous (such as, multi-path/user efficiency), OFDMA has some

disadvantageous such as sampling time offset (SFO), carrier frequency offset (CFO)

and peak to average power ratio (PAPR), which severely degrade the performance

of proposed approach. Here, we aim to discuss these problems and propose possible

solutions.

2.4.2.1 SFO and CFO

Similar to the OFDM in wireless communications, the orthogonality of transmitted

sub-carriers is the key feature of the proposed method which can be removed in the

presence of the SFO and/or CFO. Synchronization is the most popular approach

to alleviate the imposed affects by SFO and CFO. Here, we propose the time do-

main (before multiplying the received signal by DFT matrix, W) synchronization

applying the efficient method proposed in [103] and [107] prior to the ND and ToA
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estimation. Applying this technique, all sensor nodes should transmit a common (no

ND required) tone (sub-carrier) prior to the ND and ToA estimation which enables

the SFO and CFO estimation. The fast convergence and high estimation accuracy

of this technique offers an efficient solution for the synchronization in WSNs.

2.4.2.2 PAPR

The PAPR is originated from the simultaneous transmission of different sub-carriers

with the same (proposed method) or different (OFDMA at wireless communications)

amplitude [101]. Unlike the OFDMA at wireless communication, no simultaneous

sub-carriers transmission is necessary considering a pre-defined delay such as D =

N . This only increases the transmission period (Ttx) of neighbor nodes which is

negligible compare to the consumed energy by the processor. Therefore, the target

node can apply the same ND to discover transmitted sub-carriers, however, the ToA

estimation objective function is revised to:

k̂∗ = argmax
k

{
Nr∏
p=1

∣∣∣(s(n,p)
)H

rk+(p−1)D:k+N+(p−1)D−1

∣∣∣} , (2.28)

where Nr and D are number of sub-carrier transmission and the pre-defined delay

of each sub-carrier, s(n,p) represents the pth transmitted sub-carrier by the nth sensor

node and r is defined in (2.1).
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2.5 Simulation Results and Discussion

Simulations are conducted to investigate the performances of the proposed ND and

ToA estimation methods. The probabilities of miss detection and false alarm of

neighbor sensor nodes are calculated to evaluate the performance of the proposed

method for neighbor discovery problem. Moreover, for ToA estimation, the NMSE of

estimated delay is proposed. The system performances are evaluated at both AWGN

and MPFS channels considering different numbers of independent taps. Moreover,

the impact of allocated sub-carriers is investigated in a sperate sub-section. Fi-

nally, the energy efficiency and the scalability of the proposed method is studied

by simulation of consumed energy for the proposed technique and the probability

of sub-carrier(s) collision, respectively. In the following sub-section, we investigate

the parameters that are used for system model simulation. The performance of the

proposed ND method and ToA estimation are discussed in Sections 2.5.2 and 2.5.3,

respectively.

2.5.1 Simulation Parameters and Methods

In this sub-section, the details of simulated system model which is used for perfor-

mance analysis are introduced. Table 2.2 shows the definitions and the values of
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parameters which are used to simulate the system model. Furthermore, the defini-

tion of signal to noise ratio (SNR) corresponds to:

SNR =

∣∣∣∑MT

m=1 γ
(m)
(
h(m)

)H
s(m)

∣∣∣2
Nσ2

∣∣∣∑MT

m=1 γ
(m) (h(m))

H
h(m)

∣∣∣2 , (2.29)

where N , MT , γ(m) are defined in (2.1) and h(m), s(m) and σ2 denote the channel

impulse response between the target node and the mth sensor node, the mth sensor

node’s signature and noise power, respectively. Furthermore, (.)H and |.| represent

the transpose-conjugate and absolute value operations, respectively. Here, a MAT-

LAB based simulation platform consisting MT sensor nodes with maximum range

of R, exploited uniformly within an operation is considered. In order to measure

the performance of the proposed method, a target node surrounded by M neighbor

nodes is considered where: 1. each sensor transmits its allocated signature proposed

in (2.4) as soon as it receives the request signal. 2. The transmitted signal is passed

through the AWGN/MPFS channel considering the complex (circularly-symmetric)

normal and the Rayleigh distributions for the additive noise and channel taps am-

plitude, respectively. 3. The target node accumulates the Ls (see (2.3)) samples

of the received signal based on the system model described in (2.1) to initiates the

ND and ToA estimation as discussed at Section 2.3. 4. For ND the probabilities of

false alarm and miss detection have been simulated using the proposed definitions in

(2.11) and (2.12), respectively, applying K independent run of Monte Carlo method.
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Table 2.2
Simulation parameters and applied values

Sym. Definition Value

Ts Sampling time 6.25ns

N Length of signature 128

NT Total number of sub-carriers 128

Ns Sub-carriers in signature 1/2/4/8/16

∆f Sub-carrier spacing 1/(NTs) = 1.25MHz

MT Total No. of sensor nodes 128

M Number of neighbors 1/2/4/8

R Maximum range 1000m

Ls Length of received signal 2R/(cTs) +N = 1200

L Taps of channel 1/3/7

Tm Channel delay spread Ts

K No. of independent runs 1e4/1e5

5. The probability of error and NMSE of ToA estimation incorporates the proposed

definitions in (2.19) and (2.22) proceeding the ND within the same run.

2.5.2 Neighbor Discovery Performance

In Figs. 2.3 and 2.4, the probabilities of miss detection (Pm) and false alarm (Pf ) are

evaluated assuming flat and MPFS channels. Simulation results are consistent with

the prediction made by theory presented in (2.12) and (2.13). In this simulation,

a variable threshold as a function of noise power such as λ = 0.7Nσ is considered.

As shown, in Fig. 2.3, Pm decreases by increasing the number of channel taps.
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Figure 2.3: Probability of miss detection for neighbor discovery in MPFS
channel using variable threshold.

This outcome is predictable in the case of multi-path channels, as each tap has

an independent probability of fading across all taps and therefore, the probability

of fading across all of them is less than each of them individually. This result is

consistent with the theoretical value of Pm derived in (2.11) and (2.13). However,

applying λ = 0.7Nσ into (2.12) leads to the constant false alarm rate of Pf =

e−(0.7N)2/2Ls for AWGN and MPFS channels as depicted in Fig. 2.4. To investigate

the impact of fixed threshold value on detection performance, the simulation of Figs.

2.5 and 2.6 are conducted. Figs. 2.5 and 2.6 show Pm and Pf for two fixed values

of threshold, respectively. Here, the case of AWGN is considered to compare the

values of Pm and Pf theoretically and via simulations. As shown, by changing the

value of threshold, the desired value of Pm and Pf for a specific SNR value can be

maintained.
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Figure 2.4: Probability of false alarm for neighbor discovery in MPFS
channel using variable threshold.

Figure 2.5: Probability of miss detection for neighbor discovery in AWGN
channel using fixed value threshold.

Figs. 2.7 and 2.8 investigate the impact of the number of transmitted sub-carriers

within the sensor node’s signature on the ND procedure applying the variable thresh-

old (λ = 0.7Nσ). As shown in Fig. 2.7, the probability of miss detection decreases
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Figure 2.6: Probability of false alarm for neighbor discovery in AWGN
channel using fixed value threshold.

significantly as the number of allocated sub-carriers increases. This also can be in-

ferred from (2.23). However, as shown in Fig. 2.8 the probability of false alarm is

the same as (2.12) since no signature is considered within the received signal.

2.5.3 ToA Estimation Performance

To investigate the value of estimated ToA, NMSE of estimated ToA has been de-

picted in Fig. 2.9 in AWGN channel applying different numbers of neighbors (M).

Increasing M causes two changes to be observed in the NMSE curve (see Fig.

2.9). First, the NMSE increases as M increases, second, the slope of the NMSE

curve decreases as SNR increases. In Section 2.3.2, we mentioned that the term
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Figure 2.7: Effect of allocated sub-carriers on the probability of miss de-
tection.

Figure 2.8: Effect of allocated sub-carriers on the probability of false alarm.

∣∣(s(n)
)∗

rk:k+N−1

∣∣ in (2.14) can be a none zero value for k ≤ k∗−N and/or k∗+N ≤ k.

Here, the impact of this term on increasing the value of NMSE and decreasing the

slope of NMSE curve for high SNR values is observed.
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Figure 2.10 shows the NMSE of ToA estimator in flat and MPFS channels with

L taps. In this simulation, two different values of M are considered to compare

the impact of multiuser ToA estimation in MPFS channels. Here, it is observed

that multi-path effect of channel improves the performance of ToA estimator. As

mentioned in the previous sub-section, the probability of group fading of all taps is

much less than each of them individually. However, comparing Figs. 2.9 to 2.10 for

M = 1 indicates that AWGN still has the best performance.

As mentioned earlier in Section 2.3.2, in the case of multi-path channels the proba-

bility that the maximum value of (2.18) occurs at k = k∗ increases when the value

of (k − (k∗ + l −N)) for k = k∗ is much larger than its value for k 6= k∗. This

only can be achieved by increasing the number of transmitted sub-carriers where

(2.18) changes to (2.25) and therefore the value of (k − (k∗ + l −N)) increases to

(k − (k∗ + l −N))Ns , as discussed in Section 2.3.3. Figure (2.11) depicts the prob-

ability of error (Pe) in MPFS channels (L = 7 taps) applying different numbers of

sub-carriers. As shown, the probability of error improves as the transmitted signa-

ture employs a larger number of sub-carriers. In Fig. 2.12, the NMSE of the pro-

posed ToA estimation in the presence of MPFS channels (L = 3 and 7) is depicted

considering different values of Ns. Comparing the proposed results in Fig. 2.10, it

is observed that the performance of ToA estimator in (2.27) improves tremendously

by increasing the number of transmitted sub-carriers, even in the case of multi-path

channels. Moreover, Figs. 2.12 and 2.13, compare the performance of the proposed
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Figure 2.9: Normalized mean square error (NMSE) of ToA estimation in
AWGN channel considering different numbers of neighbor nodes.

Figure 2.10: Normalized mean square error (NMSE) of ToA estimation in
multi-path channel considering different numbers of neighbor nodes.

method to the multi-band chirp signal [78], where the transmitted signals have the

same length and enjoy the same bandwidth. Moreover, no information of channel

impulse response is available. As shown, the proposed method outperforms the
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Figure 2.11: Impact of increasing the number of transmitted sub-carriers
in probability of error in ToA estimation.

Figure 2.12: Impact of increasing the number of transmitted sub-carriers
in NMSE of ToA estimator v.s. multi-band chirp signal

multi-band chirp specifically when the allocated bandwidth increases. This is due

to the independence of the proposed sensor’s signature length to the allocated sub-

carrier (bandwidth); however, for optimum performance of multi-band chirp signal
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Figure 2.13: Normalized mean square error (NMSE) of ToA estimation
in multi-path channel considering different numbers of neighbor nodes, v.s.
multi-band chirp signal

the length of transmitted signal should be increased by extending the transmitted

bandwidth. Fig. 2.13 compares the performance of the proposed method to the

multi-band chirp in MPFS channel for different numbers of neighbor nodes (M).

Here, as expected, the performance of ToA estimator degrades by increasing the

number of neighbor nodes due to increasing the probability of collision, however

the ToA NMSE of the proposed method increases by lower rate compared to the

multi-band chirp signal.
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Figure 2.14: Total current consumption value (mA), applying the TDMA
based multi-band chirp and proposed method

2.5.4 Energy Efficiency and Scalability Analysis

Figure 2.14 depicts the total value of consumed current (IT ) for the multi-band chirp

signal [78] employing the time-slot based approaches [89], [90] at MAC layer and

proposed method exploiting (27). As shown the consumed energy depends on the

number of the allocated sub-carriers (Ns) to each sensor node (the available band-

width in multi-band chirp) and the number of available (detected) neighbor nodes.

Comparing these figures indicates the energy efficiency of the proposed method com-

pare to the multi-band chirp signal [78] employing the time-slot based approaches

[89], [90] at MAC layer and proposed method.
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2.6 Conclusions and Future Works

2.6.1 Conclusion

This chapter proposed joint ND and ToA estimation for WSNs in MPFS channel.

By unique allocation of an OFDMA sub-carrier as each sensor node’s signature, we

propose ND and ToA estimation methods which alleviates the affects of collision of

signals transmitted from neighbor nodes and in turn increase the performance. The

proposed method is energy efficient as it avoids multiple transmissions and recep-

tions which is utilized in traditional ND and ToA methods. Moreover, the proposed

method reduces channel MPFS affects for both ND and ToA estimation. To inves-

tigate the performance of ND, the probabilities of miss detection and false alarm

were evaluated. Moreover, the performance of ToA estimation was investigated by

calculating the probability of error and normalized mean square error, theoretically

and via simulations. Performance analysis confirms that the proposed methods for

ND and ToA estimation have acceptable performance in MPFS channel specifically

when the allocated sub-carriers to each sensor node are increased. Therefore, we

propose a feasible solution for ND and ToA estimation in WSNs because it only

needs one transmission and reception and offers high performance ToA estimation
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even in low SNR regimes and MPFS channels. Moreover, it is also an appropri-

ate method for dynamic ND and ToA estimation as it is fast compared with the

traditional methods. Simulation results indicates the energy efficiency and the scal-

ability of the proposed method, however, the scalability is achievable via increasing

the number of available sub-carrier or performing an advanced sub-carrier allocation

which is considered for future study.

2.6.2 Future Works and Discussion

Although, the very fact that increasing the number of transmitted sub-carriers en-

tails increasing the bandwidth and computational complexity, proposes a tradeoff

between scalability and performance, and bandwidth/energy efficiency. However,

considering the availability of wide bandwidth for new generations of wireless com-

munication such as Millimeterwave or 5G, makes the proposed method a feasible

solution for ND, coarse ToA estimation and finally localization in new generations

of WSNs.
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Chapter 3

High Resolution ToA Estimation

via Optimal Waveform Design1

3.1 Introduction

Designing a waveform with good autocorrelation properties (close to delta function)

has been discussed in literature [108][109, 110, 111]-[112]. In [109] authors propose

several cyclic algorithms such as CA-pruned (CAP), CAN (CA-new) and weighted

CAN (WeCAN) where the latter offers the best performance in terms of minimum

integrated sidelobe level (ISL) of the waveform’s autocorrelation. Exploiting the

1The material contained in this chapter is submitted for publication in IEEE Transaction on
Communications, July, 2016
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proposed waveform, one can estimate ToA with a resolution that is limited to the

sampling interval. Higher resolution is achievable via decreasing sampling interval,

however, this increases the waveform bandwidth which is not feasible and/or af-

fordable in many wireless communications and wireless sensor network applications.

Some prior works [92], propose fine ToA estimation in addition to traditional coarse

ToA approaches, however, these techniques consider a known channel impulse re-

sponse (CIR) or prior knowledge of statistical model for multipath channels [113]

which are not feasible prior to time synchronization.

Despite the impact of bandwidth on the performance of designed waveform in ToA

estimation, a few works discuss the problem of ToA estimation exploiting bandlim-

ited waveforms. In [108], authors propose the stop-band CAN (SCAN) which aims

to design a band-limited waveform with good autocorrelation properties. Exploit-

ing this technique one can design a waveform with good autocorrelation properties

considering smaller sampling interval (higher ToA resolution) at fixed bandwidth,

however, in the proposed technique the ISL increases while a feasible attenuation

in stop-band is interested. Authors in [114] and [115] propose different criteria for

sparse spectrum limitation, however, these techniques cannot impose acceptable at-

tenuation into stop-band while the waveform still performs good autocorrelation in

terms of ISL.

In this chapter, a novel approach is proposed to improve the resolution of ToA
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estimation for a fixed available bandwidth in the presence of unknown multipath

frequency selective (MPFS) channels. First, the low resolution of ToA estimator im-

posed by limited bandwidth of the designed waveform is addressed by proposing the

maximum rising level detector (MRLD) technique via oversampling and parallel cor-

relation paths. Here, ToA resolution improves via finding the path corresponding to

the maximum rising level of the matched filters output of distinct correlation paths

at their maximum absolute values. The idea of exploiting oversampling to improve

the resolution of ToA [116]-[118], range [119] and synchronization [120] has been

discussed in the literature. Many of these techniques use oversampling to increase

the direct search resolution which cannot be applied to correlation based techniques

because of sidelobe levels increase. In the MRLD technique the sidelobe levels of

matched filter output corresponding to the samples generated by oversampling pro-

cess are extremely larger than sidelobe levels of matched filter output of the original

samples. However, the rising level created by oversampling at the autocorrelation

center would be high as well. To this end, a novel technique exploiting the trust-

region algorithm [121] is proposed which designs waveforms with the aforementioned

properties via minimizing the weighted ISL (WISL) objective function.

The performance of the proposed technique is evaluated by simulating the estimated

ToA mean square error (MSE), and compared to the state-of-the-art approach of

SCAN [108] considering the same bandwidth. Moreover, the ToA Cramer-Rao lower

bound (CRLB) is calculated in the presence of MPFS as evaluation benchmark.
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Simulation results verify the feasibility of the proposed technique compared to tech-

niques such as SCAN specially over unknown MPFS channels. Furthermore, it is

observed that increasing the oversampling rate or equivalently the number of corre-

lation paths, improves the ToA resolution. In addition, increasing the oversampling

rate reduces the gap between MSE of ToA and its corresponding CRLB imposed by

lack of fine ToA estimation. Finally, the complexity and performance of the pro-

posed technique is discussed theoretically and via simulations for different numbers

of correlation paths and waveform lengths.

The rest of this chapter is organized as follow. Section 3.2 introduces the system

model and problem formulation. The proposed MRLD technique and the algorithm

for waveform design is presented in Section 3.3. Section 3.4 represents the simulation

results and discussions, and finally Section 3.5 concludes the chapter.

3.2 System Model and Problem Formulation

To perform ToA estimation, receiver should detect the arrival of the transmitted

signal instantaneously, and measure the signal propagation time with respect to a
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reference time. The system model for the baseband received signal corresponds to:

r(t) =


∑L−1

l=0 hls(t− τl) + v(t), τ0 ≤ t ≤ τL−1 + (N − 1)Ts

v(t), elsewhere

(3.1)

where s(t), hl, τl and v(t) represent the transmitted baseband signal with length

N , gain and delay of the lth tap of wireless channel impulse response, and additive,

white, zero mean Gaussian noise, respectively. Applying the proposed baseband

received signal in (3.1) to the analog to digital converter (ADC), with the sampling

frequency of fs = 1/Ts, where Ts is the sample interval of the baseband signal, leads

to:

r(k) =


∑L−1

l=0 hls(kTs− τl) + v(kTs), kτ0 ≤ k ≤ kτL−1
+N − 1

v(kTs), elsewhere

(3.2)

where kτl is the closest integer number to τl/Ts, and L, hl, τl and N are defined in

(3.1), and s(kTs) and v(kTs) represent the kth sample of the transmitted waveform

and additive zero mean Gaussian noise, respectively.

The ToA estimation is equal to the estimation of the time delay corresponding to the

received signal from the shortest path, τ0. Considering τ0 = kτ0Ts + δτ0 , ToA can be

introduced via coarse (kτ0Ts) and fine (δτ0) components. In correlation based ToA

techniques, the problem of ToA estimation is represented by estimating coarse-ToA
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via solving the following objective function:

k̂τ0 = argmax
k

∣∣∣∣∣
k+N−1∑
n=k

rns
∗
N+n−k

∣∣∣∣∣
2

, (3.3)

where rn and s∗n represent the nth sample of received signal defined in (3.2),

and the complex conjugate of the transmitted waveform, respectively. This

technique proposes a ToA resolution limited to the sample interval Ts. Given∣∣∣∑N
n=kτ0

rks
∗
N+n−kτ0

∣∣∣2 > ∣∣∣∑N
n=k rks

∗
N+n−k

∣∣∣2, ∀k, k 6= kτ0 , the maximum of (3.3) oc-

curs at k = kτ0 . Considering a constant energy signal, the aforementioned inequality

holds via minimizing of the energy of sidelobe levels,
∣∣∣∑N

n=k rks
∗
N+n−k

∣∣∣2, ∀k, k 6= kτ0 .

This is equivalent to minimization of ISL defined as [108, 109]:

ISL =
N−1∑
k=1

|yk|2 , for, yk =
N−1∑
n=k

sns
∗
N+n−k, (3.4)

where sn and s∗n represent the nth sample of the transmitted waveform and its com-

plex conjugate, respectively. Therefore, minimization of ISL defined in (3.4) leads

to a waveform with good autocorrelation properties and consequently, lower ToA

estimation error. In [109], the weighted-ISL (WISL) is introduced where sidelobe

levels are weighted to form a desired autocorrelation, such that:

WISL =
N−1∑
k=1

w2
k |yk|

2 , wk ≥ 0 (3.5)
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where yk is the kth autocorrelation sidelobe defined in (3.4), and wk represents

its corresponding weight. Exploiting such criteria allows the designer to minimize

the sidelobes around to the center of autocorrelation, in order to minimize the

interference imposed by multipath channels [109].

Improving ToA estimation via optimal bandlimited signal is defined as designing

a waveform with minimum WISL and bandwidth. However, in [108, 109], it is

shown that minimization of (W)ISL, leads to a sequence with near wight spectrum

which uniformly includes all frequencies within [−fs/2, fs/2], where fs represents the

sampling frequency. This indicates that limiting signal bandwidth to any spectrum

lower than [−fs/2, fs/2], dramatically incenses the (W)ISL which leads to ToA

estimation error.

Next section introduces the maximum rising level detector (MRLD) technique which

tremendously improves the low resolution of ToA estimation imposed by bandwidth

limitations of the designed waveform via oversampling and parallel processing(see

section 3.1).
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3.3 Proposed Technique

In this section enhancing the ToA resolution using the MRLD technique is proposed.

Then, a novel procedure for optimization of weighted ISL (WISL) is proposed which

leads to a waveform with very high rising level at its autocorrelation.

3.3.1 Maximum rising level Detector

Figure 3.1 shows the proposed transmitter (a), and receiver (b) block diagrams

corresponding to the proposed MRLD technique. Applying the baseband received

signal in (3.1) to the analog to digital convertor (ADC) with sampling time interval

T̃s = Ts/M , where Ts represents the sample interval of the transmitted waveform,

leads:

r(k′T̃s) =



L−1∑
l=0

hls(k
′T̃s − τl) + v(k′T̃s),

Mkτ0 + kδ ≤ k′ ≤MkτL−1
+ kδL−1

+N − 1

v(k′T̃s), elsewhere

(3.6)

where s(kT̃s), r(kT̃s) and v(kT̃s) represent the samples of transmitted and received

signals, and zero-mean complex additive Gaussian noise at t = kT̃s, and {hl}L−1
l=0

denote the complex value channel impulse response (CIR). Furthermore, M , kτl and
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kδl are the oversampling rate and sample indices corresponding to the coarse and fine

of lth path delay, respectively. Reformulating the ToA equation (τ0 = kτ0Ts + δτ0)

in terms of new sample time, T̃s leads to:

τ0 = (Mkτ0 + kδ) T̃s + δ̃0, (3.7)

where kτ0 and kδ0 are the sample indices corresponding to the coarse and fine ToA,

respectively. Moreover, δ̃0 represents the remnant of fine ToA such that δ̃ = δτ0−kδT̃s

for 0 ≤ kδ ≤M − 1.

The proposed MRLD receiver oversamples the baseband received signal with rate

M , then segregates the output of ADC into M parallel correlation paths each cor-

responding to a consecutive sample time offset 0, T̃s, ..., (M − 1)T̃s. Exploiting this

technique, the sequence of existing samples in the mth correlation path corresponds

to the samples observed at times [(m−1)T̃s, (M+m−1)T̃s, (2M+m−1)T̃s, ...],∀m =

0, 1, ...,M − 1.

Assuming zero-ISI pulse shaping at transmitter, the kth sample at themth correlation

path can be represented by:

rm(kTs) =


∑L−1

l=0 hls
(
(Mk +m)T̃s − τl

)
+ v
(
(Mk +m)T̃s

)
, kτ0 ≤ k ≤ kτL−1

+N

v
(
(Mk +m)T̃s

)
, elsewhere

(3.8)
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where M is the number of correlation path or oversampling rate, and hl, s(kT̃s),

and v(kT̃s) are defined in (3.6). Here, estimating ToA is equivalent to discovering

the index corresponding to τ0 in terms of new sampling time, i.e. (Mkτ0 + kδ).

Applying the sequence of each correlation path to the matched filter of transmitted

waveform (s∗(N − n)), and taking the absolute value, offers M possible candidates

for coarse ToA of Mkτ0T̃s = kτ0Ts. However, higher resolution
(
kδT̃s

)
and its

corresponding coarse ToA are achievable via searching over path numbers to reveal

the one contains the closest samples to the transmitted waveform or its convolution

with CIR. Figure 3.2 depicts the correlation levels corresponding to the MRLD

receiver for M = 4, considering the transmitted waveform with very high rising level

at its autocorrelation center (see section 3.3.2 for waveform design). Here, (without

loss of generality) it is assumed τ0 = (k0 + 0.75)Ts where τ0, Ts and k0 represent

the ToA, sampling interval and an arbitrary integer. Exploiting the traditional

correlation techniques, the estimated ToA would be τ̂0 = (k0 + 1)Ts. Considering

(3.8) , the sequence of existing samples in the third correlation path corresponds to:

r3(kTs) = h0s
(
(4k + 3)T̃s − τ0

)
+

L−1∑
l=1

hls
(
(4k + 3)T̃s − τl

)
+ v
(
(4k + 3)T̃s

)
, k0 ≤ k ≤ kτL−1

+N

(3.9)

where hl, s(kT̃s) and v(kT̃s), and rm(kTs) are defined in (3.6) and (3.8), respectively.
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Figure 3.1: The block diagram of the proposed MRLD transceiver.

Substituting τ0 and T̃s with (T0 + 0.75)Ts and Ts/4, respectively, leads to:

r3(kTs) = h0s
(
(k − k0)Ts

)
+

L−1∑
l=1

hls
(
(4k + 3)T̃s − τl

)
+ v
(
(4k +m)T̃s

)
, k0 ≤ k ≤ kτL−1

+N

(3.10)

The proposed sequence in (3.10) is the convolution of the transmitted waveform and

CIR which maximizes the matched filter output at k = k0. Although, the matched

filter outputs corresponding to the other pathes is maximum at the same index,
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however, their corresponding rising levels of the offered indexes are much smaller

than the rising level of the third path (5, 17 and 15 dB shown in Fig. (3.2)-(a),

(b) and (d) compared to 275 dB as shown in Fig. (3.2)-(c)). This is the result of

designed waveform with a very high rising level proposed in section 3.2, where the

sidelobe levels corresponding to the correlation of the designed waveform matched

filter with samples generated by oversampling are extremely larger than the sidelobe

levels corresponding to its autocorrelation. Thus, the MRLD technique is efficiently

implementable based on three simple steps: (1) searching for the peak of correlation

levels at each path using the transmitted waveform matched filter (s∗(N − n)), (2)

measuring the rising level corresponding to the revealed peaks at each path, (3)

searching for the maximum among the measured rising level. Therefore, the path

containing the maximum rising level (m∗), among M available correlation paths is

achievable via:

m∗ = argmax
m

 c
(m)

k̂m

c
(m)

k̂m−1

 ,

s.t. c
(m)

k̂m
= argmax

k

∣∣∣∣∣
k+N−1∑
n=k

rm(nTs)s
∗
N+n−k

∣∣∣∣∣
2

,

(3.11)

where rm(kTs) and s∗N−k are the kth samples of received sequence at mth correlation

path and the matched filter to the transmitted waveform, respectively. Moreover,

M and N represent the number of correlation paths or oversampling rate, and the

length of received signal, respectively. Using (3.11), the estimated ToA can be
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Figure 3.2: Autocorrelation level corresponding to the over-sampled signal
with M = 4 and fine-resolution kτ0 = 3.

represented by:

τ̂0 =
(
Mk̂m∗ +m∗

)
T̃s, (3.12)

where m∗ and k̂m∗ denote the correlation path number containing the maximum

rasing level and its corresponding index of maximum correlation level, respectively,

65



achievable via (3.11).

The performance of the proposed technique is evaluated by comparing the mean

square error (MSE) of the estimated ToA over K independent run via:

MSEτ̂ =
1

K

K∑
k=1

∣∣∣τ (k)
0 − τ̂ (k)

0

∣∣∣2 , (3.13)

where τ
(k)
0 and τ̂

(k)
0 represent the kth ToA value and its estimation, respectively.

Next section discusses designing a waveform with maximum rising level exploited in

MRLD technique.

3.3.2 Waveform Design

3.3.2.1 Forming the objective function

The desired waveform sequence {sn}Nn=1 = {ejϕn}Nn=1 can be acquired as the solution

of the following optimization problem:

φ̂ = argmin
φ

N−1∑
n=k

wk |yk|2

s.t. yk =
N−1∑
k=1

sns
∗
N+n−k, for: sn = ejϕn

(3.14)
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where φ = [ϕ1, ϕ2, ..., ϕN ]T , and N , and yk and wk are defined in (3.1) and (3.5),

respectively. Considering the Parseval energy equality in time-frequency domain and

defining the 2N point discrete Fourier transform of weighted sidelobes {wnyn}N−1
p=1

as {Sp}2N
p=1, it can be shown that [108, 109]:

WISL =
1

4N

2N∑
p=1

[Sp −N ]2 ,

for, Sp =
1√
2N

N−1∑
n=−(N−1)

w2
kyke

−j 2πkp
2N ,

(3.15)

where N , and yk and wk are defined in (3.1) and (3.5), respectively. Substituting yk

with (3.4) leads to [108, 109]:

Sp =
1√
2N

N−1∑
k=−(N−1)

N−1∑
n=k

sns
∗
N+n−kw

2
ke
−j 2πkp

2N

=
N∑
l=1

N∑
k=1

e−jϕkej
πkp
N Γk,le

jϕle−j
πlp
N

(3.16)

where (.)∗ indicates the complex conjugate notation and Γk,l represents the elements

at the kth row and lth column of squared weights matrix Γ, defined such that:

Γ =



1 γ1 ... γN−1

γ1 1 ... γN−2

...
...

. . .
...

γN−1 γN−2 ... 1


(3.17)
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This leads to the final format of waveform design objective function as follow:

φ̂ = argmin
φ

{
2N∑
p=1

[Sp −N ]2
}

for, Sp =
N∑
l=1

N∑
k=1

e−jϕkej
πkp
N Γk,le

jϕle−j
πlp
N

(3.18)

where N , and yk and wk are defined in (3.1) and (3.5), respectively, and Γk,l repre-

sents the element at the kth row and lth column of Γ defined in (3.17). Next section

introduces a novel optimization approach that exploits the trust-region algorithm

to optimize (3.18) via solving the system of nonlinear equations corresponding to

5φf = 0 for f =
∑2N

p=1 [Sp −N ]2, where Sp is defined in (3.18).

3.3.2.2 Trust-region Algorithm

In order to find the optimum solution for the proposed objective function in (3.18),

the trust-region algorithm is exploited to solve 5φf = 0 for f =
∑2N

p=1 [Sp −N ]2,

where Sp is defined in (3.18). Here, we define g = 5φf , and H = 52
φf as the

gradient vector and Hessian matrix of the proposed objective function in (3.18).

The analytical expressions for the gradient vector and Hessian matrix are discussed

in Appendix A and B, respectively.

Algorithm 1 proposes the trust-region method to solve the system of nonlinear equa-

tions corresponding to5φf = 0. Trust-region and Levenberg-Marquardt algorithms
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are the leading state-of-the-art approaches to solve a system of nonlinear and non-

convex equations (regarding H is negative definite). The trust-region technique aims

to find the optimum step size s without exceeding the trust-region radius, δ which

leads to quick convergence to a more interesting area [121], and therefore much

better performance compare to Levenberg-Marquardt approach. This interesting

property demands for finding the optimum step size at each iteration which is not a

trivial problem regarding its quadratic form subject to one non-linear constraint (see

Algorithm 1 line 4). However, the off-line procedure of waveform design justifies se-

lecting the approach with higher computational complexity for better performance.

Here, the Dogleg approach [121] is introduced to find the optimum step size at each

iteration (see Algorithm 2). Next section discusses the impact of several parameters

such as signal length and oversampling rate via simulations. It can be observed

that the resolution of the proposed ToA estimation technique significantly improves

by increasing the oversampling rate or equivalently the number of correlation paths

and transmitted waveform length.

Figure 3.3 (a) and (b) depicts the autocorrelation levels of the designed waveforms

exploiting Algorithm 1 for N = 128 and N = 512, respectively. Here, the exploited
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Algorithm 1 Trust-region algorithm to solve 5φf = 0 for f =
∑2N

p=1 [Sp −N ]2,
where Sp is defined in (3.18)

Require: Γ, φ0,
1: return φ
2: Initialize η1 = 0.05, η2 = 0.9, γ1 = 2.5, γ2 = 0.25, δ = 1, ε = 1e− 6 .
3: while

∥∥HTg
∥∥ > ε do

4: find: s = argmin
s

{
sTHTg + 1

2
sTHTHs

}
via Alg. 2.

5: pred = −
(
sTHTg + 1

2
sTHTHs

)
.

6: ared = gTφ+sgφ+s − gTφgφ.
7: if (ared/pred) < η1 then
8: δ = δγ1, repeat step 4.
9: else

10: φ = φ+ s.
11: if (ared/pred) > η2 then
12: δ = max{δ, γ2 ‖s‖},
13: end if
14: end if
15: end while

Algorithm 2 The Dogleg approach that find the optimum step size at each step

Require: H,g, δ
1: return sdl
2: sc = −δ HT g

‖HT g‖ , sn = −H−1g.

3: sc = τcsc for: τc = min
{

1,
∥∥HTg

∥∥3
/
(
δgTHTHg

)}
4: a = ‖sc − sn‖2.
5: b = 0.5(‖sc‖2 + ‖sn‖2 − a),

6: α = ‖sn‖2−δ2

‖sn‖2−b+
√
b2−‖sc‖2‖sn‖2+δ2a

,

7: sdl = αsc + (1− α)sn

squared weights are defined in (3.19) as follow:

γn =


8 n = N

0.6 N −No ≤ n ≤ N − 1

0 elsewhere

(3.19)
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Figure 3.3: Autocorrelation level of designed waveform, (a) N = 128,
(b)N = 256 , (c) N = 512, (d) N = 1024.

where No = 35 and 140 for Fig. 3.3 (a) and (b), respectively. Moreover, the initial

phase values φ0 are chosen exploiting the Golomb sequence [108] which leads to

ϕn = πn(n− 1)/N,∀n = 1, 2, ..., N , where N denote the waveform length.
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3.4 Simulation Results and Discussion

Simulations are conducted to investigate the performance of the proposed ToA esti-

mation method. Here, the mean square error (MSE) of the proposed ToA estimation

in diverse scenarios is calculated and compared to SCAN [108] and ToA CRLB as

benchmark. Moreover, the complexity of the proposed technique is investigated vs

performance via discussing the impacts of the number of parallel paths or oversam-

pling rate M , and waveform length N , on the total required operations and ToA

MSE at different SNR regimes.

3.4.1 Simulation Parameters and Methods

In this sub-section, the details of simulated system model which is used for perfor-

mance analysis are introduced. Table 3.1 shows the definitions and the values of

parameters used to simulate the system model. In order to simulate the oversampled

baseband signal at receiver as described in (3.8), the oversampled version of wave-

form is generated incorporating an ISI free pulse shaping filter such as raised cosine.

The oversampled signal is passed through the flat and MPFS channels and added

by independent samples of zero mean circularly complex white Gaussian noise. In
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Table 3.1
Simulation parameters and applied values

Sym. Definition Value
Ts Sampling time 1µs
N Length of waveform 128, 256, 512, 1024
M Number of correlation paths 2/8/16/32/64/128
Ls Length of received signal 5000
L Taps of channel 1/3/7
Tm Channel delay spread L× Ts
K No. of independent runs 104

order to verify the performance and stability of the proposed technique K indepen-

dent Monte-Carlo simulation is performed. Next sub-section details the simulation

results.

3.4.2 ToA Estimation Performance

Figure 3.4 represents the MSE of estimated ToA exploiting the designed waveform

in Section 3.3.2 for N = 512, and the MRLD receiver in the presence of flat fading

channel. Here, different numbers of correlation paths or oversampling rates are ap-

plied to investigate its impact on the proposed ToA estimator. The performance of

proposed method is compared exploiting the waveform designed by SCAN proposed

in [108], where Ts = 250ns and the stop-band equals to [−500KHz, 500KHz]. Al-

though the acquired attenuation for the frequencies outside the stop-band is around

30dB which is insufficient for many applications, it can be observed that exploiting

a band limited waveform with lower sampling time (higher resolution) offers stable
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results even at low SNR regimes. However, as shown in Fig. 3.4, applying the

MRLD approach, higher resolution is achievable for medium to high SNR regimes

(SNR>0dB) compared to SCAN.

Figure 3.5 represents the MSE of the estimated ToA exploiting the designed wave-

form in Section 3.3.2 for N = 512, and the MRLD receiver in the presence of

unknown MPFS channels. Here, different numbers of correlation paths are applied

to MRLD receiver to investigate its impact on the proposed ToA estimator and

compare them with SCAN approach in a 7 taps MPFS channels. As shown in Fig.

3.5, the resolution of ToA estimator improves by increasing the number of corre-

lation paths in the MRLD receiver. Moreover, it can be observed that the ToA

MSE reaches to an error floor for high SNR values due to the deficiency of fine ToA

estimation with higher resolution than Ts/M . Here, the amplitude and phase of

CIR taps are selected independently exploiting Rayleigh and uniform distributions,

respectively, where the largest amplitude is enforced to the first tap of CIR.

Figure 3.6 depicts the MSE of estimated ToA exploiting the designed waveform in

Section 3.3.2 for N = 512, and the MRLD receiver in the presence of flat fading

channel assuming no fine ToA is available, or τ0 = kT̃s. As shown in Fig. 3.6,

the MSE of ToA increases exploiting higher number of correlation paths. This

indicates that in the proposed MRLD receiver the probability of correct coarse

ToA estimation decreases by increasing the correlation paths or oversampling rate,
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however, the overall performance of ToA estimation of MRLD receiver outperforms

the traditional matched filter techniques exploiting full band or limited bandwidth

waveforms such as SCAN regarding the error floor imposed by deficiency of fine ToA

in these approaches.

3.4.3 Complexity Analysis vs Performance

Figure 3.7 represents the number of complex operations (summation and multi-

plication) required by the proposed technique vs different numbers of correlation

paths M , and waveform length N . Considering Lr as length of the received signal,

(N + 2)(Lr −N) complex multiplications and N(Lr −N) summations are required

at each correlation path. As shown in Fig. 3.7, for a fix value of total required

operations, multiple choices as a function of correlation path number or waveform

length are available. Figure 3.8 depicts the MSE of the estimated ToA incorporating

different numbers of waveform length and correlation paths. Here, it is aimed to

reveal the impacts of regulating correlation path number or waveform length on the

performance of the proposed method. As shown in Fig. 3.8, increasing the waveform

length improves the MSE at low SNR values. For instance, the MSE represented by

N = 1024,M = 16 is lower than the MSE proposed by N = 128, 256, M = 64 for

−4dB ≤ SNR ≤ 6dB. However, for higher SNR regimes increasing M corresponds

to lower MSE. Therefore, it can be observed that in low SNR regimes increasing
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Figure 3.4: MSE of ToA exploiting different numbers of correlation paths
M vs SCAN with the same bandwidth (1MHz) in flat fading channel.

Figure 3.5: MSE of ToA exploiting different numbers of correlation paths
M vs SCAN with the same bandwidth (1MHz) in MPFS channels.

the waveform length (N), is more beneficial; however, in higher SNR regimes ex-

panding the number of correlation paths or oversampling rate (M), is found more

advantageous.
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Figure 3.6: Impact of proposed MRLD technique on coarse ToA estima-
tion.

Figure 3.7: Total required complex operations by the proposed technique.
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Figure 3.8: Impact of increasing the number of parallel paths M vs wave-
form length N , on the performance of proposed technique.

3.4.4 ToA CRLB

The CRLB for the MSE of estimated ToA defined in (3.13) is proposed in Figures

3.4 and 3.5. Although approaching to the ToA CRLB is too optimistic specifically

in low SNR regimes [122], it can be observed that increasing the correlation paths

in MRLD receiver alleviates this gap at the cost of higher computational complexity

and hardware cost. Considering x =
[
d, h

(I)
0 , h

(Q)
0 , ..., h

(I)
L−1, h

(Q)
L−1

]
as unknown vec-

tor, where d = [τ0, ..., τL−1], the log-likelihood function of probability distribution

function of the received signal proposed in (3.8), r, can be represented by:

Λr|x = Λ0 −
1

σ2
(r− Ah)H (r− Ah) , (3.20)

78



The CRLB requires the computation of the Fisher information matrix (FIM), that

corresponds to:

J
∆
= Er|x

{
OxΛr|x.

(
OxΛr|x

)T}
, (3.21)

then, the CRLB for MSE of ToA can be represented by:

CRLBτ0 = Jinv(1, 1), (3.22)

where Jinv
∆
= J−1. Appendix C details the computation of ToA CRLB. Applying L =

1 and h = 1, the CRLB of estimated ToA over AWGN channel can be represented

by formerly discussed equation in [123, 124] as follow :

CRLBτ =
3σ2

8π2NTsσ2
s (f 3

2 − f 3
1 )
, (3.23)

where N , Ts are defined in (3.8), and σ2 and σ2
s denote the variance of noise and

transmitted waveform, respectively. Moreover, f2 and f1 represent the effective

waveform’s spectrum such that BW = |f2 − f1|.

3.5 Conclusion

In this chapter, the MRLD technique is proposed which improves ToA resolution for

a fixed available bandwidth in the presence of unknown multipath frequency selective
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(MPFS) channels. The proposed MRLD technique enjoys exploiting waveform with

very high rising level at its correlation center and oversampling in several correlation

paths at receiver to reveal higher resolution than sampling interval. Simulation

results confirm that the resolution of estimated ToA can be improved via increasing

the number of correlation paths in MRLD receiver, to a great extent in medium to

high SNR regimes and increasing the waveform length at lower SNR values.

The very fact that MRLD technique exploits parallel processing to improve the ToA

resolution makes this technique a proper candidate for entities recruiting multi-core

processors such as cell phones or base-station receivers. Moreover, the significant

desire on utilized bandwidth reduction in wireless technology endorses exploiting the

MRLD receiver to increase ranging resolution and/or time synchronization while

low bandwidth signal are exploited. Furthermore, applying the MRLD receiver

improves the ToA resolution in the presence of frequency dispersive channel such

as ionosphere layers and under-ground/water communications, where band limited

waveforms must be applied to avoid signal dispersion.
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Chapter 4

High Resolution ToA Estimation

in Non-homogenous, Frequency

Dispersive Channels1

As discussed in Chapter 3, incorporating wide band waveforms in free space is a fea-

sible remedy to achieve high ToA resolution, however increasing the bandwidth of

transmitted waveform in frequency dispersive channels intensifies frequency disper-

sion [70],[65] and [125]. In the microwave terminology, frequency dispersion refers

1The material contained in this chapter is submitted for publication in IEEE Transaction on Signal
Processing, March, 2016
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to the principle that different frequency components of a transmitted electromag-

netic waveform propagates with different velocities due to frequency dependency

of medium’s relative permeability and/or permittivity. Therefore, increasing trans-

mitted waveform’s bandwidth prompts higher frequency dispersion which alleviates

the nonlinear distortion of transmitted waveform. The nonlinearity nature of the

imposed distortion by frequency dispersion leads to a received signal that is barely

detectable by the matched filter of transmitted waveform which dramatically de-

grades the ToA estimator performance [65].

To the best of authors knowledge, high resolution ToA estimation exploiting wide-

band microwave signals in NH media or single medium in frequency dispersion band

is an open problem. Many researchers propose acoustics communication for ToA

estimation in underwater or underground media [66]. Although acoustics commu-

nication offers high resolution for underwater ToA estimation, it cannot be applied

to airborne to underwater channels due to strong reflections and attenuation in wa-

ter/air boundary [67]. A few works [68]-[69], and [61]-[64] propose ToA estimation

in dispersive medium for specific scenarios which cannot be extended to NH media.

In [68]-[69], time delays estimation of buried target echoes for GPR is addressed,

meanwhile, the received echoes do not represent frequency dispersion assuming low

conductivity and small layer thickness of sub-media. Although, these assumptions

can be feasible for dry media, however, when the water content of media exceeds

10% by weight, the frequency dispersion must be considered due to the dielectric
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relaxation of water [70]. In [61], the transmitter location is estimated by combining

the measured ToA data with the knowledge about shape and position of the medium

which is not a feasible assumption in NH media. Authors in [63], propose sensor

node localization via ToA measurements meanwhile the procedure of ToA estima-

tion in soil as frequency dispersive medium is not discussed. In [64], ToA estimation

of short range seismic signals in dispersive environments is addressed, however the

system model does not represent the frequency dispersion due to low bandwidth of

applied seismic signals.

In this chapter, high resolution ToA estimation in NH media consisting of diverse

frequency dispersive sub-media is addressed. The proposed technique exploits pre-

allocated OFDMA subcarriers to construct a wideband ranging signal. Here, we

show that each frequency component of the propagated waveform is received with

different time delays and phases which dramatically increases the number of un-

knowns in the received signal system model. Then, we propose a novel approach

which reduces the number of unknowns by linear approximation of imposed delays

and phases to the allocated OFDMA subcarriers in frequency domain. These jus-

tified approximations replaces the imposed delays with the delay corresponding to

the waveform spectrum center as the desired unknown which is estimated exploiting

maximum likelihood (ML) estimator.

83



The feasibility of the applied approximations are evaluated via theory and simula-

tions in diverse scenarios with different propagation distance and required ToA res-

olution. Here, human body, airborne to underwater and multi-layers underground

channel with different water contents exploiting wideband microwave signals are

considered as examples of NH media consisting of frequency dispersive sub-media.

The proposed NH media are simulated according to the state-of-the-art channel

and propagation models for body [126][127]-[128], sea water [125] and underground

channel [129, 130, 131]. Simulation results prove the feasibility and efficiency of the

proposed technique in terms of ToA resolution compared to the allocated bandwidth

of the transmitted waveform.

The rest of chapter is organized as follow. Section 4.1 introduces the system model.

The proposed algorithm for ToA measurements is presented in Section 4.2. Section

4.3 evaluates the feasibility of proposed technique in terms of applied approximations

and simulation results. Finally Section 4.4 concludes this chapter.
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4.1 System Model

Exploiting 2K OFDMA subcarriers, the baseband samples of the ranging waveform

corresponds to [132]:

sn =
1√
N

2K∑
k=1

Ske
j2πmk∆fnTs , n = 1, 2, ..., N (4.1)

where N , ∆f and Ts represent the total number of available subcarriers or the

length of waveform, OFDMA subcarrier spacing and sampling interval, respectively.

Moreover, Sk represents the kth frequency domain symbol known at both transmitter

and receiver. In (4.1), 2K symmetric subcarriers are allocated to construct the

ranging waveform, where mk represents the frequency index of the kth subcarrier

such that:

mk =


K,K − 1, ..., 1 for k = 1, 2, ..., K

N −K, ..., N − 1 for k = K + 1, ..., 2K

(4.2)

where N is defined in (4.1) and 2K denote the number of allocated subcarriers. Here,

symmetric subcarriers are selected to construct a uniform waveform in frequency

domain which enables linear approximation of imposed delay to each subcarrier (see

Remark 1). To maintain orthogonality across subcarriers, subcarrier spacing must
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satisfy ∆f = 1/(NTs) which leads to:

{sn}Nn=1 =
1√
N

2K∑
k=1

Ske
j
2πnmk
N , (4.3)

where N , ∆f , Ts, Sk, and mk and K are defined in (4.1) and (4.2), respectively.

The N samples of baseband waveform represented in (4.3) are passed through the

digital to analog converter (DAC), with sampling interval Ts to shape the analog

form of ranging waveform. The created baseband signal is up-converted to the carrier

frequency fc, and transmitted through the NH channel. The transmitted waveform

by target node is propagated in NH channel consisting of several frequency dispersive

sub-media. Considering h(t, ω) as time and frequency dependent of available media

channel impulse response, i.e.,

h(t, ω) =
L−1∑
l=0

hl(ω)δ(t− τl(ω)), (4.4)

where hl is the complex value of channel tap gain and δ(t) is the Dirac delta func-

tion, respectively. The received signal r(t), is represented by the aggregation of the

delayed version of frequency dispersed waveforms from L propagation paths.

r(t) =
L−1∑
l=0

1

2|ωK |

∫ ωK

−ωK
hl(ω)S(ω)ejω(t−τl(ω))dω + v(t), (4.5)
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where S(ω) is the Fourier transform of the ranging waveform s(t), and τl(ω) and

2|ωK | represent the time delay imposed by the lth path into the waveform component

with frequency of ω and the bandwidth of s(t), respectively. Assuming the flat

attenuation over different frequency components of each channel tap which leads to

hl(ω) ≈ hl. Applying (4.5) to the analog to digital converter (ADC) with sampling

rate of fs = 1/Ts, where Ts is considered as sampling interval of the baseband signal

leads to:

rn =
1√
N

L−1∑
l=0

hl

2K∑
k=1

Ske
j
2πmk(nTs−τk,l)

NTs + vn, (4.6)

where N , Ts, Sk, and mk and K are defined in (4.1) and (4.2), respectively. More-

over, rn and vn represent the nth sample of the base-band received signal and addi-

tive, white zero-mean Gaussian noise, respectively and τk,l is the delay corresponding

to the kth frequency component propagated from the lth path. Based on the con-

ventional definition of ToA, it is desired to estimate the delay corresponding to the

first arrived component (k = 1) propagated from the shortest path l = 0. This

is equivalent to the value of τK,0. However, in the next section, a novel technique

is proposed, which exploits frequency domain analysis to estimate τ0,0, that repre-

sents the delay corresponding to the spectrum center of the transmitted waveform

k = 0, propagated from the shortest path or equivalently, l = 0. The rest of chapter,

denotes the τ0,0 the desired ToA or briefly ToA.
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4.2 Proposed ToA Estimation Technique

This section presents the proposed ToA estimation technique considering Nr samples

of the received signal proposed in (4.6) are available at the receiver. Here, receiver

selects Nr such that the maximum possible range is covered that corresponds to:

Nr =
1

cTs

M∑
m=1

d(m)
max

√
ε

(m)
r , (4.7)

where c, Ts and M denote the universal speed of light, sampling interval and the

number of available sub-media in NH medium. Moreover, d
(m)
max and ε

(m)
r represent

the maximum possible propagation distance and the relative permittivity of mth

available sub-media, respectively. Considering frequency domain ToA estimation,

one can estimate τ0,0 in (4.6) given: 0 ≤ τ0,0 ≤ (N − 1)Ts, however for τ0,0 > NTs

any frequency domain approach estimates τ̃0,0 = τ0,0− ts, for ts =
⌊
τ0,0
NTs

⌋
NTs where

the b.c operand rounds to the nearest integers towards minus infinity. Therefore,

prior to the discussed ToA estimation technique, we need to propose a time frame

detection technique which estimates ts such that 0 ≤ τ0,0 − ts ≤ (N − 1)Ts, where

τ0,0 represents the desired ToA. In order to address this issue, a novel and efficient

time frame detection technique is proposed in Section 4.2.1 which estimates ts prior

to the discussed ToA estimation technique proposed in Section 4.2.2.
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4.2.1 Time Frame Detection Technique

The procedure of ToA estimation is initiated by calculating the start time (ts),

corresponding to the time frame including the desired ToA or τ0,0, such that

0 ≤ τ0,0 − ts ≤ (N − 1)Ts. Here, a time frame denotes the time interval of N

consecutive samples of the received signal in (4.6), with an arbitrary start. Consid-

ering Nr samples of the received signal are available according to (4.6) and (4.7), the

accumulated energy of the transmitted OFDMA subcarriers in frequency domain at

the ith time frame can be written by:

Ei =
2K∑
k=1

|wT
k ri|, i = 1, 2, ...,

⌊
Nr

N

⌋
, (4.8)

for wk = [e−j
2πmk
N , e−j

2π2mk
N , ..., e−j

2πNmk
N ]T , where N and mk are defined in (4.1) and

(4.2), respectively. Moreover, ri = [r(i−1)N+1, r(i−1)N+2, ..., riN ]T where rn represents

the nth sample of the received signal in time domain defined in (4.6). Algorithm

3 details the proposed time frame detection technique based on frequency domain

energy calculation in (4.8). Starting from the first sample corresponding to the

time origin t = 0, receiver calculates the accumulated energy of all
⌊
Nr
N

⌋
available

time frames using (4.8), and selects two time frames with the largest accumulated

energy values, Ei1 and Ei2 , such that Ei1 > Ei2 . If Ei1 is large enough, for instance

Ei1 > γEi2 for γ = 5, the algorithm selects the desired time frame start as ts =
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Figure 4.1: Three different scenarios of received waveform, (a) close to the
time fame start, (b) close to the end of time frame, (c) in the middle of time
frame.

(i1 − 1/2)NTs. This case occurs if the desired ToA is close enough to the start

or the end of the ith time frame (∀i = 1, 2, ...,
⌊
Nr
N

⌋
), as shown in Fig. 4.1(a) and

(b). However, if the waveform arrival is close to the middle of the ith time frame as

shown in Fig. 4.1(c), the accumulated energy of the ith and the (i+1)th time frames

are at the same order and can be manipulated with noise power. Therefore, if Ei1

and Ei2 do not satisfy Ei1 > γEi2 , the proposed algorithm selects a new time frame

initiated by im = min{i1, i2} + 1/2, and computes its corresponding accumulated

energy defined by Eim , using (4.8). At the final step, if Eim > Ei1 , the algorithm

selects the desired time frame start from ts = (im − 1/2)NTs. In the next section,

the start time of the time frame containing the desired ToA ts, is utilized for high
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resolution ToA estimation.

Algorithm 3 Proposed time frame detection algorithm.

Require: r, γ
1: return ts
2: compute Ei∀i = 1, 2, ...,

⌊
Nr
N

⌋
.

3: sort Ei,∀i, such that: Ei1 > Ei2 > ... > Ei2M .
4: if Ei1 > γEi2 then
5: ts = (i1 − 1/2)NTs.
6: else
7: im = min{i1, i2}+ 1/2.
8: compute Eim using (4.8).
9: if Eim > Ei1 then

10: ts = (im − 1/2)NTs.
11: else
12: ts = (i1 − 1/2)NTs.
13: end if
14: end if

4.2.2 High Resolution ToA Estimation

Assuming the start time of the time frame containing the desired ToA (ts) is cal-

culated using the proposed technique in Algorithm 3, receiver converts 3N samples

starting from ns = ts
Ts

into frequency domain applying discrete Fourier transform

(DFT). Here, 2N additional samples are selected to cover N possible samples be-

tween the corresponding sample of the desired ToA and ns, and N samples for signal

expansion due to frequency dispersion. Therefore, 2K samples of the received signal
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in frequency domain are achievable via:

R = W̃rns , (4.9)

where W̃ = [W,W,W]2K×3N , for W =
[
wT

1 ; wT
1 ; ...; wT

2K

]
2K×N and wk is a column

vector defined in (4.8). Moreover, rns represents 3N samples of received signal

defined by rns = [rns , rns+1, ..., rns+3N−1]T . Considering (4.6) as the time domain

system model for the received signal, the system model for kth element of the received

signal at frequency domain achievable via (4.9) can be written as:

Rk =
1

N

N−1∑
n=0

L−1∑
l=0

hl

2K∑
k′=1

Sk′e
j
2πmk′(nTs−τ̃l,k′)

NTs e−j
2πnmk
N + Vk, (4.10)

where N , Ts, Sk, and mk and K are defined in (4.1) and (4.2), and Vk represents

the kth sample of additive noise at frequency domain. Here, τ̃l,k represents the

normalized delay corresponding to the kth transmitted subcarrier received from the

lth path, defined by τ̃l,k = τl,k− ts, where τl,k is defined in (4.6) and ts represents the

start time of the time frame containing the desired ToA achievable via Algorithm

3. Considering the orthogonality of transmitted subcarriers and applying some

mathematical manipulation, (4.10) can be written as:

Rk = Sk

L−1∑
l=0

hle
−j

2πmkτ̃l,k
NTs + Vk, (4.11)
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where N , Ts, Sk, and mk and K are defined in (4.1) and (4.2), and τ̃l,k and Vk are de-

fined in (4.10). The proposed system model in (4.11) represents 2M nonlinear equa-

tions corresponding to 2M allocated subcarriers, each contains L(2M+1) unknowns

(L and 2ML correspond to hl and τ̃k,l, respectively for k ∈ κ and l = 0, 1, ..., L− 1).

The very fact that solving a system of 2M nonlinear equations for L(2M + 1),

(L ≥ 1) unknowns leads to infinitely many solutions (or no feasible solution), de-

mands for reducing the number of unknowns. In order to reduce the complexity of

the proposed system model in (4.11), here, the case of flat fading channel is con-

sider where the reflected copies of transmitted waveforms are small compared to the

shortest path. Meanwhile, challenges and limitations of the proposed high resolu-

tion ToA estimation technique are discussed at the end of this section in the case of

multipath, frequency dispersive channels. Therefore, applying L = 1 in (4.11) leads

to:

Rk = Skhe
−j 2πmkτ̃k

NTs + Vk, (4.12)

where h, τ̃k represent the attenuation coefficient and the propagation delay corre-

sponding to the kth frequency component of transmitted waveform from the shortest

path, respectively. Considering (4.12) as the system model for the received samples

in frequency domain and known transmitted OFDMA symbols (Sk), receiver calcu-

lates Xk = Yk/Yk+K for Yk = Rk/Sk which leads to:

Xk =
e−j

2πmkτ̃k
NTs

e−j
2πmk+Kτ̃k+K

NTs

+ Ṽk,∀k = 1, 2, ..., K (4.13)
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where N, Ts and τ̃k are defined in (4.1) and (4.12), respectively. Moreover, Ṽk rep-

resents the additive measurement noise defined by Ṽk = Vk/e
−j

2πmk+Kτ̃k+K
NTs . Sub-

stituting mk+K by N − mk according to (4.2), and applying some mathematical

manipulations, (4.13) can be written as:

Xk = e−j
2πmk(τ̃k+τ̃k+K)

NTs ej
2πτ̃k+K

Ts + Ṽk, (4.14)

where N, Ts, τ̃k and Ṽk are defined in (4.1), (4.12) and (4.13), respectively. Here, a

set of K independent equations including 2K unknowns are available which leads to

infinitely many solutions (if available). However, it can be shown that (see the fol-

lowing Remark) the imposed delays to transmitted subcarriers can be approximated

as a line.

Remark 1 Given any NH media consisting of M sub-media satisfying:

1

c

∣∣∣∣∣
M∑
m=1

d(m)

√
ε

(m)
r,k −

M∑
m=1

d(m)
[(√

ε
(m)
r,K+1−√

ε
(m)
r,K

)
k +

√
ε

(m)
r,1

]∣∣∣∣∣ ≤ ηTs, k = 0, ..., 2K − 1,

(4.15)

the imposed delay by frequency dispersion to the kth subcarrier (τk), can be approxi-

mated by τ̂k = a(k − 1) + b such that |τk − τ̂k| ≤ ηTs, k = 1, ..., 2K, where:

a =
1

c

M∑
m=1

d(m)
(√

ε
(m)
r,K+1 −

√
ε

(m)
r,K

)
, (4.16a)
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b =
1

c

M∑
m=1

d(m)

√
ε

(m)
r,1 , (4.16b)

and c denotes the universal speed of light, and Ts and K are defined in (4.1) and

(4.2), respectively and η is and arbitrary small number η < 1 . Moreover, ε
(m)
r,k

and d(m) represent the relative permittivity of the mth media at the kth sub-carrier

frequency, and its corresponding propagation distance, respectively.

Here, the slope of approximated line proposed in Remark 1 is selected according

to the slope of the center of actual delays curve τK+1 − τK , while the constant

value is selected to converge the approximated line to the smallest delay τ1. More

discussion in feasibility of the proposed approximation in Remark 1 is offered in

section 4.3.2. Assuming all imposed delays (τk) are placed on approximated line

proposed in Remark 1, the average of all equally spaced delays from line center, i.e.

τk and τk+K are the same and equals to τ0 which is defined as the delay corresponding

to the spectrum center of the transmitted waveform or the desired ToA. Therefore,

2K unknown delays in (4.14) can be replaced by applying (τ̃k + τ̃k+K) = 2τ̃0, ∀k =

1, 2, ..., K, which leads to:

Xk = e−j
4πmkτ̃0
NTs ej

2πτ̃k+K
Ts + Ṽk, (4.17)

where N, Ts, τ̃k and Ṽk are defined in (4.1), (4.12) and (4.13), respectively. Sub-

stituting τ̃k+K with its corresponding coarse and fine delays such that τ̃k+K =
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(nk+K + δk+K)Ts, gives:

Xk = e−j
4πmkτ̃0
NTs ej2π(nk+K+δk+K) + Ṽk

= e−j
4πmkτ̃0
NTs ej2πδk+K + Ṽk, k = 1, 2, ..., K

(4.18)

where N, Ts are defined in (4.1), τ̃0 is defined in (4.17), and δk represents the fine

delay corresponding to the kth transmitted subcarrier such that 0 ≤ δk ≤ 1. The

proposed system model in (4.18) forms K nonlinear and noisy equations containing

one desired unknown τ̃0, and K undesired unknowns δk+K for k = 1, 2, ..., K. Al-

though the values of fine delays (δk) are negligible in terms of delay, ignoring them

dramatically degrades the system model accuracy due to the impact of the exponen-

tial term, or ej2πδk+K . The following Remark proposes a linear approximation of the

fine delays δk+K for k = 1, 2, ..., K which reduces the number of unknowns proposed

in (4.18). Here, an approximation in form of amk+b (for any constant a and b) is de-

sired which satisfies acceptable error such that
∣∣∣δk+K − δ̂k+K

∣∣∣ ≤ ηTs, k = 1, 2, ..., K.

Exploiting the form amk + b, the proposed system model in (4.18) is converted to

an exponential term corresponding to a single frequency which is simply detectable

via ML estimator.
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Remark 2 Given any NH media consisting of M sub-media satisfying:

∣∣∣∣∣τk+K −
⌊
τk+K

Ts

⌋
Ts +

1

c

M∑
m=1

d(m)
(√

ε
(m)
r,K+2−√

ε
(m)
r,K+1

)
(mk − 1)− δ2K

∣∣∣∣∣ ≤ ηTs, ∀k = 1, 2, ..., K

(4.19)

given τk+K = 1
c

∑M
m=1 d

(m)

√
ε

(m)
r,k+K, the fine delay in (4.18) can be approximated

linearly as δ̂k+K
∼= −β′(mk − 1) + δ2K ,∀k = 1, 2, ..., K, where

β′ =
1

c

M∑
m=1

d(m)

(√
ε

(m)
r,K+2 −

√
ε

(m)
r,K+1

)
, (4.20)

and Ts, and K and mk are defined in (4.1) and (4.2), respectively and c, η, ε
(m)
r,k

and d(m) are defined in (4.15).

Here, the slope of approximated line proposed in Remark 2 is selected according

to the slope of the actual fine delay curve at the first point δK+2 − δk+1, while the

constant value is selected to converge the approximated line to the last value of

actual fine delay curve δ2K . More discussion in feasibility of the proposed fine delay

approximation in Remark 2 is offered in section 4.3.2. According to Remark 2, the

term ej2πδk+K in (4.18), can be approximated by z0e
−j 4πmk

N
β, for z0 = ej2π(β′+δ2K) and

β = Nβ′

2
. Substituting z0e

−j 4πmk
N

β into (4.18), we have:

Xk = z0e
−j 4πmkτ̃0

NTs e−j
4πmk
N

β + Ṽk = z0e
−j 2πmk

N
[2(α+β)] + Ṽk,∀k = 1, 2, ..., K, (4.21)
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where α = τ̃0
Ts

, and β, denote two unknowns need to be estimated to reveal τ̃0.

Defining n(1) = 2(α + β), it can be shown that (see Appendix A), the maximum

likelihood estimator of n(1) can be written as:

n̂(1) = argmax
n

∣∣wT
nx
∣∣ , (4.22)

where wn =
[
ej

2πKn
N , ej

2π(K−1)n
N , ..., ej

2πn
N

]T
is K × 1 column vector and x =

[X1, X2, ..., XK ]T for Xk defined in (4.21). Exploiting (4.22), one can estimate

(α + β), however, at least one linearly independent equation in terms of α and

β is required to estimate the desired ToA via τ0 = τ̃0 + ts where τ̃0 = αTs. Here, we

propose repeating the entire measurement procedure applying the same number of

allocated subcarriers (2K) and waveform samples (N), while, the sampling interval

is changed, for instance to T
(p)
s = pTs, where T

(p)
s represents the sampling interval

at the pth (p ≥ 2) measurement.

Considering static channel where the propagation paths and hence their correspond-

ing delays do not change during P measurements, the delay corresponding to the

spectrum center of the transmitted waveform τ0, is the same at each measurement.

Applying T
(p)
s = pTs, into (4.18) the frequency domain samples at the pth measure-

ments can be written as:

X
(p)
k = z

(p)
0 e

−j 4πmkτ̃0
NT

(p)
s e−j

4πmk
N

β(p)

+ Ṽ
(p)
k , (4.23)
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where N and τ̃0 are defined in (4.1) and (4.17), respectively, and T
(p)
s and z

(p)
0

are the applied sample time at transmitter and receiver, and the constant term

z0 = ej2π(β′+δ2K), at the pth measurement. Writing (4.20) for β(p) in terms of T
(p)
s

and substituting T
(p)
s = pTs leads to β(p) = β/p. Applying T

(p)
s = pTs and β(p) = β/p

(4.24) leads to:

X
(p)
k = z

(p)
0 e−j

4πmkτ̃0
NpTs e−j

4πmk
Np

β + Ṽ
(p)
k ,

= z
(p)
0 e−j

4πmk
Np (α+β

p ) + Ṽ
(p)
k ,∀k = 1, 2, ..., K,

(4.24)

where N , K and mk, and α, β are defined in (4.10) and (4.22), respectively.

Therefore, considering P independent measurements applying T
(p)
s = pTs, for

p = 1, 2, ..., P , and θ = [α, β]T leads to:

θ =
(
ΓTΓ

)−1
ΓTn, (4.25a)

Γ =

1 1/2 ... 1/P

1 1/4 ... 1/P 2

 , (4.25b)

n =

[
n̂(1)

2
+ n(1)

s ,
n̂(2)

2
+ n(2)

s , ...,
n̂(P )

2
+ n(P )

s

]T
, (4.25c)

where:

n̂(p) = argmax
n

∣∣wT
nx(p)

∣∣ , (4.26)
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and wT
n is defined in (4.22). Moreover, n

(p)
s = t

(p)
s /Ts where t

(p)
s and Ts represent

the start time of the time frame containing the desired ToA at the pth measurement

achievable via Algorithm 3, and the sampling interval, respectively.

The performance of the proposed ToA estimation technique depends on the accuracy

of the frequency domain detectors proposed in (4.26), which calculates the estima-

tion of 2
(
α + β

p

)
. However, the returned value by (4.26) is time index and hence

0 ≤ n̂(p) ≤ N−1 meanwhile, the value of 2 (α + β) can be a negative number or larger

than N . In this case, the estimated value of 2
(
α + β

p

)
via (4.26) would be different

from its actual value. In order to resolve this issue, the estimated ToA via τ̂0 = αTs

needs to be inspected regarding its acceptable range n
(1)
s Ts ≤ τ̂0 ≤

(
n

(1)
s +N

)
Ts

as follow. If 2 (α + β) > N , the returned value by (4.26) would be 2 (α + β) − N .

Applying this value into (4.25c) shifts the estimated α by N point to the left which

leads to
(
α− n(1)

s

)
< 0. Thus, if

(
α− n(1)

s

)
< 0, (4.25a) should be solved again

using:

n =

[
n̂(1) +N

2
+ n(1)

s ,
n̂(2)

2
+ n(2)

s , ...,
n̂(P )

2
+ n(P )

s

]T
, (4.27)

where n
(p)
s and n̂(p) are defined in (4.25b) and (4.26), respectively. If 2 (α + β) < 0,

the returned value by (4.26) would be N−2 (α + β). Applying this value into (4.25c)

shifts the estimated α by N point to the right which leads to
(
α− n(1)

s

)
> N . Thus,
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if
(
α− n(1)

s

)
> N , (4.25a) should be solved again using:

n =

[
N − n̂(1)

2
+ n(1)

s ,
n̂(2)

2
+ n(2)

s , ...,
n̂(P )

2
+ n(P )

s

]T
, (4.28)

where n
(p)
s and n̂(p) are defined in (4.25b) and (4.26), respectively. Algorithm 4

details the proposed high-resolution ToA estimation technique in NH medium con-

sidering P ToA measurements. In the case of multipath channels, the system model

Algorithm 4 Summary of the proposed ToA estimation technique in NH medium.

Require: r, Sk, ∀k = 1, 2, .., 2K
1: return τ0

2: Estimate t
(1)
s via Algorithm 3.

3: for p = 1, 2, ..., P do

4: t
(p)
s = t

(1)
s

p

5: Compute frequency domain samples, R using (4.9).

6: Compute X
(p)
k = Y

(p)
k /Y

(p)
k+K for Y

(p)
k = R

(p)
k /Sk, ∀k = 1, 2, ..., K.

7: Compute n̂(p) using (4.26).
8: end for
9: Compute θ using (4.25a)-(4.25c).

10: if
(
α− n(1)

s

)
< 0 then

11: Compute θ using (4.25a),(4.25b) and (4.27).

12: else if
(
α− n(1)

s

)
≥ N then

13: Compute θ using (4.25a),(4.25b) and (4.28).
14: end if
15: τ̂0 = αTs.

of received samples frequency domain proposed in (4.13) can be written as:

Xk =
h0e
−j

2πmkτ̃0,k
NTs +

∑L−1
l=1 hle

−j
2πmkτ̃l,k
NTs

h0e
−j

2πmk+Kτ̃0,k+K
NTs +

∑L−1
l=1 hle

−j
2πmk+Kτ̃l,k+K

NTs

+ Ṽk,

= z1e
−j

2πmk(τ̃k+τ̃k+K)
NTs ej

2πτ̃k+K
Ts + Ṽk,

(4.29)
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for:

z1 =
1 +

∑L−1
l=1

hl
h0
e−j

2πmk(τ̃l,k−τ̃0,k)
NTs

1 +
∑L−1

l=1
hl
h0
e−j

2πmk+K(τ̃l,k+K−τ̃0,k+K)
NTs

, (4.30)

where N , Ts, Sk, mk, K and τ̃l,k are defined in (4.10) and Ṽk is the frequency domain

noise of the kth measurement. Applying the proposed approximation in Remarks

1 and 2, the system model for the frequency domain measurements in multipath

channels proposed in (4.29) can be written as:

Xk = z̃0e
−j 2πmk

N
[2(α+β)] + Ṽk,∀k = 1, 2, ..., K, (4.31)

for z̃0 = z0z1, where z0 and z1 are unknowns complex numbers defined in (4.21)

and (4.30), respectively. Comparing (4.29) and (4.21) it can be observed that the

same ML estimator proposed in (4.22), can be applied to estimate (α + β) in (4.29).

Therefore, we conclude that applying the same procedure proposed in Algorithm

4, one can estimate the ToA corresponding to the spectrum center (k = 0) of

transmitted waveform propagated from the shortest path (l = 0), or τ̃0,0. The

performance of the proposed ToA estimation exploiting Algorithms 3 and 4 are

discussed in the next section considering human body and airborne to underwater

as examples of frequency dispersive NH media.
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4.3 Simulations Result and Discussions

This section discusses the simulation method, parameters and results in three sub-

sections. First, details of simulated media and transmitted waveform are introduced

in sub-section 4.3.1. Then, the applied approximations proposed in Remark 1 and 2

are discussed in sub-section 4.3.2. Finally, simulations results for the proposed ToA

estimation technique via Algorithms 3 and 4 are proposed in sub-section 4.3.3.

4.3.1 Details of Simulated NH Media

In this work, two different media are considered with different physical character-

istics to evaluate the proposed ToA estimation in different scenarios. For the first

media, a part of human body containing 5 sub-media including fat, muscle, liver,

body fluid and stomach is considered according to relative permittivities proposed

by [133]. Here, human body is selected as an example of multi-layer NH media,

where very high resolution is required, while the overall propagation distance is

small. For the second media, a combination of free space and sea water is selected

where lower resolution compared to human body is required, however much larger

propagation distance must be considered.
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Table 4.1
Simulation parameters and applied values

Definition Symbol Human Body Airborne-Water Underground
Sample time Ts 0.1ns 1ns 1ns
Length of waveform N 29, 210, 211, 212 29, 210, 211, 212 29, 210, 211, 212

No. of sub-carriers K 8,12,25,50 8,12,25,50 8,12,25,50
No. of measurements P 2 2 2
No. of sub-media M 5 2 4
No. of channel taps L 5 1 1
Carrier frequency fc 5GHz 1GHz 1GHz
Propagation distance d 4− 20cm 1− 50m 10− 25m

Table 4.1 details the parameters definition, their corresponding symbols and sim-

ulation parameters for human body and sea water media. The last row in Table

4.1 presents the selected interval of propagation distance for both media. Table 4.2

describes the applied values of relative permittivities of sub-media in simulations vs

the number of allocated sub-carriers according to [133] and [134]. Here, εr,K and

εr,N−K represents the permittivities corresponding to the highest (Kth subcarrier)

and lowest
(
(N −K)thsubcarrier

)
frequency components of transmitted waveform,

respectively. The proposed permittivity values in Table 4.2 are obtained from [133]

for human body organs and [125] for sea water exploiting the Debye model [135]

for salt water, respectively. Here, human body is considered as multipath channels

simulated according to the power delay profile and delay spread proposed in [126],

[127] and [128]. In [126] and [127], the parameters of the statistical description of in-

body channel for two different depths 2 and 8 cm, are proposed. Here, we have used

the same model to simulate the amplitude of 5 multipath components of channel,

however the corresponding phase of multipath components are selected randomly
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Table 4.2
Example of applied relative permittivities vs number of allocated

sub-carriers (bandwidth) for N = 1024.

PPPPPPPPPsub-media
K 8 12 25 50

εr,K εr,N−K εr,K εr,N−K εr,K εr,N−K εr,K εr,N−K
sea water 80.16 80.20 80.15 80.21 80.12 80.24 80.07 80.31

fat 5.02 5.03 5.01 5.04 5.00 5.05 4.97 5.09
muscle 49.43 49.64 49.33 49.74 49.12 49.95 48.70 50.35
liver 39.14 39.37 39.03 39.48 38.81 39.71 38.36 40.16

body fluid 65.71 65.90 65.61 65.99 65.41 66.17 65.02 66.52
stomach 57.75 58.02 57.68 58.09 57.46 58.31 57.03 58.73

considering uniform distribution in [−π, π]. The simulated delay spread of channel

changes from 0.7ns for d = 4cm, to 3.6ns for d = 24cm which are consistent with

the measured delay spread reported by [126], [127] and [128].

Although, underwater channel modeling including pathloss measurements and/or

multipath characterization are discussed for underwater acoustic [136] and optical

communications [137], a few works [125],[67] and [138], propose channel modeling

and path loss measurements of wideband microwave propagation in sea water. In

[125] the propagation measurements exploiting waveform covering the whole band

between 800 MHz and 18 GHz is proposed. It can be observed that the attenuation

of propagated signal in salt water can be modeled via e−α(f)d, where α(f) and d

represent the attenuation coefficient as function of carrier frequency and propaga-

tion distance, respectively [125]. It can be observed that amplitude of wideband

signals propagated in sea water attenuates with propagation distance, therefore for

the underwater channel the line-off-sight path is considered since the amplitude of
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Figure 4.2: Applied NH media, (a) underwater-airborne, (b) four layers
underground containing different water content in volume ρ.

reflection copies from sea bottom are negligible due to very high attenuation. Fig-

ure 4.2(a) depicts airborne to shallow underwater as the first NH media. For the

last media, a multi-layer underground channel with different water content (ρ) at

each layer is selected as shown in Fig. 4.2(b). Table 4.1 details the parameters

definition, their corresponding symbols and simulations applied value for airborne

to water and underground channels. The applied relative permittivities for sea wa-

ter are simulated using the Debye model for salt water [125]. The applied values

of relative permittivities for underground channel vs carrier frequency are proposed

in Table 4.3, using soil dielectric spectra for different volumetric water contents in

20◦C proposed in [129].
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Table 4.3
Relative permittivities at different applied carrier frequencies

(GHz).

HHH
HHH(ρ)
fc 0.1 0.4 0.6 1 2 4 6 10

3.2% 5.050 5.040 5.036 5.032 5.024 5.024 5.028 5.032
17.4% 15.346 13.211 12.019 10.590 10.385 10.385 10.590 9.000
34.4% 36.570 27.903 25.892 24.010 23.521 23.521 23.190 19.297
46.2% 48.806 35.417 33.178 30.192 28.705 27.896 26.157 21.662

4.3.2 Proposed Approximations Analysis

In this section, the proposed approximations in Remarks 1 and 2 are evaluated via

theory and simulating the actual and approximated values at two different scenarios

applying practical parameters such as permittivity, sample time and propagation

distance.

4.3.2.1 Overall delays linearity

The key point in Remark 1 is satisfying the approximation error inequality given by

|τk − τ̂k| ≤ ηTs, k = 1, 2, ..., 2K and small η. The proposed condition in (4.15) can

be derived by substituting τk and τ̂k in |τk − τ̂k| ≤ ηTs by 1
c

∑M
m=1 d

(m)

√
ε

(m)
r,k and

ak + b, respectively, for a and b are defined in (4.16). Therefore, it can be observed

that if (4.15) holds for the given NH media, the proposed linear approximation in

Remark 1, holds satisfying |τk − τ̂k| ≤ ηTs, k = 1, 2, ..., 2K.
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Figure 4.3: Average time error imposed by linear approximation proposed
in Remark 1.

Although, the validity of the proposed condition in (4.15) cannot be evaluated at

receiver as the values of propagation distances (d(m)) are unknown, however it can

be evaluated for the worst case scenario where the maximum possible values for

propagation distances are applied. Figure 4.3 depicts the average approximation

error of subcarrier delays 1
2K

∑
k∈κ |τk − τ̂k|, for two scenarios (a) human body, (b)

sea water, vs propagation distance, applying different allocated subcarriers. As

shown, the average error increases by increasing the propagation distance and the

number of allocated subcarriers or equivalently waveform bandwidth. However,

given the worst case (largest propagation distance and waveform bandwidth), the

approximation error is less than 1% and 0.4% of sampling time in human body and

sea water, respectively.
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4.3.2.2 Fine delay linearity

The proposed approximation given the absolute value of approximation error in

(4.19) is derived by subsisting δk+K and δ̂k+K in
∣∣∣δk+K − δ̂k+K

∣∣∣ ≤ ηTs, k = 1, 2, ..., K,

by actual value of fine delay τk+K −
⌊
τk+K
Ts

⌋
Ts and −β′(mk − 1) + δ2K respec-

tively, for β′ proposed in (4.20). Although, similar to Remark 1, the absolute

value of approximation error cannot be evaluated at receiver as the values of

propagation distances
(
d(m)

)
are unknown, however it can be evaluated for the

worst case scenario where the maximum possible values for propagation distances

are applied. Figure 4.4 depicts the average of approximation error of fine delays

1
K

∑K
k=1 |δk+K − (−β′(mk − 1) + δ2K)|, for two scenarios (a) human body and (b) sea

water, vs propagation distance, applying different allocated subcarriers. As shown

in Fig. 4.4, the average error increases by increasing the propagation distance and

the number of allocated subcarriers or equivalently waveform bandwidth. However,

given the worst case (largest propagation distance and waveform bandwidth), the

approximation error is less less than 1% and 0.4% of sampling time human body

and sea water, respectively. Therefore, it can be conclude that Remarks 1 and 2 are

proposing valid approximations considering 0.01 ≤ η < 1.
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Figure 4.4: Average time error imposed by linear approximation proposed
in Remark 2.

4.3.3 Performance Analysis

Figures 4.5(a)-(d) depict the average error of estimated ToA for human body. Details

of simulation parameters and human body channel are discussed in Section 4.3.1.

Here, human body is selected to represent a short range NH media which demands

for very high ToA resolution. In Figs. 4.5(a)-(d) the average ToA error is evaluated

vs SNR for N = 512, 1024, 2048 and 4096, respectively, where N denotes the length

of the transmitted waveform. As shown in Figs. 4.5, increasing the number of

allocated subcarriers improves the average ToA estimation error at medium to high

SNR regimes (see Figs. 4.5 (a)-(d)). This improvement is acquired as allocating a

larger number of subcarriers increases the frequency domain samples in (4.21). In the
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Figure 4.5: Impact of the number of allocated subcarriers and transmitted
signal length on the estimated ToA average error in human body, (a) N =
512, (b) N = 1024, (c) N = 2048, and (d) N = 4096.

proposed technique, ToA is acquired from estimating the frequency of Xk in (4.21)

using (4.22). Exploiting more samples improves the precision of interpolated signal,

Xk, and hence, more accurate estimation can be proposed by (4.22). In Figs. 4.5 (a)

and (b) it can be observed that the average ToA estimation error increases at higher
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allocated subcarriers and low SNR regimes for shorter waveform length. Beside the

positive impact of increasing the number of allocated subcarriers at medium to high

SNR regimes, exploiting a larger number of subcarriers extends the in-band noise

power which affects the ToA estimator performance at low SNR regimes specifically

at higher sub-carrier spacing values (shorter signal length at fixed sampling time).

This outcome can be observed in Figs. 4.5 (a) and (b) for K = 50 and 25 for

−4dB ≤ SNR ≤ 0. Therefore, it can be concluded that the best ToA estimation is

achievable via increasing the number of allocated subcarriers K, and the transmitted

waveform length N , simultaneously as shown in Figs. 4.5 (c) and (d) for K = 25 and

50. The same results can be observed for airborne to underwater scenario depicted

in Figs. 4.6(a)-(d). The airborne to underwater channel is selected to represent a

long range NH media with lower required ToA resolution compared to human body.

Here, the same parameters and channel proposed in Section 4.3.1 are applied. As

shown in Figs. 4.6(a)-(d), the proposed technique performs accurately at medium to

high SNR regimes specifically for large number of allocated subcarriers and waveform

length. Comparing Figures 4.5 and 4.6 it can be observed that the average ToA error

converges to the Ts/2 which is the minimum average error achievable via coarse ToA

estimation.

Moreover, moving from Fig. 4.6(a) to Fig. 4.6(d), we observe that increasing the

transmitted signal bandwidth improves ToA estimation error. This observation is

consistent with our expectation that increasing bandwidth in a flat fading channel
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Figure 4.6: Impact of the number of allocated subcarriers and transmitted
signal length on the estimated ToA average error in airborne to underwater
channel, (a) N = 512, (b) N = 1024, (c) N = 2048, and (d) N = 4096.

improves the ToA estimation performance. Here, a one tap channel is considered

as shown in Table 1, because Fig. 4.6 represents the simulations for underwater

where we only consider one path between transmitter and receiver as the effect of

other paths due to path loss is ignorable. However, different results are observable

for human body in 4.5 due to the impact of multipath channels. Here, per Table 1,
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we consider a 5 taps channel, an assumption that is mainly made based on studies

conducted in [126], [127] and [128]. Thus, as the bandwidth of transmitted signal

increases, i.e., moving from Fig. 4.5(a) to Fig. 4.5(d), the channel frequency selec-

tivity effects becomes more sever that inversely impact ToA estimation. Therefore,

based on the number of resolvable paths, the channel bandwidth should be properly

selected to maintain the best ToA estimation performance in a multipath channels.

This study can form a good problem for our future research.

The same results can be observed for underground medium depicted in Figs. 4.7(a)-

(d). Here, the same parameters and channel proposed in Section 4.3.1 are applied.

As shown in Figs. 4.7(a)-(d), the proposed technique performs accurately at medium

to high SNR regimes specifically for large number of allocated subcarriers and wave-

form length. Comparing Figs. 4.6 and 4.7 it can be observed that the average ToA

error converges to the Ts/2 which is the minimum average error achievable via coarse

ToA estimation. Moreover, moving from Fig. 4.6(a) to Fig. 4.6(d), and Fig. 4.7(a)

to Fig. 4.7(d) we observe that increasing the transmitted signal bandwidth im-

proves ToA estimation error. This observation is consistent with our expectation

that increasing bandwidth in a flat fading channel improves the ToA estimation

performance. Here, a one tap channel is considered as shown in Table 1, because

Fig. 4.6 and 4.7 represent the simulations for underwater and underground where

we only consider one path between transmitter and receiver as the effect of other

paths due to path loss is ignorable.
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Figure 4.7: Impact of the number of allocated subcarriers and transmitted
signal length on the estimated ToA average error in underground channel,
(a) N = 512, (b) N = 1024, (c) N = 2048, and (d) N = 4096.

4.4 Conclusion

In this chapter, a novel technique for high resolution ToA estimation in NH media

consisting of frequency dispersive sub-media via OFDMA subcarriers is proposed.
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The proposed technique estimates the ToA in two steps. First the frame containing

the entire received signal is detected, then the high resolution ToA is proceed by con-

verting the detected frame into frequency domain. The performance of the proposed

technique is evaluated via simulations considering human body and airborne to un-

derwater scenarios as two NH media with different physical characteristic according

to realistic propagation and channel models. Simulation results indicate that the

proposed technique offers high resolution ToA estimation specially for large number

of allocated subcarriers with long length for low to high SNR regimes.

Here, the proposed technique approximates the overall imposed delays into sub-

carriers by a line and estimates the delay corresponding to the spectrum center.

Applying the same idea, the slope of approximated line can be estimated to reveal

the imposed delays into each subcarrier and equalize them in time domain. This

enables very high data rate transmission via OFDM in NH media. Moreover, the

proposed technique opens a new research area in localization and scanning technolo-

gies such as LiDAR and GPR in frequency dispersive NH media where no resolution

restriction is needed to prevent frequency dispersion of ultra wide band waveforms.
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Chapter 5

Range Measurements in

Non-homogenous, Frequency

Dispersive Channels1

In Chapter 4 the proposed technique for high resolution ToA estimation in NH

media is discussed. However, the proposed ToA measurements cannot be mapped

into the actual range (straight-line distance) between the transmitter and receiver.

In this chapter range measurement in NH media is addressed utilizing the proposed

ToA measurements in Chapter 4. Here, the proposed ToA measurement technique

1The material contained in this chapter is submitted for publication in IEEE Transaction on
Geoscience and Remote Sensing, July 2016
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exploits different carrier frequencies combined with DoA measurements to construct

a system of linear equations as a function of the thickness of available sub-media.

Once the thicknesses of available sub-media are estimated, the straight-line range

between transmitter and receiver is achievable, accordingly.

In order to investigate the feasibility of the proposed range measurement technique,

underwater-airborne channels and underground channel consisting several layers

with different water contents exploiting wideband microwave signals are consid-

ered as examples of NH media. The proposed NH media are simulated according to

the state-of-the-art channel and propagation models for sea water [125] and under-

ground [129, 130, 131]. Simulation results prove the feasibility and efficiency of the

proposed technique in terms of ToA resolution and ranging error compared to the

allocated bandwidth of the transmitted waveform.

The rest of this chapter is organized as follow. Section 5.1 discusses the system

model. Section 5.2 details the proposed range measurement technique. Simulation

results and discussions are proposed in Section 5.3, and finally Section 5.4 concludes

this chapter.
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5.1 System Model

Due to varying electro-magnetic (EM) features in NH media, regardless of the error

imposed by EM dispersion, multipath and noise, the ToA measurement proposed

in Section 4.2 cannot reveal range between the transmitter and receiver. Figure

5.1 depicts an example where there is an NH channel between the transmitter and

the receiver. Here, the addition of propagation path vectors at each sub-media (ri)

is greater than the straight-line propagation path (r) between the transmitter and

receiver.

Moreover, the propagation speed at each medium (vi) is lower than the free space

speed of light (c), which leads to higher measured ToA. In addition, based on Snell’s

law, the angle of the EM wave changes at the media boundary. Thus, there is no

guarantee that the last measured incident angle at the receiver θ̂M will be equal

to the straight-line propagation angle, θ. Hence, a straight-line range measurement

procedure needs to be applied exploiting multiple measured ToA.

Figure 5.1 depicts the 3D model for signal propagation in NH media. Here, we

intend to estimate the range between transmitter and receiver which is the straight-

line distance referred as r in Fig. 5.1. The system model for estimated ToA via
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Algorithm 4, can be written as a function of propagated ranges such that:

τ̂0 =
1

c

M∑
m=1

rm
√
εr,m + vτ , (5.1)

where τ̂0, rm, εr,m and vτ are the estimated ToA, the range of propagation path and

the relative permittivity inmth sub-media, and ToA measurement error, respectively,

and c and M are defined in (4.15). It can be observed that the proposed system

model in (5.1) cannot be solved for desired range r, regarding M available unknowns

{rm}Mm=1. In order to address this problem, we propose to exploit a frequency-

test (FT) scheme by repeating the ToA measurement scenario applying Q different

carrier frequencies. Employing this technique, each ToA measurement provides an

independent equation as a function of propagated ranges as the EM features of

available sub-media change by the applied carrier frequency. The qth measured ToA

can be written as:

τ̂
(q)
0 =

1

c

M∑
m=1

r(q)
m

√
ε

(q)
r,m + v(q)

τ , (5.2)

where τ̂
(q)
0 , r

(q)
m , ε

(q)
r,m and v

(q)
τ are the estimated ToA, the range of propagation

path and relative permittivity in mth sub-media and ToA measurement error, all

at qth measurement, respectively, and c and M are defined in (4.15). It can be

observed that each equation in (5.2) contains a different set of unknowns or r
(q)
m

for m = 1, 2, ...,M and q = 1, 2, ..., Q which leads to a set of Q independent equa-

tions containing MQ unknowns. However, these unknowns can be replaced by the
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Figure 5.1: 3D model of signal propagation in NH media.

thickness of available sub-media to construct a set of Q independent equations as a

function of M available unknowns zm for m = 1, 2, ...,M as follow.

Applying r
(q)
m = zmcos

(
θ

(q)
m

)
, where θ

(q)
m is the incident angle of mth sub-media

at qth carrier frequency, Snell’s law

(
sin
(
θ

(q)
m

)√
ε

(q)
r,m+1 = sin

(
θ

(q)
m+1

)√
ε

(q)
r,m

)
, and

cos(sin−1(x)) =
√

1− x2, (5.2) can be written as:

τ̂
(q)
0 =

1

c

M∑
m=1

zm

√
ε

(q)
r,mε

(q)
r,M√

ε
(q)
r,M − sin2

(
θ

(q)
M

)
ε

(q)
r,m

+ v(q)
τ , (5.3)

where, τ̂
(q)
0 , ε

(q)
r,m and v

(q)
τ are defined in (5.2), zm denotes the thickness of mth sub-

media, and θ
(q)
M denotes the DoA corresponding to the qth measurement at M th

sub-media (last sub-medium including receiver) as shown in Fig. 5.1. Considering

(5.3), it can be observed that the set Q measured ToA can be represented as linear
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combination of M available sub-media given the measured DoA at each measure-

ment step. Here, it is assumed that receiver enjoys array antenna which allows DoA

estimation recrating state-of-the art techniques such as Root-MUSIC [139] and ES-

PRIT [71]. These approaches are applicable to NH media consisting of frequency

dispersive channels as they utilize a single subcarrier which is free from frequency

dispersion. For more information about DoA estimation methods and approaches,

we refer readers to [73].

5.2 Proposed Technique

Considering Gaussian distribution with zero mean and variance σ2
v for ToA measure-

ments noise, the ML estimation of thickness of available sub-media can be derived

by solving the following optimization problem:

argmin
z1,...,zM

Q∑
q=1

1

σ2
v

∣∣∣∣∣τ̂ (q)
0 −

1

c

M∑
m=1

zmγ
(q)
m

∣∣∣∣∣
2

, (5.4)

for

γ(q)
m =

√
ε

(q)
r,mε

(q)
r,M√

ε
(q)
r,M − sin2

(
θ

(q)
M

)
ε

(q)
r,m

(5.5)
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where τ̂
(q)
0 and ε

(q)
r,m, and θ

(q)
M and zm are defined in (5.2) and (5.3), respectively. The

least square solution for the proposed ML estimator in (5.4), can be represented by:

ẑ =
(
ΥTΥ

)−1
ΥT τ, (5.6)

where the (.)−1 and (.)T operands denote operands for matrix inversion and trans-

pose, respectively, and ẑ = [ẑ1, ẑ2, ..., ẑM ]T , τ = [τ̂
(1)
0 , τ̂

(2)
0 , ..., τ̂

(Q)
0 ]T and Υ =

[Υ1,Υ2, ...,ΥM ]T , for:

Υm = [γ(1)
m , γ(2)

m , ..., γ(Q)
m ]T , (5.7)

where ẑm denote the estimation of mth sub-media’s thickness, and τ̂
(q)
0 and γ

(q)
m are

defined in (5.2) and (5.5), respectively. Given the estimated thickness of available

sub-media using (5.6), it can be shown that (see Appendix B), the propagation

range between transmitter and receiver is achievable via r̂ = 1
Q

∑Q
q=1 r̂

(q) where:

r̂(q) = D

√√√√√√√1 +

 1

D

M∑
m=1

ẑmsin
(
θ

(q)
M

)√
ε

(q)
r,m√

ε
(q)
r,M − sin2

(
θ

(q)
M

)
ε

(q)
r,m


2

(5.8)

for D =
∑M

m=1 zm. Moreover, ε
(q)
r,m and θ

(q)
M , and ẑm are defined in (5.2) and (5.6),

respectively. In the next section the performance of high resolution ToA estimation

and range measurement are discussed considering different NH channels.
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5.3 Simulations Result and Discussions

This section discusses the simulation results of proposed range estimation in

airborne-underwater and underground media. Details of applied NH media and

transmitted waveform are introduced in sub-section 4.1. Figures 5.2(a) and (b)

depict the impact of the number of applied measurements (ToA and DoA) and av-

erage ToA measurements error given perfect DoA measurements on the estimated

range for underwater-airborne and underground channels, respectively considering

N = 4096 and K = 50. It is observed (see Figs. 4.6(d) and 4.7(d)) that the average

ToA estimation error is less than or equal to 5ns for SNR(dB) ≥ 0 for N = 4096 and

K = 50. Therefore, applying the same parameters (N = 4096 and K = 50), here

we have evaluated the average range error vs the average ToA measurements error

less than or equal 5ns. It is observed that the proposed technique offers the average

range error less that 1m for underwater-airborne and underground channels at ToA

measurements error around or less than 2ns which is achievable at SNR(dB) ≥ 4.

Moreover, it is observed that the average ranging error decreases by increasing the

number of applied measurements as expected.

Figures 5.3(a) and (b) depict the impact of the number of applied measurements

(ToA and DoA) and average DoA measurements error given perfect ToA measure-

ments on the estimated range for underwater-airborne and underground channels,
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respectively considering N = 4096 and K = 50. It is observed that the proposed

technique offers proper range estimation even at imperfect DoA measurements. Fur-

thermore, it is observed that the average ranging error is decreased by increasing

the number of applied measurements for all applied DoA measurements error as

expected.

Comparing Figs. 5.2 and 5.3 the feasibility of the proposed technique on different

values of desired range can be evaluated. As shown in Figs 5.2(a) and (b), the

ranging error for two different range values (30m and 150m for underwater-airborne

and 10m and 25m for underground) are the same at perfect DoA measurements.

However, it is observed that the ranging error corresponding to larger range values

are higher as shown in Figs 5.3(a) and (b). This is due to the impact of DoA on

ranging utilizing the estimated thicknesses according to the final range estimation

equation proposed in (5.8). Therefore, it should be noted that higher precision DoA

measurements are required in scenarios with larger range between transmitter and

receiver.

125



Figure 5.2: Impact of the number of applied measurements Q and ToA
measurements error on the estimated range, (a) underwater-airborne chan-
nel, (b) underground channel.

5.4 Conclusion

In this chapter a novel ToA/DoA aimed range layer thickness and range measure-

ments are proposed. Considering multiple ToA/DoA measurements recruiting dif-

ferent carrier frequencies, here, a set of linear equations is constructed which is

solved for available sub-media’s thickness and hence, straight-line range between

transmitter and receiver. The performance of the proposed technique is evaluated

via simulations considering underwater-airborne and multi-layers underground sce-

narios as two NH media with different physical characteristic according to realistic

propagation and channel models. Simulation results indicate that the proposed

technique offers precise ranging specially for large number of allocated subcarriers
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Figure 5.3: Impact of the number of applied measurements Q and DoA
measurements error on the estimated range, (a) underwater-airborne chan-
nel, (b) underground channel.

with long length for low to high SNR regimes.

The proposed technique opens a new research area in localization and scanning

technologies such as LiDAR and GPR in frequency dispersive NH media where no

resolution restriction is needed to prevent frequency dispersion of ultra wide band

waveforms. Moreover, the proposed ToA estimation technique approximates the

overall imposed delays into subcarriers by a line and estimates the delay correspond-

ing to the spectrum center. Applying the same idea, the slope of the approximated

line is estimated to reveal the imposed delays into each subcarrier and equalize them

in time domain. This enables very high data rate transmission exploiting OFDMA

subcarriers in frequency dispersive NH media such as underwater or underground

channels.
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Chapter 6

Conclusions and Future Works

In this chapter a summery of conclusions and future works of the proposed range

measurement technique in NH media is proposed.

6.1 Conclusions

In this thesis, the problem of ToA based straight-line range measurement in NH

media containing frequency dispersive sub-media is proposed. Here, we show that

traditional ToA estimation techniques are not feasible due to frequency dispersion of
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transmitted waveform. Therefore, we introduce using bandlimited waveform mean-

while the low resolution of ToA estimation imposed by limited bandwidth is compen-

sated recruiting the MRLD receiver. Although the proposed technique provides very

good result in terms of increasing ToA resolution, however, the proposed resolution

is not enough for some NH application such as human body.

In order to address this issue a novel technique for ToA estimation in NH media is

proposed incorporating OFDMA subcarriers. In the proposed technique, a wave-

form constructed of symmetric OFDMA subcarrier is transmitted through the NH

channel. Here, we show that the delay imposed by frequency dispersion of media

can be approximated by a line which allows reduction of unknowns (i.e. delays

imposed to transmitted sub-carriers). Exploiting these approximation, we proposed

a precise method which estimates the delay of the subcarrier corresponding to the

center of waveform spectrum. Simulation result in three different NH media indi-

cates that the applied approximation are thoroughly feasible which leads to perfect

ToA estimation from medium to high SNR regimes.

Although the introduced ToA estimation proposes enough resolution, they cannot

be mapped into the actual range between the transmitter and receiver as the propa-

gation path of transmitted waveform is not an straight-line. In order to resolve this

issue a novel technique which enjoys ToA/DoA estimation is proposed. Here, the

proposed ToA measurement technique exploits different carrier frequencies combined
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with DoA measurements to construct a system of linear equations as a function of

the thickness of available sub-media. Once the thicknesses of available sub-media

are estimated, the straight-line range between transmitter and receiver is estimated,

accordingly. Simulation results confirm that the proposed technique propose good

ranging resolution given noisy ToA and DoA measurements for different NH media.

6.2 Future Works

Although the proposed range measurement technique covers all requirements to

accomplish, here we propose a summery of open problems which can be defined as

extension of the proposed technique for further research.

† Subcarrier delay estimation for OFDM based data transmission in

NH media: the proposed ToA estimation technique approximates the overall

imposed delays into subcarriers by a line and estimates the delay corresponding

to the spectrum center. Applying the same idea, the slope of the approximated

line is estimated to reveal the imposed delays into each subcarrier and equalize

them in time domain. This enables very high data rate transmission exploiting

OFDMA subcarriers in frequency dispersive NH media such as underwater or

underground channels.
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† Optimum carrier frequency selection for layer thickness estimation:

As discussed in Section 5.2, the procedure of straight-line range measurements

requires multiple (depends on the number of available sub-media) ToA/DoA

measurements utilizing different carrier frequency. These measurements con-

struct a system of linear equations as a function of the thickness of available

sub-media. However, if the carrier frequencies are selected non-properly (for

instance too close to each other) the measurements are dependent which leads

to ill-conditioned measurement matrix proposed in (5.7). Here, a tradeoff

between the possible carrier frequency range and the error imposed by the

condition number of measurements matrix can be defined and solved.

† Investigating the impact of carrier frequency and sampling time off-

set and their estimation: Recruiting OFDMA sub-carriers requires ad-

dressing the carrier frequency and sampling time offset estimation due to high

sensitivity of OFDM to frequency and time offset. Here, the proposed results

are considered full sampling time and carrier frequency synchronization which

is not a feasible assumption in practice. Therefore, further investigation on

the impact of time and frequency offset on the proposed ToA estimation and

hence the range measurement techniques is required.

† Cooperative Range Measurements: In the proposed ToA estimation and

ranging techniques, a pair of transmitter and receiver is considered. However,
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in majority of WSN applications multiple sensor nodes are available. Consider-

ing the proposed range measurements technique which applies several different

carrier frequencies, here an open problem which proposes a carrier frequency

hopping scheme for cooperative range measurement is vital.
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Appendix A

Proofs and Derivations

A.1 Probabilities of Miss-Detection and False-

Alarm

Applying τ (m) = k∗Ts into (2.10) for the nth entry of y we have:

yn = wT
n r =

k∗−1∑
k=0

v(kTs)e
−j2πnk/N +

k∗+N−1∑
k=k∗

e−j2πnk/N
(
v(kTs) + ej2πn(k−k∗)/N)

+
Ls−1∑

k=k∗+N

v(kTs)e
−j2πnk/N ,

(A.1)
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=
Ls−1∑
k=0

v(kTs)e
−j2πnk/N +

k∗+N−1∑
k=k∗

e−j2πnk
∗/N , (A.2)

where Considering Inphase (I) and Quadrature (Q) components of yn and v(kTs) as

y
(I)
n and y(Q), and v

(I)
k and v(Q)k respectively, we have:

y(I)
n = Ncos(2πnk∗/N) +

Ls−1∑
k=0

{
v

(I)
k cos(2πnk/N) + v(Q)ksin(2πnk/N)

}
, (A.3)

y(Q)
n = −Nsin(2πnk∗/N) +

Ls−1∑
k=0

{
v(Q)kcos(2πnk/N)− v(I)

k sin(2πnk/N)
}
, (A.4)

Considering (A.3), (A.4) and v
(I)
k and v

(Q)
k ∼ N(0, σ2), it is easy to show that

y
(I)
n and y

(Q)
n also have Gaussian distributions with variance Lsσ

2, and means

(Ncos(2πnk∗/N)) and (−Nsin(2πnk∗/N)), respectively. Since zn = |yn| =√(
y

(I)
n

)2

+
(
y

(I)
n

)2

, and y
(I)
n and y

(Q)
n are none-zero mean Gaussian random vari-

ables, zn would have a Rician distribution with probability density function:

fzn(zn) =
zn
Lsσ2

e
− z

2
n+N2

2Lsσ2 I0

(
znN

Lsσ2

)
, (A.5)

where I0(.) represents the zero order Bessel function.
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Using (A.5), for the probability of miss detection can be defined as:

Pm = P (zn < λ|s(n) is within r),

=

∫ λ

0

zn
Lsσ2

e
− z

2
n+N2

2Lsσ2 I0

(
znN

Lsσ2

)
dzn,

= 1−Q1

(
N

σ
√
Ls
,

λ

σ
√
Ls

)
,

(A.6)

where Q1 represents the Marcum Q function and N , Ls,λ and σ are defined in (2.12).

For Ns sub-carriers in transmitted signature (here we assumed consecutive indexes

such that Nm := {1, 2, ..., Ns} for simplicity) we would have:

Pn = P (zn,1, ..., zn,Ns < λ|s(n,1), ..., s(n,Ns) is within r),

=
Ns∏
p=1

P (zn,p < λ|s(n,p) is within r),

=

[
1−Q1

(
N

σ
√
Ls
,

λ

σ
√
Ls

)]Ns
,

(A.7)

where zn,p = |wT
npr| and N , Ls,λ and σ are defined in (2.12). Here np represents the

pth dedicated sub-carrier to the nth sensor node. When the received signal does not

contain the nth sensor node’s signature, for the nth entry of y we have:

yn = wT
n r =

Ls−1∑
k=0

v(kTs)e
−j2πnk/N , (A.8)

Considering Inphase (I) and Quadrature (Q) components of yn and v(kTs) as y
(I)
n
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and y
(Q)
n , and v

(I)
k and v

(Q)
k we have:

y(I)
n =

Ls−1∑
k=0

{
v

(I)
k cos(2πnk/N) + v

(Q)
k sin(2πnk/N)

}
, (A.9)

y(Q)
n =

Ls−1∑
k=0

{
v

(Q)
k cos(2πnk/N)− v(I)

k sin(2πnk/N)
}
, (A.10)

which leads to the Rayleigh distribution for zn = |yn| =

√(
y

(I)
n

)2

+
(
y

(I)
n

)2

with

probability density function:

fzn(zn) =
zn
Lsσ2

e−(z2n/2Lsσ2), (A.11)

Therefore, the probability of false alarm can be defined as:

Pf = P (zn > λ|s(n) is not in r) = e−(λ2/2Lsσ2), (A.12)

where Ls,λ and σ are defined in (2.12).

In the case of multi-path channels for the received signal, we would have:

yn = wT
n r =

k∗−1∑
k=0

v(kTs)e
−j2πnk/N+

k∗+N−1∑
k=k∗

e−j2πnk/N

(
v(kTs) +

L−1∑
l=0

hle
j2πn(k−l−k∗)/N

)

+
Ls−1∑

k=k∗+N

v(kTs)e
−j2πnk/N ,

(A.13)
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=
Ls−1∑
k=0

v(kTs)e
−j2πnk/N +

k∗+N−1∑
k=k∗

L−1∑
l=0

hle
−j2π n(l+k

∗)
N , (A.14)

=
Ls−1∑
k=0

v(kTs)e
−j2πnk/N +N

L−1∑
l=0

hle
−j2πn(l+k∗)/N , (A.15)

where hl = h
(I)
l + jh

(Q)
l and L denote the complex gain of lth channel tap and

number of channel taps, respectively. Defining αn =
∑L−1

l=0 hle
−j2πn(l+k∗)/N , it is

easy to show that αn is complex Gaussian random variable where α
(I)
n and α

(Q)
n have

Gaussian distribution with zero mean and variance Lσ2
h, where σ2

h is the variance

of h
(I)
l and h

(Q)
l . Then

∑k∗+N−1
k=k∗ αn will have a complex Gaussian distribution with

zero mean and variance LN2σ2
h. Therefore, same as A.1 and (A.2), yn is complex

Gaussian random variable where y
(I)
n and y

(Q)
n have Gaussian distribution with zero

mean and variance (Lsσ
2 + LN2σ2

h). Defining zn = |yn| =

√(
y

(I)
n

)2

+
(
y

(I)
n

)2

and

σ2
z = (Lsσ

2 + LN2σ2
h), zn would have Rayleigh distribution such that:

fzn(zn) =
zn
σ2
z

e−(z2n/2σ2
z), (A.16)

and finally for probability of miss detection, we would have:

Pm = fz(z < λ|s(n)(t) is in r) =

∫ λ

0

z

σ2
z

e−(z2/2σ2
z)dz = 1− e−

λ2

2σ2z , (A.17)

In the case of multi-path fading and considering the received signal r contains the
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nth sensor node signature, the probability of false alarm (Pf ) is defined as:

Pf = P (zn > λ|s(m) is not in r) (A.18)

where zm = |ym| for m = 1, 2, ..., N and m 6= n and:

ym = wT
mr =

Ls−1∑
k=0

v(kTs)e
−j2πmk/N +

k∗+N−1∑
k=k∗

L−1∑
l=0

hle
−j2π(k(m−n)+l+k∗)/N , (A.19)

however, the orthogonality across sub-carriers results in:

k∗+N−1∑
k=k∗

L−1∑
l=0

hle
−j2π(k(m−n)+l+k∗)/N = 0 for m 6= n, (A.20)

which leads to the same result as proposed in (A.8). Following the same procedure

of (A.8)-(A.11) the probability of false alarm given one transmitted signature in

multi-path fading channels would lead to the same result as the one proposed in

(A.12).

A.2 Probability of Error for ToA Estimation

The probability of error in ToA estimation
(
Pe = P (k̂∗ 6= k∗)

)
could be summarized

as Pe = 1− Pc, where Pc represents the probability of correct ToA estimation. For
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Pc we can write:

Pc = P [ck∗ > c1, c2, ..., ck∗−1, ck∗+1, ..., cLs−N ] , (A.21)

where ck =
∣∣sHrk:k+N−1

∣∣, however ck has Rayleigh distribution for 1 ≤ k ≤ k∗ −N

and k∗ + N ≤ k ≤ Ls − N with parameter Nσ2 and Rician distribution for k∗ −

N + 1 ≤ k ≤ k∗ +N − 1 with Nσ2 and mean mk = k− (k∗ −N). Therefore, for Pc

would be:

Pc =

∫ ∞
0

P [ck∗ > c1, ..., ck∗−1, ck∗+1, ..., cLs−N |ck∗ ]pck∗ (ck∗) dck∗ , (A.22)

and,

Pc =

∫ ∞
0

(P [ck∗ > c1])(Ls−3N+1)

(
N−1∏
k=1

P [ck∗ > ck∗−N+k]

)2

pck∗ (ck∗) dck∗ , (A.23)

But,

P [ck∗ > c1] =

∫ ck∗

0

c1

Nσ2
e−

c21
2Nσ2 dc1 = 1− e−

c2
k∗

2Nσ2 , (A.24)

However ck∗ and ck∗−N+k are correlated since they have k common noise samples

and direct calculation of P [ck∗ > ck∗−N+k] would be too cumbersome. Ignoring the

k common noise samples within the ck∗−N+k we can consider ck∗ and ck∗−N+k as two
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independent random variables which leads to:

P [ck∗ > ck∗−N+k] = 1− P [ck∗−N+k > ck∗ ] ≤ 1−Q1

(
k√

(N − k)σ2
,

ck∗√
(N − k)σ2

)
,

(A.25)

Therefore, the probability of correct ToA estimation can be expressed as:

Pc ≤
∫ ∞

0

N−1∏
k=1

(
1−Q1

(
k√

(N − k)σ2
,

ck∗√
(N − k)σ2

))2

(
1− e−

c2
k∗

2Nσ2

)(Ls−3N+1)

fck∗ (ck∗) dck∗ ,

(A.26)

for:

fck∗ (ck∗) =
ck∗

Nσ2
I0(

Nck∗

2Nσ2
)e−(

c2
k∗+N

2

2Nσ2
), (A.27)

where I0(.) represents the zero order Bessel function. Finally, the probability of error

could be represented Pe = 1−Pc. For Ns sub-carriers (assuming Nm := {1, 2, ..., Ns}

for simplicity) in transmitted signature, Pe is obtained following (A.28)-(A.34).

Pc = P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1 ,

Ns∏
p=1

c
(p)
2 , ...,

Ns∏
p=1

c
(p)
k∗−1,

Ns∏
p=1

c
(p)
k∗+1, ...,

Ns∏
p=1

c
(p)
Ls−N

]
, (A.28)

where c
(p)
k =

∣∣∣(s(p)
)H

rk:k+N−1

∣∣∣. This leads to:

Pc =

∫ ∞
0

...

∫ ∞
0

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1 , ...,

Ns∏
p=1

c
(p)
k∗−1,

Ns∏
p=1

c
(p)
k∗+1, ...,

Ns∏
p=1

c
(p)
Ls−N |c

(1)
k∗ , ..., c

(Ns)
k∗

]
f
c
(1)
k∗

(
c

(1)
k∗

)
...f

c
(Ns)
k∗

(
c

(Ns)
k∗

)
dc

(1)
k∗ ...dc

(Ns)
k∗

(A.29)
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Pc =

∫ ∞
0

...

∫ ∞
0

(
P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1

])(Ls−3N+1)

(
N−1∏
k=1

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
k∗−N+k

])2

f
c
(1)
k∗

(
c

(1)
k∗

)
...f

c
(Ns)
k∗

(
c

(Ns)
k∗

)
dc

(1)
k∗ ...dc

(Ns)
k∗ ,

(A.30)

where c
(p)
k for 1 ≤ p ≤ Ns, has Rayleigh distribution and 1 ≤ k ≤ k∗ − N and

k∗+N ≤ k ≤ Ls−N with parameter Nσ2 and Rician distribution for k∗−N + 1 ≤

k ≤ k∗ +N − 1 with Nσ2 and mean mk = k − (k∗ −N) however;

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1

]
=

∫ ∞
0

...

∫ ∞
0

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1 |c

(2)
1 , ..., c

(Ns)
1

]

f
c
(2)
1

(
c

(2)
1

)
...f

c
(Ns)
1

(
c

(Ns)
1

)
dc

(2)
1 ...dc

(Ns)
1 ,

(A.31)

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
k∗−N+k

]
=

∫ ∞
0

...

∫ ∞
0

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1 |c

(2)
k∗−N+k, ..., c

(Ns)
k∗−N+k

]

f
c
(2)
k∗−N+k

(
c

(2)
k∗−N+k

)
...f

c
(Ns)
k∗−N+k

(
c

(Ns)
k∗−N+k

)
dc

(2)
k∗−N+k...dc

(Ns)
k∗−N+k,

(A.32)

To finalize the proposed integral equations, we use the same approach as (53) and

(54) to introduce:

P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
1 |c

(2)
1 , ..., c

(Ns)
1

]
=

∫ β

0

c
(1)
1

Nσ2
e−

(c(1)1 )
2

2Nσ2 dc
(1)
1 = 1− e−

β2

2Nσ2 , (A.33)
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P

[
Ns∏
p=1

c
(p)
k∗ >

Ns∏
p=1

c
(p)
k∗−N+k|c

(2)
k∗−N+k, ..., c

(Ns)
k∗−N+k

]

≤ 1−Q1

(
k√

(N − k)σ2
,

γ√
(N − k)σ2

)
,

(A.34)

for β =
∏Ns
p=1 c

(p)
k∗∏Ns

p=2 c
(p)
1

and γ =
∏Ns
p=1 c

(p)
k∗∏Ns

p=2 c
(p)
k∗−N+k

and c
(p)
k∗ =

∣∣∣(s(p)
)H

rk∗:k∗+N−1

∣∣∣.

A.3 First Order Derivative of WISL Objective

Function

Considering (3.15), we define:

WISL =
1

4N

2N∑
p=1

(Sp − Γ1,1N)2 , (A.35)

for Sp = s̃p
†Γs̃p, where,

s̃p =
[
ejϕ1e−j

πp
N , ..., ejϕN e−j

πNp
N

]T
, (A.36)

where {ϕn}Nn=1 is the desired phase sequence of waveform with length N defined in

(3.14), and Γ is defined in (3.17).
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Substituting (A.36) into (A.35) leads to:

Sp =
N∑
l=1

N∑
k=1

e−jϕkej
πkp
N Γk,le

jϕle−j
πlp
N

=
N∑
l=1

ejϕle−j
πlp
N

N∑
k=1,k 6=l

e−jϕkej
πkp
N Γk,l +

N∑
l=1

Γl,l

(A.37)

The real part of (A.37) can be represented by:

Re {Sp} = Re

{
N∑
l=1

ejϕle−j
πlp
N

N∑
k=1,k 6=l

e−jϕkej
πkp
N Γk,l +

N∑
l=1

Γl,l

}

=
N∑
l=1

[
cosαl

N∑
k=1,k 6=l

cosαkΓk,l + sinαl

N∑
k=1,k 6=l

sinαkΓk,l

] (A.38)

where αl = ϕl − πlp
N

. Substituting (A.38) into:

∂WISL

∂ϕm
=

∂

∂ϕm

{
|Sp|2 − 2NRe {SpΓ1,1}

}
(A.39)

leads to:

∂WISL

∂ϕm
= 2Sp

∂

∂ϕm

( N∑
l=1

N∑
k=1

e−jϕkej
πkp
N Γk,le

jϕle−j
πlp
N

)∗
−2N

∂

∂ϕm

{
N∑
l=1

[
cosαl

N∑
k=1,k 6=l

cosαkΓk,l + sinαl

N∑
k=1,k 6=l

sinαkΓk,l

]} (A.40)
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the first term in (A.40) can be mathematically manipulated into:

∂

∂ϕm

( N∑
l=1

N∑
k=1

e−jϕkej
πkp
N Γk,le

jϕle−j
πlp
N

)∗
= −je−jϕmej

πmp
N

N∑
k=1,k 6=m

ejϕke−j
πkp
N Γk,m + jejϕme−j

πmp
N

N∑
k=1,k 6=m

e−jϕkej
πkp
N Γm,k = −2

N∑
k=1,k 6=m

sin (αk − αm) Γm,k

(A.41)

Applying the same procedure, the second term in (A.40) can be written by:

∂

∂ϕm

{
N∑
l=1

[
cosαl

N∑
k=1,k 6=l

cosαkΓk,l

+ sinαl

N∑
k=1,k 6=l

sinαkΓk,l

]}
= −sinαm

N∑
k=1,k 6=m

cosαkΓk,m

+ cosαm

N∑
k=1,k 6=m

sinαkΓk,m − sinαm
N∑

l=1,l 6=m

cosαlΓm,l

+ cosαm

N∑
l=1,l 6=m

sinαlΓm,l = 2
N∑

k=1,k 6=m

sin (αk − αm) Γk,m

(A.42)

substituting (A.41) and (A.42) into (A.40), leads to the final equation for the first

order derivative of WISL as follow:

∂Cp

∂ϕm
=

(
Sp
N
− Γ1,1

) N∑
k=1,k 6=m

sin (αk − αm) Γk,m (A.43)
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A.4 Second Order Derivative of WISL Objective

Function

The Hessian matrix corresponding the WISL can be represented by:

Hl,m =
∂

∂ϕl

{
∂WISL

∂ϕm

}
=

∂

∂ϕl

{
2N∑
p=1

(
Sp
N
− Γ1,1

) N∑
k=1,k 6=m

sin (αk − αm) Γk,m

}

=
2N∑
p=1

(
Sp
N
− Γ1,1

)
∂

∂ϕl

N∑
k=1,k 6=m

sin (αk − αm) Γk,m

+
N∑

k=1,k 6=m

sin (αk − αm) Γk,m
∂

∂ϕl

2N∑
p=1

(
Sp
N
− Γ1,1

)
(A.44)

where αl = ϕl − πlp
N

for {ϕn}Nn=1 as the desired phase sequence of waveform with

length N defined in (3.14), and Γ is defined in (3.17). The first term in (A.44) can

be mathematically manipulated into:

∂

∂ϕl

N∑
k=1,k 6=m

sin (αk − αm) Γk,m =


cos (αk − αm) Γm,l, m 6= l

−
∑N

k=1,k 6=m cos (αk − αm) Γm,k,m = l

(A.45)

Applying the same procedure, the second term in (A.44) can be written by:

∂

∂ϕl

2N∑
p=1

(
Sp
N
− Γ1,1

)
=

1

N

2N∑
p=1

∂

∂ϕl
Sp =

2

N

2N∑
p=1

N∑
n=1

sin (αn − αm) Γn,l (A.46)
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Therefore, the final equation for the Hessian matrix of WISL is achievable by sub-

stituting (A.45) and (A.46) into (A.44):

∂

∂ϕl

{
∂WISL

∂ϕm

}
=

2

N

2N∑
p=1

N∑
n=1

sin (αn − αm) Γn,l

N∑
k=1,k 6=m

sin (αk − αm) Γm,k+
∑2N

p=1

(
Sp
N
− Γ1,1

)
cos (αk − αm) Γm,l, m 6= l

−
∑2N

p=1

(
Sp
N
− Γ1,1

)∑N
k=1,k 6=m cos (αk − αm) Γm,k,m = l

(A.47)

A.5 Details of ToA CRLB Calculation

The derivatives of log-likelihood function with respect to the elements of unknown

vector, x can be represented by [140]:

Od =
2

σ2
Re

{
diag {h}

(
A
′
)H

(r− Ah)

}
, (A.48)

where A
′

is defined by:

A
′
=


∂s(Ts−τ0)

∂τ0
... ∂s(Ts−τL−1)

∂τL−1

...
. . .

...

∂s(NTs−τ0)
∂τ0

... ∂s(NTs−τL−1)

∂τL−1

 (A.49)
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where,

∂s(nTs − τl)
∂τl

=
∂

∂τl

∫
S(ω)ejω(t−τl)dω, (A.50)

where S(ω) represents the Fourier transform of s(t). Furthermore

Oh(I) =
2

σ2
Re
{
AH (r− Ah)

}
, (A.51)

Oh(Q) =
2

σ2
Im
{
AH (r− Ah)

}
, (A.52)

Applying the expectation into (A.48), (A.51) and (A.52) leads to:

E
{
OdΛr|x.O

T
dΛr|x

}
=

2

σ2
Re
{
diag (h∗)A

′H
A
′
diag (h)

}
, (A.53)

E
{
OdΛr|x.O

T
h(I)Λr|x

}
=

2

σ2
Re
{
diag (h∗)A

′H
A
}
, (A.54)

E
{
OdΛr|x.O

T
h(Q)Λr|x

}
=
−2

σ2
Im
{
diag (h∗)A

′H
A
}
, (A.55)

E
{
Oh(I)Λr|x.O

T
h(I)Λr|x

}
= E

{
Oh(Q)Λr|x.O

T
h(Q)Λr|x

}
=

2

σ2
Re
{
AHA

}
, (A.56)

E
{
Oh(I)Λr|x.O

T
h(Q)Λr|x

}
= E

{
Oh(Q)Λr|x.O

T
h(I)Λr|x

}
=
−2

σ2
Im
{
AHA

}
, (A.57)
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A.6 Derivation of the Maximum Likelihood Esti-

mator

Substituting 2(α+β) with n in (4.21), K independent measurements can be written

as:

Xk = z0e
−j 2πmk

N
n + Ṽk,∀k = 1, 2, ..., K. (A.58)

where Vk denote the frequency domain noise. Assuming zero mean Gaussian distri-

bution for Ṽk, the likelihood function of measurements can be written as:

f(X1, ..., XK |z0, n) =
1

(2πσ2
V )

K/2

K∏
k=1

e
−

∣∣∣∣∣∣Xk−z0e−j
2πmk
N

n

∣∣∣∣∣∣
2

2σ2
V , (A.59)

where, σ2
V is the variance of frequency domain noise Ṽk, ∀k = 1, 2, ..., K and mk, N ,

and K, and z0 are defined in (4.10) and (4.21), respectively.

The maximum likelihood estimator of n, can be represented by maximizing the

proposed log-likelihood function w.r.t n such that:

n̂ = argmax
z0,n

{f(X1, ..., XK |z0, n)} , (A.60)
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for,

= argmax
z0,n

{
ln

1

(2πσ2
V )

K/2

− 1

2σ2
V

K∑
k=1

∣∣∣Xk − z0e
−j 2πmk

N
n
∣∣∣2}, (A.61)

= argmin
z0,n

{
K∑
k=1

∣∣∣Xk − z0e
−j 2πmk

N
n
∣∣∣2} , (A.62)

= argmin
z0,n

{
K∑
k=1

|Xk|2 −Xkz
∗
0e
j
2πmk
N

n

−X∗kz0e
−j 2πmk

N
n + z0z

∗
0

}
,

(A.63)

taking derivative from (A.63) and solve it w.r.t z0, leads to:

ẑ∗0 = X∗ke
−j 2πmk

N
n, (A.64)

substituting (A.64) into (A.63) and solving for n, leads to:

n̂ = argmax
n

{
2

K∑
k=1

XkX
∗
ke
−j 2πmk

N
nej

2πmk
N

n

}
, (A.65)

= argmax
n

∣∣W T
n x
∣∣2 , (A.66)

where wn =
[
ej

2πKn
N , ej

2π(K−1)n
N , ..., ej

2πn
N

]T
is K × 1 column vector and x =

[X1, X2, ..., XK ]T .
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A.7 Deriving Straight-Line Range

Considering Fig. 5.1 we can write:

r =
D

cos (θ)
, (A.67)

where D =
∑

m=1 zm. Therefore, it is desired to find an expression which substitutes

θ as function of known and estimated parameters as follow.

tan(θ) =
1

D

M∑
m=1

zmtan
(
θ(q)
m

)
, (A.68)

where M , zm, θ
(q)
m are defined in. Based on Snell’s law, it can be shown that:

θ(q)
m = sin−1

sin(θ(q)
M

) √ε
(q)
r,m√
ε

(q)
r,M

 , (A.69)

Substituting (A.69) into (A.68) leads to:

tan(θ) =
1

D

M∑
m=1

zmtan

sin−1

sin(θ(q)
M

) √ε
(q)
r,m√
ε

(q)
r,M

 , (A.70)

=
1

D

M∑
m=1

zm

sin
(
θ

(q)
M

) √
ε
(q)
r,m√
ε
(q)
r,M

cos

(
sin−1

(
sin
(
θ

(q)
M

) √
ε
(q)
r,m√
ε
(q)
r,M

)) , (A.71)
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Using cos (sin−1 (x)) =
√

1− x2 and applying some mathematical manipulations it

can be shown that:

tan(θ) =
1

D

M∑
m=1

zmsin
(
θ

(q)
M

)√
ε

(q)
r,m√

ε
(q)
r,M − sin2

(
θ

(q)
M

)
ε

(q)
r,m

, (A.72)

Applying (A.72) into (A.67) and substituting cos (tan−1 (x)) = 1√
1+x2

, the straight-

line range between transmitter and receiver as function of measured thicknesses and

DoAs can be written as:

r̂(q) = D

√√√√√√√1 +

 1

D

M∑
m=1

zmsin
(
θ

(q)
M

)√
ε

(q)
r,m√

ε
(q)
r,M − sin2

(
θ

(q)
M

)
ε

(q)
r,m


2

, (A.73)
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Chapter 2
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