154 research outputs found

    Mode selection in device-to-device communications

    Get PDF
    Device-to-Device (D2D) communication refers to a technology that enables devices to communicate directly with each other, without sending data to the base station and the core network. This technology has the potential to improve system performance, enhance the user experience, increase spectral efficiency, reduce the terminal transmitting power, reduce the burden of the cellular network, and expand cellular applications. In D2D communication UEs are enabled to select among different Transmission Modes (TM)s which are defined based on the frequency resource sharing. Dedicated mode where the D2D communication is direct and data is transmitted through the D2D link by the orthogonal frequency resources to the cellular users so there is not any interference. Reuse mode where data is transmitted through the D2D link by reusing the same frequency resources that are considered for a cellular user or another D2D link so reused mode causes interference at receivers however, the system spectrum efficiency and user access rate may be increased. Cellular mode where the D2D communication is relayed via eNB and it is treated as cellular users. In this work, we aim to reach the optimal mode selection policy, and we use the Markov Decision Process (MDP) method with the objective of maximizing the total expected reward per connection. We present and analyse optimal mode selection policy for several scenarios with different rewards and cost for cellular, dedicated and reused mode. In our study of mode selection issues in D2D enabled network we propose an algorithm for the case when the cellular UE moves in the network. We use QoS parameters, mobility parameters and Analytic Hierarchy Process (AHP) method to define new mobility based mode selection algorithm. To evaluate our proposed algorithm, we considered SNR and delay

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges

    Full text link
    Heterogeneous Vehicular NETworks (HetVNETs) can meet various quality-of-service (QoS) requirements for intelligent transport system (ITS) services by integrating different access networks coherently. However, the current network architecture for HetVNET cannot efficiently deal with the increasing demands of rapidly changing network landscape. Thanks to the centralization and flexibility of the cloud radio access network (Cloud-RAN), soft-defined networking (SDN) can conveniently be applied to support the dynamic nature of future HetVNET functions and various applications while reducing the operating costs. In this paper, we first propose the multi-layer Cloud RAN architecture for implementing the new network, where the multi-domain resources can be exploited as needed for vehicle users. Then, the high-level design of soft-defined HetVNET is presented in detail. Finally, we briefly discuss key challenges and solutions for this new network, corroborating its feasibility in the emerging fifth-generation (5G) era

    Optimal and practical handover decision algorithms in heteregeneous marco-femto cellular networks

    Get PDF
    Driven by the smart tablet/phone revolution and the proliferation of bandwidth hungry applications such as cloud computing and streaming video, the demand for high data rate wireless communication is increasing tremendously. In order to meet the increasing demand from subscribers, wireless operators are in the process of augmenting their macrocell network with supplemental infrastructure such as microcells, distributed antennas and relays. An alternative with lower upfront costs is to improve indoor coverage and capacity by using end-consumer installed femtocells. A femtocell is a low power, short range (up to 100 meters coverage radius) cellular wireless access point (AP), functioning in service provider owned licensed spectrum. Due to the proximity of end users to the femtocell access points, APs are able to provide higher end-user QoE and better spatial reuse of limited spectrum. Femtocells are useful in offloading the macro-cellular network as well as reducing the operating and capital expenditure costs for operators. Femtocells coexist with legacy cellular networks consisting of macrocells. In this emerging combined architecture, large number of Femtocell Application Point (FAPs) is randomly deployed in the coverage area of macro BSs. However, several problems related to MM (mobility management) and RM (resource management) in this combined architecture still remain to be solved. The ad hoc deployment of FAPs and asymmetric radio communication and call processing capabilities between macrofemto networks are the primary causes of these problems. Uncoordinated deployment of FAPs providing indoor oriented wireless access service within the macro coverage may cause severe interference problems that need to be mitigated and handled by RM/MM schemes. The MM decisions should take into account the resource constraints and UE mobility in order to prevent unnecessary or undesirable handovers towards femtocells. Ignoring these factors in MM decisions may lead to low customer satisfaction due to mismanagement of handover events in the combined macro-femto network, delayed signaling traffic and unsatisfactory call/connection quality. In order to address all of the aforementioned issues, the handover decision problem in combined femto-macro networks has been formulated as a multi-objective non-linear optimization problem. Since there are no known analytical solution to this problem, an MDP (Markov Decision Process) based heuristic has been proposed as a practical and optimal HO (handover) decision making scheme. This heuristic has been updated and improved in an iterative manner and has also been supported by a dynamic SON (Self Organizing Networks) algorithms that is based on heuristic's components. The performance results show that the final version of MDP based heuristic has signi cantly superior performance in terms offloading the macro network, minimizing the undesirable network events (e.g. outage and admission rejection) when compared to state-of-art handover algorithms

    Energy efficiency in wireless communication

    Get PDF
    This era would probably be recognized as the information age, hence as a paramount milestone in the progress of mankind, by the future historians. One of the most significant achievements of this age is, making it possible to transmit and receive information effectively and reliably via wireless radio technology. The demand of wireless communication is increasing in a never-resting pace, imposing bigger challenge not only on service providers but also on innovators and researches to innovate out-of-the-box technologies. These challenges include faster data communication over seamless, reliable and cost effective wireless networks, utilizing the limited physical radio resources as well as considering the environmental impact caused by the increasing energy consumption. The ever-expanding wireless communication infrastructure is withdrawing higher energy than ever, raising the need for finding more efficient systems. The challenge of developing efficient wireless systems can be addressed on several levels, starting from device electronics, up to the network-level architecture and protocols. The anticipated gains of achieving such efficiency is the key feature of extending mobile devices' battery life and reducing environmental and economic impacts of wireless communication infrastructure. Therefore energy efficient designs are urgently needed from both environmental and economic aspects of wireless networks. In this research, we explore the field of energy efficiency in MAC and Physical layers of wireless networks in order to enhance the performance and reliability of future wireless networks as well as to reduce its environmental footprint. In the first part of this research, we analyse the energy efficiency of two mostly used modulation techniques, namely MQAM and MFSK, for short range wireless transmissions, up to a few 100100s of meters, and propose optimum rate adaptation to minimize the energy dissipation during transmissions. Energy consumed for transmitting the data over a distance to maintain a prescribed error probability together with the circuit energy have been considered in our work. We provide novel results for optimal rate adaptation for improved energy efficiency. Our results indicate that the energy efficiency can be significantly improved by performing optimal rate adaptation given the radio and channel parameters, and furthermore we identify the maximum distance where optimal rate adaptation can be performed beyond which the optimum rate then becomes the same as the minimum data rate. In the second part of this research, we propose energy efficient algorithm for cellular base stations. In cellular networks, the base stations are the most energy consuming parts, which consume approximately 6080%60-80\% of the total energy. Hence control and optimization of energy consumption at base stations should be at the heart of any green radio engineering scheme. Sleep mode implementation in base stations has proven to be a very good approach for the energy efficiency of cellular BSs. Therefore, we have proposed a novel strategy for improving energy efficiency on ternary state transceivers for cellular BSs. We consider transceivers that are capable of switching between sleep, stand-by and active modes whenever required. We have modelled these ternary state transceivers as a three-state Markov model and have presented an algorithm based on Markov model to intelligently switch among the states of the transceivers based on the offered traffic whilst maintaining a prescribed minimum rate per user. We consider a typical macro BS with state changeable transceivers and our results show that it is possible to improve the energy efficiency of the BS by approximately 40%40\% using the proposed MDP based algorithm. In the third part of this research, we propose energy efficient algorithm for aerial base stations. Recently aerial base stations are investigated to provide wireless coverage to terrestrial radio terminals. The advantages of using aerial platforms in providing wireless coverage are many including larger coverage in remote areas, better line-of-sight conditions etc. Energy is a scarce resource for aerial base stations, hence the wise management of energy is quite beneficial for the aerial network. In this context, we study the means of reducing the total energy consumption by designing and implementing an energy efficient aerial base station. Sleep mode implementation in base stations (BSs) has proven to be a very good approach for improving the energy efficiency; therefore we propose a novel strategy for further improving energy efficiency by considering ternary state transceivers of aerial base stations. Using the three state model we propose a Markovian Decision process (MDP) based algorithm to switch between the states for improving the energy efficiency of the aerial base station. The MDP based approach intelligently switches between the states of the transceivers based on the offered traffic whilst maintaining a prescribed minimum channel rate per user. Our simulation results show that there is a around 40%40\% gain in the energy efficiency when using our proposed MDP algorithm together with the three-state transceiver model for the base station compared to the always active mode. We have also shown the energy-delay trade-off in order to design an efficient aerial base station. In the final part of our work, we propose a novel energy efficient handover algorithm, based on Markov decision process (MDP) for the two-tier LTE network, towards reducing power transmissions at the mobile terminal side. The proposed policy is LTE backward-compatible, as it can be employed by suitably adapting a prescribed SNR target and standard LTE measurements. Simulation results reveal that compared to the widely adopted policy based on strongest cell and another energy efficient policy, our proposed policy can greatly reduce the power consumption at the LTE mobile terminals. Most of our works presented in this dissertation has been published in conference proceeding and some of them are currently undergoing a review process for journals. These publications will be highlighted and identified at the end of the first chapter of this dissertation

    Fog Connectivity Clustering and MDP Modeling for Software-defined Vehicular Networks

    Get PDF
    Intelligent and networked vehicles cooperate to create a mobile Cloud through vehicular Fog computing (VFC). Such clouds rely heavily on the underlying vehicular networks, so estimating communication resilience allows to address the problems caused by intermittent vehicle connectivity for data transfers. Individually estimating the communication stability of vehicles, nevertheless, undergoes incorrect predictions due to their particular mobility patterns. Therefore, we provide a region-oriented fog management model based on the connectivity through vehicular heterogeneous network environment via V2X and C-V2X. A fog management strategy dynamically monitors nearby vehicles to determine distinct regions in urban centres. The model enables a software-defined vehicular network (\Gls{SDVN}) controller to coordinate data flows. The vehicular connectivity described by our model assesses the potential for vehicle communication and conducts dynamic vehicle clustering. From the stochasticity of the environment, our model is based on Markov Decision Process (MDP), tracking the status of vehicle clusters and their potential for provisioning services. The model for vehicular clustering is supported by 5G and DSRC heterogeneous networks. Simulated analyses have shown the capability of our proposed model to estimate cluster reliability in real-time urban scenarios and support effective vehicular fog management
    corecore