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Extended Abstract

This era would probably be recognized as the information age, hence as a paramount

milestone in the progress of mankind, by the future historians. One of the most

significant achievements of this age is, making it possible to transmit and receive

information effectively and reliably via wireless radio technology. The demand of

wireless communication is increasing in a never-resting pace, imposing bigger chal-

lenge not only on service providers but also on innovators and researches to innovate

out-of-the-box technologies. These challenges include faster data communication over

seamless, reliable and cost effective wireless networks, utilizing the limited physical

radio resources as well as considering the environmental impact caused by the increas-

ing energy consumption. The ever-expanding wireless communication infrastructure

is withdrawing higher energy than ever, raising the need for finding more efficient

systems. The challenge of developing efficient wireless systems can be addressed on

several levels, starting from device electronics, up to the network-level architecture

and protocols. The anticipated gains of achieving such efficiency is the key feature of

extending mobile devices’ battery life and reducing environmental and economic im-

pacts of wireless communication infrastructure. Therefore energy efficient designs are

urgently needed from both environmental and economic aspects of wireless networks.

In this research, we explore the field of energy efficiency in MAC and Physical layers

of wireless networks in order to enhance the performance and reliability of future

wireless networks as well as to reduce its environmental footprint.

In the first part of this research, we analyse the energy efficiency of two mostly

used modulation techniques, namely MQAM and MFSK, for short range wireless

transmissions, up to a few 100s of meters, and propose optimum rate adaptation to

minimize the energy dissipation during transmissions. Energy consumed for trans-

mitting the data over a distance to maintain a prescribed error probability together

with the circuit energy have been considered in our work. We provide novel results for

optimal rate adaptation for improved energy efficiency. Our results indicate that the

energy efficiency can be significantly improved by performing optimal rate adaptation
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given the radio and channel parameters, and furthermore we identify the maximum

distance where optimal rate adaptation can be performed beyond which the optimum

rate then becomes the same as the minimum data rate.

In the second part of this research, we propose energy efficient algorithm for

cellular base stations. In cellular networks, the base stations are the most energy

consuming parts, which consume approximately 60− 80% of the total energy. Hence

control and optimization of energy consumption at base stations should be at the

heart of any green radio engineering scheme. Sleep mode implementation in base

stations has proven to be a very good approach for the energy efficiency of cellular

BSs. Therefore, we have proposed a novel strategy for improving energy efficiency on

ternary state transceivers for cellular BSs. We consider transceivers that are capable

of switching between sleep, stand-by and active modes whenever required. We have

modelled these ternary state transceivers as a three-state Markov model and have

presented an algorithm based on Markov model to intelligently switch among the

states of the transceivers based on the offered traffic whilst maintaining a prescribed

minimum rate per user. We consider a typical macro BS with state changeable

transceivers and our results show that it is possible to improve the energy efficiency

of the BS by approximately 40% using the proposed MDP based algorithm.

In the third part of this research, we propose energy efficient algorithm for aerial

base stations. Recently aerial base stations are investigated to provide wireless cov-

erage to terrestrial radio terminals. The advantages of using aerial platforms in pro-

viding wireless coverage are many including larger coverage in remote areas, better

line-of-sight conditions etc. Energy is a scarce resource for aerial base stations, hence

the wise management of energy is quite beneficial for the aerial network. In this

context, we study the means of reducing the total energy consumption by designing

and implementing an energy efficient aerial base station. Sleep mode implementa-

tion in base stations (BSs) has proven to be a very good approach for improving the

energy efficiency; therefore we propose a novel strategy for further improving energy

efficiency by considering ternary state transceivers of aerial base stations. Using the

three state model we propose a Markovian Decision process (MDP) based algorithm

2



to switch between the states for improving the energy efficiency of the aerial base

station. The MDP based approach intelligently switches between the states of the

transceivers based on the offered traffic whilst maintaining a prescribed minimum

channel rate per user. Our simulation results show that there is a around 40% gain

in the energy efficiency when using our proposed MDP algorithm together with the

three-state transceiver model for the base station compared to the always active mode.

We have also shown the energy-delay trade-off in order to design an efficient aerial

base station.

In the final part of our work, we propose a novel energy efficient handover al-

gorithm, based on Markov decision process (MDP) for the two-tier LTE network,

towards reducing power transmissions at the mobile terminal side. The proposed

policy is LTE backward-compatible, as it can be employed by suitably adapting a

prescribed SNR target and standard LTE measurements. Simulation results reveal

that compared to the widely adopted policy based on strongest cell and another en-

ergy efficient policy, our proposed policy can greatly reduce the power consumption

at the LTE mobile terminals.

Most of our works presented in this dissertation has been published in conference

proceeding and some of them are currently undergoing a review process for journals.

These publications will be highlighted and identified at the end of the first chapter of

this dissertation.
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Chapter 1

Introduction

The rapid growth in the cellular networks has increased the number of subscribers

and consequently has increased the demand for cellular traffic during the past few

years. Forecasts related to the enormous development of the telecommunication in-

dustry indicates that data rate per subscriber will witness a substantial increase. An

undesirable consequence is the growth of the energy consumption of the networks that

leads to increasing carbon dioxide (CO2) emission worldwide along with an increase

in the operational costs for operators. This aspect has triggered the requirement of

more innovations in the field of energy-efficient communications. Under this circum-

stance, an imperative role is played by energy efficient wireless networks in promoting

the minimization of global warming and its negative influence. Hence, energy effi-

ciency has become a key issue for the cellular and wireless networks due to the huge

requirement of energy for designing and operating 2G, 3G/3G+ as well as Long Term

Evolution (LTE) and LTE-Advanced systems. On the other hand, the techniques

related to energy efficient networks should not impact the service quality that is per-

ceived by the customer of the network. It is a major challenge to be able to reduce

the energy consumption along with the maintenance of good service quality. It is

also identified in different reports that the energy consumption of cellular wireless

networks’ infrastructure, the internet, and wired communication networks consume

up to 3% of electric energy consumption throughout the world [11] and is expected

to increase rapidly in future. Researchers in [1] have presented this prediction as in

5



Fig.1-1 where we can see that the electricity usage in communication technology is

expected to grow by more than 3 times within 3 decades. This figure also indicates

that this growth can be minimized by taking proper action, this assumption is pre-

sented as best case in the figure. On the other hand, the worst case line indicates

that the electricity consumption can grow upto 10 times if proper action is not taken.

As an important part of information and communication technology (ICT), wireless

communications are accountable for energy saving. Furthermore, mobile terminals

in wireless systems requires more energy saving since the development of battery

technology is much slower compared with the increasing rate of energy consumption.

Therefore, pursuing high energy efficiency (EE) is the most demanding trend for the

design of future wireless communications. During the past decades, much effort has

been taken to enhance network throughput. Different network deployments have been

well investigated to improve area spectral efficiency (ASE), such as optimization of the

number of BSs in cellular networks and the placement of relay nodes in relay systems.

Various resource allocation schemes have been proposed to assure quality-of-service

(QoS) of each user and fairness among different users by exploiting multiuser diver-

sity. Different advanced communication techniques, such as multiple-input multiple

output (MIMO) techniques, orthogonal frequency division multiple access (OFDMA)

and relay transmission, have been used extensively in wireless networks to provide

high spectral efficiency (SE). However, high network throughput usually possesses a

high level of energy consumption, which is sometimes not affordable for energy-limited

devices or energy-aware networks. Hence, it is a very important task to investigate

the approaches related to the reduction of energy consumption while achieving the

requirement of throughput in such devices and networks.

Fig.1-2 shows all the network components of a typical mobile cellular network.,

which consists of the following three main components:

∙ The core network, which takes care of switching,

∙ Base stations, which are responsible for providing radio frequency interface, and

∙ Mobile terminals, which are used to make calls or to send or receive data.

6



Figure 1-1: Expected Electricity footprint (TWh) of communication technology
2010-2030 [source: [1]].

Figure 1-2: A typical wireless network [source: [2], modified].
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Figure 1-3: Cellular network power consumption [source: [3]] .

It is clear from Fig.1-3 that, reducing energy consumption in the BS will lead to

significant improvement in energy efficiency of the network since BSs are the major

source of energy consumption of wireless cellular networks. Several studies have also

shown that the enegry consumption of the mobile terminal is much lower than that

of the BS, making the latter a major focus of research [5].

Figure 1-4: BS architecture [source: [4]]

The BS of a wireless cellular network typically consists of the following components

as shown in Fig.1-4:
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Radio transceivers (TRXs) TRXs transmit and receive signals to and from mo-

bile terminals.

Power amplifiers (PAs) PAs amplify the signals from the transceiver to a power

level high enough for transmission, which is typically around 510 W [5].

Antennas The antennas are responsible to radiat the signals. These antennas are

typically directional to deliver the signal to the target receiver without radiating

the signal into the ground or the sky.

1.1 Metrics for Energy Efficiency Measurement

An appropriate and meaningful metric plays a very important role in identifying the

gain achieved by implementing energy efficient strategies in wireless cellular networks.

The two most important and vasty used metrics for EE comparison are the energy

consumption gain (ECG) and energy consumption rating (ECR) [12]. ECG is usually

used to compare the energy consumption of two different strategies. It is defined as

the ration of energy consumption of the strategy under test and that of the baseline

strategy [12]. Whereas, ECR is used to measure the energy consumption per infor-

mation bit that is successfully transmitted over the network. It is measured in joules

per bit [12]. The EE metrics at the equipment level and the component level are

fairly straightforward to define. However, the metrics at a system level or network

level are more challenging to define. Moreover, EE metrics should also include the

QoS requirements (such as spectral efficiency, transmission delay etc.) so that the

efficiency of the strategy is correctly assessed.

1.2 Trade-offs of Energy Efficiency

Implementing the energy efficient algorithm in a communication systems involves

some costs or trade-off in the network. Some of the major trade-offs of energy efficient

design are presented in the following subsections.
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1.2.1 Bandwidth/Power Trade Off for Reliable Communica-

tions

The two most important resource utilization metrics for a digital modulation scheme

are listed below:

Power efficiency: Power efficiency relates to the ability to transmit data with a

given bit/symbol error probability at a minimum received power level. The

received power is usually measured in terms of the Signal to Noise Ratio (SNR),

which is ratio of the received energy per bit (𝐸𝑏) and the noise power spectral

density (𝑁𝑜). SNR is usually expressed as 𝐸𝑏

𝑁𝑜
.

Spectral efficiency: Spectral efficiency, also known as bandwidth efficiency, relates

to the ability to transmit a given amount of data per unit time (second) within a

minimum bandwidth. The spectral efficiency or bandwidth efficiency is usually

expressed by and is presented as the ratio of the data rate and the bandwidth

required for the transmission.

Authors in [5] has shown the trade-off between power efficiency and bandwidth

efficiency for different modulation schemes such as M-PSK, M-FSK and M-QAM.

They have also justified that, the orhtogonal frequency division multiplexing (OFDM)

is a spectrally efficient transmission scheme, whereas it’s high Peak-to-Average Power

Ratio (PAPR) level makes it less power efficient.

Another vastly used energy efficient approach is the use of error correction cod-

ing, which increases the power efficiency of the transmission scheme at the cost of a

degraded bandwidth efficiency.

1.2.2 Power Amplifier Efficiency Vs Linearity

In a wireless communication system, Power Amplifiers (PAs) are used to increase

the power level of the transmit signal so that the corresponding received signal can

be demodulated by the receiver under an error probability constraint. Linearity and

Efficiency are the two main characteristics of PAs. The former one, linearity of the
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response of a PA is a very crucial factor for wireless communication, this is because the

distortion of the response increases the required signal to noise ratio (SNR) to meet

a certain error rate requirement and an irreducible error floor. On the other hand,

efficiency of a PA is the known as the drain efficiency, which is defined as the ratio

of the output RF power to the input DC power. Hence, it provides an estimation of

how much DC power is converted to RF power. High efficiency of the PAs are desired

to minimize the energy consumptiona and the thermal dispersion needs. PAs can be

classified into variuos classes depending on the efficiency level, such as class A, B, C,

etc.

Figure 1-5: Power consumption distribution of a BS [source: [5]].

Fig.1-5 shows the power consumption distribution of a BS and depicts that PA

consumes the maximum amount of power, which is around 50%−80% of the total en-

ergy consumption of the BS [5]. Therefore highly efficient PAs are very important for

green communication. However, high linearity and high efficiency are two conflicting

requirements of PAs. In fact, no device or system can provide linearity in terms of

constant gain if they are powered by a limited power supply. Therefore, in order to get

linearity of a PA, there must be a direct relationship between the supplied power and

the output power. On the other hand, in order to be power efficient the PA should

use a limited amount of power even when a high output power is required. Modula-
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tion schemes like M-ary frequency shift keying (MFSK) and M-ary phase shift keying

(MPSK) are less sensitive to PA nonlinearities with respect to quadrature amplitude

modulation (QAM) modulation, although they are less spectrally efficient. This is

the main reason behind using a combination of amplitude and phase modulation in

modern broadband standards. Moreover, we can use a pre-distorter in order to en-

hance the bit error rate performance of non-linear PA, which increases the complexity

of the transmitter though.

1.3 Different Protocol Layer Approaches Towards

Energy Efficiency

Wireless networks are bounded by limited resources like: bandwidth, power, time,

complexity, battery life, energy, capacity etc. Therefore efficient utilization of re-

sources play very important role in designing efficient networks. In fact, the main

objective of an efficient network design is to optimize the system performance in terms

of:

∙ Energy consumption minimization

∙ QoS provision

∙ Mobility management

∙ Network access delay

∙ Security awareness.

From the literature review presented in Chapter-2 of this dissretation, we find

many cases where a trade-off exists between some of the above mentioned criteria,

for example energy-QoS trade-off, energy-delay etc.

Energy efficiency of a wireless network can be reached over different protocol layers

since different protocols exploit the source of energy consumption in different ways,

such as by power amplifiers, mixers, processors, registers, filters etc. Many pioneering
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works as presented in Chapter-2 have proposed many energy efficient appraoches for

wireless communication considering both active mode and idle mode. Following a

hybrid protocol architecture based on the Internet and the IEEE 802 architectures,

we can list some major energy saving algorithms located at different protocol layers.

1.3.1 Physical Layer

At the physical layer, the energy consumption can be minimized by adapting the basic

error-correction schemes and the modulation techniques according to the channel

conditions and application requirements. Many approaches have been proposed in

literature (as presented in Chapter-2) to dynamically change the transmission power

in wireless networks. However, not many of them considered the battery lifetime

of the mobile terminals. Most of these research work aim to offer good signal to

interference and noise ratio (SINR) or maximize cell capacities. Another important

aspect considered by the researchers is the drain efficiency of the power amplifier,

which depends on the class of the amplifier. The drain efficiency of PA can be

increased by increasing the level of nonlinearities introduced by the power amplifier.

Therefore appropriate modulation schemes need to be identified which are insensitive

to nonlinearities of PAs.

1.3.2 MAC Layer

In the medium access (MAC) layer, energy efficient strategies can be implemented by

utilizing power saving mode under low traffic condition. These power management

protocols manage the trade-off between performance and the energy consumption

by determining when to switch between active mode and idle (or sleep) mode. The

energy consumption due to channel access or contention resolution depends on the

particular MAC protocol. For instance, in IEEE 802.11, the transmitter transmits a

Ready To Send (RTS) message to inform the receiver of the senders intentions [13], the

receiver then replies with a Clear To Send (CTS) message to inform the transmitter

about the availability of the channel at the receiver end. The energy consumed for
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contention resolution includes the transmission and reception of the two messages.

Moreover, the nodes may spend some time waiting until the RTS can be sent and so

consume energy while listening to the channel.

1.3.3 Network Layer

At the network layer, overhead and signaling are minimzed by intelligent routing pro-

tocols, they also ensure the use of minimum energy consuming routes. Furthermore,

the network layer in the wireless mobile networks has the functionality of routing

under mobility constraints. Hence energy efficient routing is the prime focus of re-

searchers in ad hoc networks.

1.3.4 Transport Layer

At the transport layer, the energy consumption and bandwidth utilization may in-

crease due to the increased number of packet retransmissions probably because of the

wireless link errors. Many researchers have proposed various schemes to alleviate the

effects of non congestion-related losses on TCP performance over wireless networks.

There are three basic protocols which are used to reduce retransmissions [13]:

∙ Link layer protocols

∙ Split connection protocols

∙ End-to-end protocols

1.3.5 Application Layer

At application layer, schemes can be proposed to reduce energy consumption by re-

ducing the amount of data to be sent. Also more energy is consumed in the processing

and transmission of multimedia applications such as video transmission. Power con-

sumption can be reduced by reducing the effective bit rate of video transmissions,

which allows the utilization of light weight video encoding and decoding techniques.
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However, reducing the video bit rate will increase the processing, which is an impor-

tant trade-off that should be considered while proposing energy efficient strategies in

the application layer.

1.3.6 Cross Layer Approaches

The traditional layered approach is based on a layered protocol architecture which

allows spliting any complex problem of network design into smaller sections, which

are easy-to-solve. However this approach only provides suboptimal solution to the

system performance improvements as it does not efficiently exploit available resources

and consequently leads to a local performance optimization. On the contrary, the

cross-layer approach optimize each protocol layer by considering the knowledge of

parameters and features of the other protocol layers. Hence, better resource utilization

and trade-offs solution are provided by the cross-layer design approach compared to

the layered approach. However, this better performance is achieved at the cost of a

more complex design beacause all of the protocols need to adapt to the changes and

modifications made on one protocol. Although, industries and academics are exerting

their full efforts for maximizing the energy efficiency in different layers of wireless

networks, but still there are some unsolved challenges (mainly in physical layer and

MAC layer) that require more attention. In this dissertation, we will mainly focus on

EE techniques in physical and MAC layers.

1.4 Initiatives Taken by GreenTouch

GreenTouch is a the global consortium dedicated to improve the energy efficiency

of data and communications networks. GreenTouch is supported by Alcatel Lu-

cent and other Telco giants (such as: AT&T, Bell Labs, China Mobile, Samsung,

Huawei, Freescale, CEA-LETI, INRIA (The National Institute for Research in Com-

puter Science and Control), IMEC (Interuniversitair Micro-Elektronica Centrum),

France Telecom Orange Labs, Swisscom, Portugal Telecom, and the University of

Melbournes Institute for a Broadband-Enabled Society (IBES) etc.). According to
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Figure 1-6: Greentouchs’ anticipation about energy efficiency improvement by 2020
[source: [6]].

them, the net energy consumption in overall networks could be reduced up to 90%

by 2020 [6] as shown in Fig.1-6. Greentouch believes that standardization and reg-

ulation will enable strong cooperation between operators to enable a more effective

spectrum usage and avoid the costs for a four-fold deployment by 2020. Under such

scenario, it is assumed that all traffic is served by a single physical infrastructure.

For the 2010 reference scenario, conventional 3-sectorized macro BSs operating with

10MHz bandwidth and 2x43dBm transmit power per sector was applied. In 2020,

the authors anticipated a technical evolution to 20MHz and to 8 MIMO remote radio

head (RRH) antennas with 8x40dBm per sector. A heterogeneous deployment with

additional small cells (HetNet scenario) where required by capacity demand will be

applied by them. In [14], the authors used small cells with two omnidirectional MIMO

antennas with 2x27dBm transmit power. GreenTouch has focused on the following

points as the reason for increased energy efficiency in 2020 [6]. Firstly, the LTE system

in the 2010 reference scenario is strongly over-dimensioned and provides a capacity

that is by far above the demand for the year 2010. Additionally, the power consump-
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tion is only partially dependent on load, but dominated by the BS offset power. In

order to avoid redundant coverage by four networks, operator network sharing can

be applied. It is expected that the typical resource utilization in 2020 is around 25%,

when all traffic is served by a single physical infrastructure. This reduces the num-

ber of BSs and results in nearly four times less energy consumption. Secondly, due

to developments in the hardware and hardware management, the BSs in 2020 will

operate at 2.3-fold less power per BS even at the higher load of 2020 (308W at 25%

load) compared to 2010 (712W at 0.1% load). Further savings come from micro sleeps

(20% overall saving) and from the use of HetNets in DU (10% overall saving) [6]. The

Large Scale Antenna System (LSAS) project [14] research the use of a large number

of service antennas at the base station for increased spectral efficiency and increased

energy efficiency. Beyond the improvements in radiated energy efficiency, the evalu-

ation of total system energy efficiency, including the per-antenna overhead and the

computational complexity and resulting energy consumption. The energy efficiency

gains achieved from these technologies are part of their ongoing research projects and

it is expected to be quantified in future updates of the Green Meter research study.

As MIMO is out of our research interest, this paper will be read to get some idea

about the algorithm for energy efficiency. The above mentioned researches depict

that optimized energy-efficient design (including network deployment, transmission

scheme and resource management) could significantly reduce the energy consumption

of the entire network. Nevertheless, current research results are still quite preliminary

and many challenges remain unsolved.

1.5 Rationale for The Research

As already mentioned, energy consumption is growing at an incredible rate with the

rapid and radical evolution of ICT. The mobile operators are already among the top

energy consumers and energy consumption of mobile networks is growing much faster

than ICT on the whole [15]. Furthermore, because of the mass deployment of 3G

systems in developing countries (like China and India) and later 4G systems in the
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developed countries, energy consumption in mobile communications will increase day

by day if no effective actions are taken.

There are two main important factors that motivated this research. Firstly, en-

ergy consumption in wireless communications is increasing mostly due to exponential

network growth, especially with the explosion of wireless data traffic. This trend

could adversely affect the energy efficiency of ICT networks and associated smart

technologies. The second motivation is the urgent need to meet the global challenge

of reducing greenhouse gas emissions. Every industry must play its part and ICT, at

the forefront of technology, can be a leader here. In order to significantly reduce the

energy consumption of todays wireless communications, some radical new approaches

are needed. Recent research works have identified a gap between rapid network growth

rates and historical equipment efficiency improvements - a gap that promises to in-

crease over the decades ahead. Technologies in use today, even considering best-case

projected energy efficiency improvements, are not expected to be sufficient to check

the rate of energy consumption over the long term. The vision of our research is to

create energy efficient wireless communication networks and technologies that enable

a sustainable technique, which will dramatically improve their energy efficiency for

the benefit of the ICT sector and the entire world.

1.6 Energy Efficiency in Device Level

In recent years, advanced signal processing techniques and wireless radio devices have

boosted the implementation of many applications of wireless communication. The

promising ubiquitous computing system has been envisioned by the technological

developments in digital signal processing, microelectronics, wireless communication

and networking, sensing material and Wireless Sensor Network (WSN). Low power

wireless communications based sensing and computing devices are the main part of the

WSN technology. These devices are called sensor nodes which are usually powered by

the finite energy of a non-rechargeable battery. WSN is a quickly growing technology

that has attracted well-deserved attention of the academic and industrial researchers
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and in the global business market. The advanced hardware technologies allow more

signal processing functionality to be integrated into a single chip. Coin sized fully

functional wireless node are becoming very demanding and popular among industires

and researchers, in which all the application interfaces, such as, a radio frequency (RF)

transceiver, analog-to-digital (A/D) and digital-to-analog (D/A) converters, baseband

processors etc. are integrated within it. Such wireless nodes are usually power by

small batteries. The replacement of these batteries is very difficult and expensive,

even for some cases not possible. Therefore, energy consumption minimization is a

very crucial design aspect for a WSN. Most of the pioneering work [16–21] related to

energy-constrained communication has focused on minimizing the transmission energy

of the network. The emphasis on minimizing transmission energy is reasonable in the

traditional wireless link where the transmission distance is large (100 m), therefore

the transmission energy is dominant in the total energy consumption. However, the

nodes are densely distributed in many recently proposed wireless ad hoc networks

(such as sensor networks), and the average distance between the nodes is usually

below 10 m. For these circumstances, the circuit energy consumption along the signal

path becomes comparable to or even dominates the transmission energy in the total

energy consumption. Hence we summarize the following unsolved challenges in this

area:

∙ The overall energy consumption including both transmission and circuit energy

consumption needs to be considered in order to find the optimal transmission

scheme.

∙ An optimal mechanism is needed to reduce energy consumption under QOS

constraint.

On the other hand, rate adaptation (RA) is a popular mechanism to improve the

performance of wireless sensor networks [22–24]. RA is used to optimize the various

modulation and coding based physical-layer configuration depending on time varying

channel conditions. The traditional goal of RA is to achieve effective throughput and
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high goodput. We have done extensive literature review on the above mentioned top-

ics as presented in Chapter-2 of this thesis and have identified the following literature

gaps which need more attention from the researchers.

Literature Gap

∙ Very few work considers transmission energy as well as circuit energy.

∙ Rate adaptation has been rarely used to minimize energy consumption in device

level.

∙ Appropriate modulation techniques should be determined for various range of

application.

In this thesis, we focus on the above mentioned literature gap and have formulated

research question-1 accordingly, as mentioned in the research question section of this

chapter. In our work presented in Chapter-3, the energy consumption associated with

both the transmitting path and the receiving path, i.e., the total energy required to

convey a given number of bits to the receiver for reliable detection, is investigated.

Assuming all nodes transmit and receive about the same amount of data, minimizing

the energy consumption along both the transmitting path and the receiving path at

the same time is more appropriate than minimizing them separately.

1.7 Energy Efficiency in BSs

The dense deployment of base stations (BSs), which is necessary to satisfy the high

demand of traffic, is causing enormous energy consumption with more challenging

operational cost. Therefore all stockholders of wireless market possess keen interest

for making improvement in energy efficiency at the network level and are putting a

large research effort for finding innovative solutions. Most of the pioneering works

have shown that mobile networks have a strong potential for energy savings. Most

of the works done in literature, have emphasized on reducing energy consumption at
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the user end, so that the battery life of mobile terminals can be increased [25]. How-

ever, it has been reported in many studies that, state of the art BSs, also known as

eNodeBs in LTE networks, are the major source of energy consumption, consuming

approximately 60 − 80% of the total energy of a cellular network [26]. Fig.1-3 [3]

also shows that BSs are the major source of energy consumption of a wireless net-

work. This is mainly because of the always-active operation of current systems. This

always-active mode offers full-time coverage but fails to adapt energy consumption to

traffic load variations. Therefore designing energy efficient BSs has become the most

important issue for any green communication networks. Hence, operators, vendors

and researchers are collaborating to propose innovative technologies and algorithms

to improve energy efficiency in the BSs. Researchers in many different papers have

proposed various distinctive approaches to reduce energy consumptions in BSs [27]

which can be summed up in the categories as shown in Fig.1-7.

The first two approaches from the above list involves architectural changes as well

as the cost of purchasing, replacing, and installing new equipments. These costs also

include the expenditure involved in manpower, transportation as well as associated

energy and direct cost. On contrary, rest of the three approaches that are applicable

on the operating protocols of the system are less expensive and easily implementable

as they do not require changes to current network architecture. In this thesis we limit

our research scope to the last challenge area from the above list, where we identify

literature gaps and formulate our research questions accordingly.

1.7.1 Sleep Mode Techniques in The Base Station

As discussed above, as sleep mode implementation in the BS neither require upgrade

of equipments nor any hardware replacement so they incur low implementation cost,

hence is much preferable energy efficient approach by the operators and vendors. The

total power consumption of a BS is composed of fixed power consumption, which does

not depend on the traffic load and traffic dependent power consumption, which varies

with the traffic variation. As presented in paper [4], the fixed part, including air con-

ditioning and power supply, consumes around one fourth of total energy consumption,
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Figure 1-7: Approaches for BS energy saving
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which is wasted when there is no traffic to be served by the BS. This unnecessary

energy consumptions can be avoided by adopting sleep mode mechanisms in the BSs.

The sleep mode approaches generally involve switching off the entire BS or certain

elements including but not limited to power amplifiers, cooling equipment or the sig-

nal processing unit [28] in low traffic condition. As already mentioned BSs are the

highest energy consuming part in the cellular networks. Moreover, dense deployments

of BSs lead to small coverage area and more random traffic patterns for individual

BS, which make sleep mode operations more desirable. The following challenges in

implementing sleep mode in BSs have been identified in these studies which need

more attention from the researchers:

∙ Implementing sleep mode might have negative impact on QoS in the network

because of decreasing coverage and capacity.

∙ The time needed to activate the sleeping BS causes delay in providing service,

which causes degradation in service and may cause call drops as well.

∙ BS cooperation is necessary to avoid outage events when the some of the BSs

are put in sleep mode.

∙ Hardware components, which remain active during sleep mode, should be char-

acterized by a very limited power consumption to avoid energy wastage.

∙ Current 3GPP standard constrains continuous transmission of pilot channels to

guarantee coverage [29].

In order to address the above challenge, some significant works have been dedi-

cated to reduce the energy consumption of the BSs by implementing sleep modes in

the past few years [9, 30–44]. The main idea of these works is to find the minimum

transmission power which ensures QoS in terms of coverage and capacity. J. Peng

et. al. in [30] proposed an energy saving approach by switching off some macro BSs

under downlink coverage and uplink power constraints. They considered the users’

power constraints to formulate a BS energy consumption minimization problem. they

also determined the optimal proportion of sleep macro BSs and transmission power
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of active macro BSs and their results showed significant reduction in BSs’ energy

consumption while guaranteeing the downlink coverage and user power consumption

performance. Saker et al. [34] presented an energy-efficient system selection scheme

by spliting the mobile traffic between 2G and 3G systems optimally, which can reduce

around 10% of total energy consumption while satisfying QoS requirements. Then

they implemented a sleep mode for either 2G or 3G systems. Their results showed

that a significant amount of energy can be saved during low or medium traffic con-

dition without degrading the QoS. Another study conducted by the the same group

of researchers as presented in [38], proposed a generic framework for applying sleep

mode to the BSs of mobile cellular networks. Their work was divided in two schemes,

firstly they proposed a dynamic scheme where BSs are put to sleep or waken up based

on the instantaneous number of users in the cell. The second scheme is a semi-static

one where the BSs stay in a particular mode for a certain period of time (tens of

minutes or even for hours) in order to minimize frequent transition between the sleep

and active mode. These authors also discussed practical issues for sleep mode imple-

mentation in BSs in another paper [37]. In this work they proposed a guard period

and a hysteresis time between active and sleep mode, in order to to avoid call block-

ing when the resources are being activated and to reduce frequent mode transition.

Their simulation results showed that both guard period and hysteresis time provide

better QoS but reduce the gain in energy efficiency. Also their guard period and

hysteresis time do not adapt varying traffic condition, therefore is less suitable for

practical implementation. We should also consider the delay caused by the wake up

time from sleep mode. The deep sleep mode consumes almost zero power, however

can cause significant delay in service due to wake up time from sleep mode, whereas

stand-by mode is a lighter sleep mode, where a resource consumes little power but

wakes up very quickly. This stand-by mode can be achieved by switching off only

the most power consuming part of the BS, such as the power amplifier. We have

reviewed more similar works from literature and have presented them in Chapter-2.

In the light of these literature reviews, we identify the following literature gaps in this

area which are the main focus of our research:
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∙ Lack of an sleep mode algorithm which fulfills QOS requirement as well as

reduces wake up delay.

∙ Lack of sleep mode scheme offering sleep mode and stand-by mode together in

order to reduce energy consumption as well as wake up delay.

Our work presented in Chapter-4, fills the performance gap presented above.

1.8 Energy Efficiency in Aerial Networks

Aerial networks have recently become very popular as key enablers for rapid deploy-

able wireless networks where coverage is provided by on-board radio heads. The quick

deployment of the aerial platforms such as helikites, drones or airships, with respect

to terrestrial infrastructure, make them suitable candidates in tackling a number of

different challenges including, increased coverage in remote areas, better line-of-sight

(LoS) conditions and resilience to unexpected disastrous situations. Facebook Aquila

Drone [45] is a good examples of ongoing AeBS projects, which propose a novel solu-

tion for providing internet access from the sky by using the AeBSs. Aerial networks

can also be deployed by the telecom operators in remote areas as temporary solution

of patching coverage gaps [46]. The Google Loon [47] experiment is an ambitious

project intended to provide network coverage to rural and remote areas. A major

advantage of the aerial base stations over static terrestrial base stations is that they

can change their positions to serve the dynamic network of users optimally. An AeBS

can be efficiently integrated into terrestrial cellular wireless networks to either serve

the ground users directly or relay traffic to the terrestrial network [48], [49]. Fig.1-8

provides a good overview of how aerial networks co-exists with terrestrial cellular

infrastructure.

Although there has been increased interest in this topic, research is still at its

nascent stage and there are quite a number of challenges that need more research

attention:

∙ Energy efficient AeBS design
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Figure 1-8: Aerial network supporting terrestrial cellular coverage.

∙ Optimal altitude for placement of an aerial platform

∙ Aerial channel modeling etc.

In order to address these challanges, some pioneering work has been found in liter-

ature. In the the European Commission project ABSOLUTE [50], a hybrid satellite-

UAV ground network is developed using AeBSs to address public safety and capacity

enhancement based on LTE communication systems. The main objective of the AB-

SOLUTE project is to design and validate an innovative holistic network architecture

ensuring dependable communication services based on the rapid deployment, flexi-

bility, scalability, resilience and provision of inter-operable broadband services. Al-

though, significant amount of work on design and implementation of AeBS networks

is found in literature, very few of these works focus on the energy efficient design of
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aerial base stations. We provide detail literature review on aerial base station in the

next chapter, where our study finds that the energy efficiency of aerial platforms, par-

ticularly on AeBSs is not sufficiently addressed. Energy is a scarce resource for aerial

base stations, hence energy-efficient operation of such networks is important given

that the entire network infrastructure, including the battery-operated ground termi-

nals, exhibits requirements to operate under power-constrained situations. Therefore,

the wise management of energy is quite beneficial for the network lifetime. In this

context, we study the means of reducing the total energy consumption by designing

and implementing an energy efficient AeBS, where our research is focused to fill the

following literature gaps:

∙ Lack of an sleep mode algorithm which fulfills QOS requirement as well as

reduces wake up delay of an AeBS.

∙ Lack of a reinforcement learning algorithm to design an energy efficient and

delay aware AeBS.

∙ Lack of low power consumption scheme offering sleep mode and stand-by mode

together in order to reduce energy consumption as well as wake up delay.

1.9 Energy Efficiency in Small Cell Network

A wide range of heterogeneous deployments are supported by LTE or LTE-A, that

mainly includes femtocells, picocells, and relay, with aim of extending coverage of the

network, increasing the capacity of the system and reducing transmit power. Fig.1-9

depicts an example of an environment where small cells like micro, pico and femto

cells co-exist in the coverage area of macrocell. Such small cells play a critical role

in adopting LTE-A by bringing access network near to user in a cost-effective way.

Femtocells, also known as, Home eNBs, are low-cost, short-range, user-deployed cel-

lular access points. Femtocells interconnect standard User Equipment (UE) to the

mobile operator network via the broadband access backhaul of the end user. Though

normally few users are supported by femtocells, they have the functionality of regular
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Figure 1-9: A typical heterogeneous network with macro, micro, pico and femto cells
[source: [7], modified].

base stations operating in licensed band of the mobile operator. Femtocells substan-

tially enhance the user-perceived Quality of Service and greatly improve the energy

saving potential for the network nodes at the cost of employing more sophisticated

interference and mobility management procedures. The requirement of advanced in-

terference and mobility management has arisen from unplanned femtocell deployment,

denser network layout, short femtocell radius and employment of access control. The

unplanned deployment pattern results in increased Radio-Frequency (RF) interfer-

ence at the LTE-A network nodes and complicated mobility management procedure.

On the other hand, the denser network layout and the short femtocell radius increase

the number of handovers (HOs) in the system and enlarge the number of candidate

cells, compromising seamless connectivity and increasing the network signaling load.

Additionally, access control may severely degrade Signal to Interference plus Noise

Ratio (SINR) under certain interference scenarios, for instance, when an LTE-A user

is not a member of a Closed Subscriber Group (CSG) femtocell in proximity. Even

though femtocell deployment comprises several technical challenges, but still they sig-

nificantly reduce the energy expenditure for both the UEs and the LTE-A network.

As mentioned in [51], the transmit power of both the mobile terminals and the cellular

stations can be reduced by four to eight orders of magnitude by deploying femtocells.
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Self-optimization is another feature of femtocell that leads to further energy savings.

Therefore we can say that, even though femtocell deployment enhances the EE at the

access network nodes, but the actual EE gain strongly depends on: the interference

management and the mobility management algorithm.

Our research focuses on the mobility management issue in the two-tier macrocell-

femtocell network.

1.9.1 Mobility Management Issue in Femtocell Networks

Mobility Management (MM) is one of the most challenging issues in the femtocell

networks, mainly because of the dense network layout, unplanned deployment and

the short cell radii. The main challenges of MM support are posed during the phases

of cell identification, access control, cell search, cell selection, handover (HO) decision,

and HO execution. Cell identification is very cumbersome because of the dense and

unplanned reuse of the same physical cell identifiers (PCI) within small areas, which

is also known as the PCI confusion problem [52]. The access control part has three

different aspects, which makes the MM more complicated. The first aspect is, the

mobile terminals (MTs) has to be aware of the femtocells they can access. Then the

femtocell stations should enable the identification of the access type they support.

Finally the membership status of the MTs should be validated by a trusted network

entity before accessing the femtocells. Cell search should also be reassessed in the

context of femtocells because the dense and unplanned deployment hampers network-

controlled cell search procedures. additionally, the short cell radii may increase the

required energy consumption and delay overhead. Another critical issue in large-scale

deployments of femtocells is the cell selection, which is mainly because of the random

tracking area size. After selecting the candidate cells to HO in the femtocell network,

more sophisticated HO decision algorithms are required to improve the QoS and

Signal to Interference plus Noise Ratio performance in the presence of user mobility

and cross-tier interference. Moreover, to reduce the delay and signaling overhead of

the HO execution to or from femtocells more network architectural and procedural

enhancements are needed. We opt to focus our research on the HO decision phase,
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which is considered to be the most important phase of MM and needs more research

attention. We identify the literature gaps in this area and formulate our research

direction accordingly.

1.9.2 Handover Decision

In a co-existing macro-femto cell network, a HO procedure includes all of the decision

making and signaling procedures, which are required for a seamless transfer of the

ongoing connection of a certain UE from its current serving cell to a candidate cell.

This decision making part is referred to as the HO decision phase and the signaling

part is referred to as the HO execution phase. In the heterogenous networks, the

HO decision phase is performed at the serving cell and is based on signal quality

measurements provided by the UE [53]. HO decision is very crucial as it aims to

offload highly congested macrocells and to enhance the received signal quality at

the mobile UEs. Its impact is even more prominent in the presence of femtocells,

because of the denser network layout and the fast varying radio environment. Current

literature depicts reports on various HO decision algorithms for the two-tier macrocell-

femtocell network [25,52–70,70–74]. Most of these algorithms make the HO decision

to/from femtocell based on signal strength [53,65,66], UE speed [60], [75], or traffic-

type criteria [70]. However in most of these pioneering works, the impact of the HO

algorithms on the energy consumption, HO delay, interference, system capacity and

network signaling are not investigated. Note that, the most important feature of

implementing femtocells is not only to offload the high congested traffic of macrocell

but also to reduce energy consumption at the BS end as well as at UE end. To this

extent, along with the received signal strength (RSS) at the UEs, the HO decision

phase needs to consider the following challenges as well:

∙ Select a proper target cell so that the transmit power of UE reduces

∙ The delay occurred during the handover process which may interrupt the seam-

less connectivity

∙ The divergent interference levels at the cell sites
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∙ The uneven power transmissions of the macrocell and femtocell stations

∙ The increased sensitiveness on user mobility

In this thesis we limit our research scope to the first two challenge areas, where we

identify literature gaps and formulate our research questions accordingly. We have

done an extensive literature review on the HO algorithm in heterogenous networks

(networks with co-existing macro BS and femto BSs) and have presented them in

Chapter-2 of this dissertation. Based on these literature review we have identified

the following literature gaps and have proposed novel algorithms fill these gaps.

∙ Lack of an HO algorithm to select a suitable candidate cell which will also

improve the energy efficiency of the network.

∙ Lack of an learning algorithm which would intelligently decide when to perform

Handover while maintaining seamless connection.

Our research presented in Chapter-5 proposed an algorithm to address the above

mentioned challenges and literature gaps.

1.10 Research Questions and Contribution

1.10.1 Research Questions

Based on the above mentioned unsolved challenges and literature gaps we formulate

the following research questions, which address energy efficiency in layer-1 and layer-2

of wireless networks, considering-

∙ the devices of a wireless network,

∙ the BS,

∙ the access network.
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Research question 1 (RQ1): How can we optimize energy in uplink trans-

mission with rate adaptation using circuit level energy consumption

model?

How can we use rate adaptation to minimize total energy consumption, includ-

ing both transmission energy and circuit energy, under QOS constraint.

Research question 2 (RQ2): How sleep mode implementation in BSs can

improve energy efficiency whilst maintaining QOS requirement as well

as minimizing wake-up time delay?

Sleep mode implementation in BSs is a well known approach for reducing energy

consumption, however it degrades the QOS of the network by decreasing the

coverage and capacity of the network. Also some calls may get blocked while

activating the sleeping BSs. Therefore some delay aware sleep mode strategies

are needed which will fulfill the QOS requirement as well.

Research question 3 (RQ3): How to implement an intelligent learning al-

gorithm to increase energy efficiency of aerial base stations?

Energy is a scarce resource for AeBSs, therefore energy efficient algorithm is

much needed for aerial networks. An intelligent learning algorithm needs to be

proposed which will control the mode transition behaviour of the AeBSs based

on some parameters (such as delay, QOS requirement etc.).

Research question 4 (RQ4): How can we take handover decision intelli-

gently to improve energy efficiency in LTE heterogeneous networks?

An intelligent HO algorithm for heterogeneous network needs to be proposed

which will take optimal HO decision based on some parameters (such as energy

efficiency, delay, QoS requirement etc.).
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1.10.2 Contribution

Contribution to Address RQ1

To address RQ1, we show that the total energy consumption of a point to point

communication system can be minimized by optimizing the data rate for MQAM and

MFSK in an AWGN channel. Here we assume that the system will have to transmit

a fixed length of packet with a fixed bandwidth to meet a given bit error rate and to

find the optimal parameters we use Newton-Raphson method. We find that MQAM

can minimize a significant amount of energy consumption by optimizing the data

rate for shorter transmission distances and MFSK can reduce energy consumption

by optimizing the data rate for longer transmission distances. This contribution is

presented in Chapter-3 of this dissertation.

Contribution to Address RQ2

To address RQ2, we propose a novel strategy to implement low power consumption

mode in the resources (e.g. TRXs) of a BS in LTE infrastructure. We propose a

novel strategy, which can put the TRXs of a BS into active mode, stand-by mode and

sleep mode depending on the traffic condition and QoS requirement. We show that

the BS can save a significant amount of energy in low traffic condition following our

proposed ’ternary state power consumption model’. This contribution is presented in

Chapter-4 of this dissertation.

Contribution to Address RQ3

To address RQ3, we propose a novel strategy to implement low power consumption

mode in the transcievers of an aerial base station. We propose a novel reward function

and a MDP based ’ternary state model’, which can put the TRXs of an AeBS into

active mode, stand-by mode and sleep mode depending on the traffic condition and

QoS requirement. Furthermore, we show that the AeBS can save a significant amount

(appx. 40%) of energy in low traffic condition following our proposed ’MDP based

ternary state power consumption mode’, which has proven to offer fair share of energy

33



efficiency and delay. This contribution is presented in Chapter-5 of this dissertation.

Contribution to Address RQ4

To address RQ4, we propose a MDP based HO decision algorithm for the LTE-A

femtocell network, which jointly considers the impact of user mobility and energy

efficiency. Our main contribution to this work is to derive individual reward function

of each QoS parameter used for making handover decision. The proposed algorithm

finds the optimal policy by VIA to sustain service continuity and reduce the mean

UE transmit power. System-level simulations shows that the proposed algorithm

significantly reduces energy expenditure at the UEs compared to existing algorithms.

This contribution is presented in Chapter-6 of this dissertation.
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1.12 Thesis Structure

The thesis is divided into seven chapters:

∙ Chapter 1 provides an introduction to energy efficiency in wireless communi-

cations, opportunities, and possible applications in different layers of wireless

network; followed by the novel contributions to the addressed research ques-

tions.

∙ Chapter-2 provides the summary of the broad literature review, including a

brief theoretical introduction on the mathematical tools that are of relevant to

the work of this thesis.

∙ Chapter-3 presents the part of the research work, where we use rate adapta-

tion to increase energy efficiency in device level. This work addresses research

question-1.

∙ In Chapter-4, we propose a three state model for the transceivers of a base

station to increase energy efficiency of the BS. This work addresses the issue

mentioned in research question-2.

∙ Chapter 5 presents our work, where we propose an alogorithm to apply Markov

decision process on the three state transceivers of an Aerial base station. This

work addresses the issue raised in research question-3.

∙ In Chapter 6, we propose an energy efficient handover algorithm for LTE-A

heterogeneous networks. This work addresses research question-4.

∙ Chapter 7 provides a brief conclusion on the outcome of the work done in the

prior chapters along with some potential future work; hence, concluding the

overall novelty and potential of this thesis.
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Chapter 2

Background and Related Work

The ever-expanding wireless communication infrastructure is withdrawing higher en-

ergy than ever, raising the need for finding more efficient systems. The design chal-

lenges of the network architectures and protocols for energy efficient wireless com-

munications have motivated a significant amount of innovations and research in this

area. In order to address this issue some new network architectures, advanced physi-

cal layer techniques and radio and network resource management schemes have been

proposed in literature. Several international research projects, such as the Green

Touch initiative directed by Bell Labs, which are dedicated to energy-efficient wire-

less communications, are being carried out to revoke the problem before it converts

to a blown up issue. Nevertheless there exit some challenges which still need to be

sorted out.

In this chapter, we provide broad and detail literature review on energy efficiency

at different levels of wireless networks, followed by some background information on

handover procedure as well as theoritical background of Markov decision process and

reinforcement learning.
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2.1 Energy Efficient Metric and Energy Consump-

tion Models for Wireless Devices

One of the essential factors of the energy efficient network design is the accurate

metrics for energy efficiency (EE). This is because the optimization of protocol layers

depends on the EE Metrics. Existing literature have utilized several different EE

metrics. The most common metric systems are definitely the bits per joule method,

which is defined as the system throughput for unit-energy consumption. In [76], this

metric system capacity is being analysed at the network level; its capacity increased

with the number of nodes across the network. Their research let to the realization

that the suitability of the large scale and the energy limited sensors as well as the

ad-hoc networks are suitable mainly for the data applications that are delay-tolerant.

It is noteworthy that the authors in [76] only consider the transmit power associated

with data transmission rate for its energy consumption models. But the fact is that

the operation costs also include more factors, than just the transmit power. Hence,

when other parts of the system power consumption are taken into account then these

energy-efficient schemes will not be appropriate anymore. In [8] an energy consump-

tion model, which considered both of the transmission energy and the circuit energy

consumption has been proposed and analysed. They considered the cases where a

given bit error probability, the signal-to-noise-ratio (SNR) per bit requirement rises

with M for M-ary quadrature amplitude modulation (MQAM) and falls with M for

M-ary frequency-shift keying (MFSK). It is believed that MFSK have greater effi-

ciency than MQAM [77], but when the power consumption of the circuit in [8] was

taken into account; this was no longer true. The authors had shown that only when

transmit power dominates the total power consumption, as for long-range applica-

tions, then MFSK is more energy-efficient than MQAM. On the other hand, when

the circuit power dominates the total power consumption, as for short-range applica-

tions, MQAM is more energy-efficient. In [8] up to 80% of energy has been saved by

optimizing the transmission time and the modulation parameters, compared to a non-

optimized strategy for uncoded systems. A similar work has been extended to fading
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channels in [78]. It is noticeable, that the different methods for modeling the energy

consumption have significant impact on the bits-per-Joule metric. Thus, a proper set

up for the energy consumption model is vital. Researchers in [7], investigated energy

consumption models of macrocellular and microcellular base stations. The energy

consumption at the base station with no traffic load, was dubbed the ’static energy

part’, while in the scenario with traffic loads was dubbed ’dynamic energy part’, the

overall energy consumption for the base station is the sum of both of these energy

parts. Although, for a macrocell base station, the energy consumption is dominated

by the static part and does not significantly depend on the transmission parameters

of each user. Definition of throughput also affects the accuracy of the bits-per-Joule

metric. Since not all transmitted data are real information bits, hence transmitted

data should not be included into the throughout. For example, the header required in

different protocols, signalling information, destroyed packets, and duplicate packets

all present overhead bits. In [79], energy consumption of training sequences for chan-

nel estimation in fading channels is considered; where the optimal power allocation

for pilot and data symbol in terms of EE can reduce transmit power consumption by

84.5% compared with optimal power allocation scheme for maximizing the capacity.

2.2 Energy Efficiency at Device Level

Energy is a scarce resource of network nodes, particularly in remote areas or rigorous

environments where recharging is very difficult or for some cases not possible. Energy

consumption is dominated by the transmit power required from each node; therefore,

reducing the transmit power could reduce energy consumption. However, many appli-

cations, such as search and rescue or military surveillance, require a network topology

capable of withstanding sudden node/link failures. Furthermore, many algorithms,

such as consensus or swarming algorithms, require highly connected networks for

fast convergence to leverage the more efficient in-network information diffusion. As

the transmit power decreases, the number of network links reduces, consequently de-

creasing network connectivity. Therefore, there is significant interest in developing
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topology control schemes capable of achieving a good tradeoff between the conflict-

ing objectives of energy consumption and network connectivity. Various topology

control protocols have been developed for wireless ad hoc networks to obtain energy-

efficient topologies, with minimal energy consumption. That is the case of the lo-

calized minimum spanning tree (LMST) [80], and some game-based topology control

schemes [81–84]. In addition to energy-efficiency, some published works [85–87] have

also considered the problem of energy balancing in topology design to extend network

lifetime. Topology control approaches designed to minimize other network character-

istics (link price, interference, and others) were proposed in [88–90]. In [91], the mo-

bility strategy for network coverage was controlled, while efficiently managing energy

resources. However, all these works neglected the importance of network connectivity

on the capability to withstand sudden node/link failures. The authors in [92], [93]

have focused on constructing k-edge connected topologies by executing LMST k times,

which improves the robustness of network connectivity. In [94], a specific problem

of all-to-one topology control for wireless sensor networks was investigated, in which

k node-disjoint paths from each node to the sink were required. Instead of using

the conventional connectivity metrics (node/edge connectivity), the authors employ

algebraic connectivity here, a metric that has been shown to adequately represent

the robustness of network connectivity [95–97]. Some of the pioneering work in this

research area has taken the transmission energy into account, and have proposed sev-

eral ways to reduce the transmission energy. In [17–20] various strategies have been

proposed to minimise the transmission energy, which are suitable for long range ap-

plications. In our work presented in Chapter-3, we propose a novel strategy to reduce

both transmission energy and circuit energy, so that the total energy consumption is

reduced. In [98] the authors have shown that optimized transmission time can reduce

energy consumption for both M-ary quadrature amplitude modulation (MQAM) and

M-ary frequency shift keying modulation (MFSK) techniques. Some of the other

works that have presented rate adaptation for energy efficiency are given in [15, 20].

In [20] the authors analyzed MIMO based rate adaptation in an 802.11n wireless

network interface card and showed the trade-off between high throughput and en-
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ergy efficiency. In [15] the authors have considered real world network topologies and

traffic workloads from Abilene and Intel and have developed two power management

schemes to utilize sleeping mode and rate adaptation for energy efficiency. In [99] the

authors proposed an energy efficient rate adaptation algorithm for WiFi based long

distance links. Different from all of these pioneering works, we analyze rate adap-

tation for energy efficiency in the physical layer from the fundamental equations, as

presented i.n Chapter-3 of this dissertation.

2.3 Energy Efficiency at Access Level

A widely acknowledged fact of the recent age is that, the cellular communication

networks will have greater economic and ecological impact in near future. As a conse-

quence, an innovative new research discipline has been formed, namely ’green cellular

networks, which has drawn the attention of many researchers who are dedicated to

reduce the global footprint of cellular networks. The term green is originally a nick-

name of dedicated efforts to reducing unnecessary green house gases (such as, CO2)

emissions from industries. Another motivation and objective of ’green’ approaches,

particularly for the mobile operators, is to acheive more commercial benefits, by min-

imizing the operating cost related to energy consumption. Hence, it has become

necessary to shift the attention of netwrok designers from pursuing spectral efficiency

and optimal capacity to implement energy efficient strategies. Energy-efficient wire-

less communication is also imperative from the users’ perspective,. According to the

2010 wireless smartphone customer satisfaction study presented by J. D. Power and

Associates [100], the iPhone received top marks in every category except for it’s bat-

tery life. The latest report [101] in China also reflects the same issue, based on the

data in [101], up to 60% of the users complained that battery endurance was the great-

est hurdle when using 3G services. Without a breakthrough in battery technology,

the battery life of the terminal sets will be the biggest limitation for energy-hungry

applications (such as, video games, mobile P2P, interactive video, video monitors,

streaming multimedia, mobile TV, 3D services, and video sharing). Therefore with
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the explosive growth of high-data rate applications in wireless networks, EE in wire-

less communications has recently drawn increasing attention from the research com-

munity. Several international research projects dedicated to energy-efficient wireless

communications are being carried out.

There are various distinctive approaches to reduce energy consumptions in a mo-

bile cellular network. Approaches found in the pioneering works can be broadly

classified into the following five categories.

∙ Improving energy efficiency of hardware components.

∙ Turning off the network components selectively.

∙ Optimizing energy efficiency of the radio transmission process.

∙ Planning and deploying heterogeneous cells.

∙ Adopting renewable energy resources.

Approaches of the first category aim to improve hardware components (such as

power amplifier) with more energy efficient design [7,28,78,79,98]. The performance

of most components used in current cellular network architecture is unsatisfactory

from the energy efficiency perspective. For example, the power amplifier consumes

the largest amount of energy in a typical cellular base station (BS), where more than

80% of the input energy is dissipated as heat. Generally, the useful output power is

only around 5% to 20% of the input power [102]. Studies showed that the potentially

optimized ratio of output power to input power for power amplifiers (also known as

power efficiency) could be as high as 70% [102]. Accordingly, substantial amount of

energy savings can be achieved if more energy efficient components are adopted in

the network. However, the implementation cost for these approaches is high. For

example, a power amplifier module with 35% power efficiency for small cell WCDMA

or LTE BSs (cover at most an area of a radius of 2 km) costs around $75 [103]. The

cost will be even higher for larger coverage or higher power efficiency. Therefore,

careful consideration in both operational and economical aspects by network oper-

ators is required before decisions on hardware replacement are made. The second
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category covers approaches that selectively turn off some resources in the existing

network architecture during non-peak traffic hours. Approaches in this category gen-

erally try to save energy by monitoring the traffic load in the network and then decide

whether to turn off (or switch to sleep mode, also referred as low-power mode or deep

idle mode in some literature), or turn on (or switch to active mode, ready mode or

awake mode) certain elements of the network. Unnecessary energy consumptions, for

example, air conditioning under-loaded BSs, can be avoided by adopting such sleep

mode mechanisms. These approaches generally involve switching certain elements

including but not limited to power amplifiers, transceivers, signal processing unit,

cooling equipment, the entire BS, or the whole network back and forth between the

sleep mode and the active mode [28]. Most often, sleep mode techniques aim to save

energy by selectively turning off BSs during off-peak hours. As presented in Chapter-

1, BSs consume the highest proportion of energy in cellular networks. On the other

hand, dense BSs deployments lead to small coverage area and more random traffic

patterns for individual BS, which make sleep mode operations more desirable. Given

the constraint that some components (e.g., a minimum number of BSs) must always

stay on to support the basic operation of the network, as well as the execution of the

switch operation depends on the fluctuations in traffic profile, the reported energy

saving is not as high as that of component-based approaches. Also, while it is good

to save energy, BS sleeping might negatively impact Quality of Service (QoS) in the

network because of decreasing capacity, unless specific remedial solutions are adopted

concurrently [104], [105]. Nonetheless, because sleep mode techniques are based on

current architecture, they have the advantage of being easier to test and implement

as no replacement of hardware is required and the performance can be evaluated by

computer simulation. The third category focuses on the radio transmission process.

Approaches for this category work on the physical or MAC layer. Advanced tech-

niques including MIMO technique, cognitive radio transmission, cooperative relaying,

channel coding and resource allocation for signaling have been studied to improve en-

ergy efficiency of telecommunication networks. A variety of approaches have been

proposed to efficiently utilize resources in time, frequency and spatial domains to
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achieve energy saving. Similar to approaches based on sleep mode, this type of ap-

proaches generally does not require upgrade of hardware components in the system.

However, trade-offs between energy efficiency and other performance metrics of the

network are probably inevitable. Moreover, measuring errors due to complicated un-

certainty issues such as interference and noise have not yet been well investigated.

Based on information theory, four fundamental trade−offs related to energy efficiency

on wireless networks have been acknowledged, namely spectrum efficiencyenergy ef-

ficiency, deployment efficiency−energy efficiency, bandwidth−power and delaypower

efficiency [106]. The fourth category tackles the energy efficiency issue by deploying

small cells, like micro cells, pico cells and femto cells, in the cellular network [107].

These smaller cells serve small coverage areas with low energy-consuming cellular

BSs [25,52,61,62,66,72,75,107–114] which usually support plug-and-play feature and

are affordable for user-deployment. Such heterogeneous deployment reduces energy

consumption in the network by shortening the propagation distance between nodes

in the network and utilizing higher frequency bands to support higher data rates, in

contrast to conventional homogeneous macro cell deployment. However, the major

drawback of these approaches is that, these additional small cells add more radio

interferences as compared to conventional homogeneous macro cell networks, which

might adversely affect the quality of service. Furthermore, the deployment of too

many small cells may reverse the trend of saving energy because of extra embodied

energy consumed by newly deployed cells as well as because of the overhead intro-

duced in transmission. Therefore, the quantity and location of the small cells needs

to be carefully optimized in order to reduce total energy consumption. Some research

outcomes have also shown that, integrating heterogeneous network deployment with

sleep mode schemes has proved to be very good approach to achieve significant gain

in terms of energy saving [115–117].

The last category of the above mentioned list includes approaches that adopt

renewable energy resources. Renewable resources such as hydro, wind and solar power

stand out for their sustainability and environmental friendliness [118, 119] compared

to widely used energy resources (such as hydrocarbon which produces greenhouse
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gases). Some telecom operators have implemented solar power operated cellular BSs

in underdeveloped countries such as Bangladesh and Nigeria, where roads are in

poor and unsafe condition, hence delivering traditional energy resources for off grid

BSs (such as, diesel) cannot be guaranteed [120, 121]. Another popular approach

is the energy harvesting techniques, where available energy is exploited from such

renewable resources to complement existing electric operated infrastructure. This

energy harvesting approach would probably be the long-term environmental solution

for the mobile cellular network industry, especially for the particular areas without

mature network infrastructure. However, it is technically challenging to preserve fault

tolerance and data security without any service interruption while service migrates

from the obsolete electric-operated BSs to the new energy harvesting BSs.

Generally speaking, green cellular network is a relatively new area of research,

where the main aim is to make cellular networks greener by reducing total power

consumption through various approaches described above. It was estimated that ICT

roughly accounted for about 10% of global electricity consumption and up to 4%

of global carbon dioxide emissions (around 1 billion tons, approximately equal to

that of aviation industry and one fourth of emission by cars worldwide) as of early

2013 [122]. ICTs share in global carbon emissions is expected to grow every year, and

become double by the year 2020 [29]. Furthermore, the prevalence of smart phones

and tablets accessing cellular network remarkably contributes to the increasing energy

consumption. Smart phones were introduced around the year of 2000. However, it

was the success of mobile operating systems such as iOS, Android and Windows

Phone about a decade later that finally helped them take over traditional feature

phones. Tablet computers became popular almost at the same time, marked by the

release of the iPad by Apple Inc. With the help of higher data transmission rate

in 3G and 4G (and 5G in the future) cellular networks, smart phones and tablets

enable users to perform much more tasks than ever before using cellular networks,

including, but not limited to, streaming videos, downloading and reading e-books etc.

As a consequence, the number of mobile subscribers are expected to increase from 4.5

billion (in 2012) to 7.6 billion by 2020; and the amount of data traffic requested by
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each subscriber are expected to increase from 10 GB (on average) per subscriber in

2012 to 82 GB per subscriber by 2020 [123]. Also, more dynamic and bursty mobile

data and video traffic are dominating the mobile voice in cellular networks. All of

these factors lead to significant increase in energy consumption. Manner et al. [124]

showed that, an LTE network consumes about 60 times more energy as compared to

a 2G network in order to provide the same level of coverage. The pioneering works

anticipate that, more BSs, data centers and other network equipments are required to

support the ever-growing mobile traffic. Since BSs consume more than half of the total

energy in a typical cellular network, therefore the increase in the number of BSs has

a significant impact in overall energy consumption. Researchers in [27] have shown

that the number of BSs has approximately doubled from 2007 to 2012 worldwide,

and this number reached more than 4 million by 2015. When cellular networks need

to be extended to remote areas, off-grid BSs need to be deployed because of the

unavailability of electrical grids in those areas. Off-grid BSs cost ten times more to

run in comparison to their on-grid counterparts, since they generally depend on fuel,

which is a costly and unreliable power source [125]. On the other hand, hydrocarbon

energy, one of primary conventional energy resources that provides 85% of primary

energy usage in the United States and releases large amounts of greenhouse gases

when combusted, is proved not sustainable and expected to be exhausted in the near

future [126].

2.3.1 Energy Efficiency in User Equipment

There have been significant improvements during the last two decades in carbon

footprint per mobile subscriber. In the early 1990s, an average mobile subscriber

would be responsible for 100 kg of carbon dioxide emissions per year. This figure had

been reduced to one quarter, namely 25 kg per subscriber by the mid-2000s. However,

the total amount of carbon footprint is still rising despite of the reduction in footprint

per subscriber [127] since the number of mobile subscribers has dramatically increased.

Meanwhile, the increasing number of subscribers also causes total data volume of

wireless networks to increase approximately by a factor of ten every five years, which
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is associated with 16% to 20% increase in energy consumption [12]. The energy

consumption in a cellphone, including battery chargers and user equipment (UE,

which are the mobile devices used by end users),vhad been reduced from 32Whvper

day in the early 1990s to 0.83 Wh per day in 2008, with a saving of more than

97%. This achievement in energy saving in UE has made the energy consumption

negligible as compared to that in BSs. Nowadays, the main motivation for further

improving energy efficiency in cellphones is not ecological or economic impacts, but

longer battery life and thus better user experience [128–130]. For example, extensive

research has been carried out on energy efficiency of data and power consuming

applications such as social networking and multimedia streaming, to improve battery

life of UE [130]. A comprehensive survey of energy efficient techniques on UE can be

found in [27].

As mentioned earlier, energy efficiency in cellular networks and communication

has been studied widely in literature [9, 10, 16, 26, 30–44, 131–141]. Some research

papers [10, 30–39, 131, 132] have proposed different algorithms to implement sleep

mode in the LTE BSs. MDP has been used as an effective approach for sleep mode

implementation [9, 10, 30–44, 131, 132] for green communication. In [10], the authors

proposed an MDP based optimal controller that associates to each traffic condition

an activation/deactivation policy that maximizes a multiple objective function of the

QoS and improve energy efficiency. Other papers such as [138], [139] consider a single

user and use a Markov chain technique to evaluate the energy savings due to the sleep

mode mechanism of a single user terminal. The authors in [139] take correlated packet

arrivals into account to evaluate an MDP based sleep mode mechanism. Authors

in [140] consider a similar setting of one user and one station and show how to

derive the optimal sleep policy numerically by formalizing the problem as a Semi-

MDP. Authors in [142] proposed a novel scheme for the sleep scheduling based on

decentralized partially observable MPD (Dec-POMDP). However almost all of the

above mentioned papers have proposed sleep mode of the BS in low traffic condition

and the BS will be in active mode for rest of the time. The BS consumes zero power in

sleep mode and requires some significant time to wake up. We can call this model as
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’2-state model’. Authors in paper [9,10,30–39,132] have shown that this 2-state power

consumption model can reduce energy consumption of the whole network. However,

the problem is that, the BS takes significant time to wake up from sleep mode, which

may cause call drop to new users. This wake up time can range from tens of seconds

to couple of minutes for small cell and up to 10− 15 mins for macro cell [16]. This is

clearly a constraint for an energy efficient system. To our best knowledge, very few of

the previous works have implemented the stand-by mode. The authors in paper [135]

proposed the low power consumption mode, which consumes small amount of power

but wakes up within negligible time; their power consumption model is similar to what

we propose as stand-by mode in our work presented in Chapter-4 and Chapter-5.

2.4 Energy-efficient radio resource management in

Access Network

Radio resource management involves strategies and algorithms for controlling param-

eters such as transmit power, user allocation, data rates, handover criteria etc. in

a way such that the limited radio-frequency spectrum resources and radio network

infrastructure can be utilized as efficiently as possible. Energy-efficient radio resource

management is one of the effective ways to reduce energy consumption of wireless sys-

tems. Most current network dimensioning is peak-load oriented to satisfy the users

QoS requirements. In fact the daily traffic loads at BSs vary widely over time and

space. Because of this, a large amount of power wastage occurs when the traffic load

is low. This issue was already recognized by both vendors and operators and actions

were taken. For instance, Alcatel-Lucent announced that a new feature of their soft-

ware upgrades, dynamic power save (DPS), bring up to 27% energy saving for BSs

deployed by China Mobile [15]. OPERA-Net project [143] proposed energy-saving

solutions through cell-size breathing and sleep modes based on the traffic loads. Op-

timal power-saving schemes using cell switch-off under a trapezoidal traffic pattern

and a measured traffic pattern are analysed in [28], proven that a 25 − 30% energy
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saving is possible by simply switching off the active cells during the periods when

traffic is low. However, no studied regarding the effect of the switch-off state on

coverage. In [144], a traffic-aware BS mode (active or sleeping) switching algorithm,

based on a blocking probability requirement, is introduced. To avoid frequent BS

mode switching, a minimum mode holding time is suggested. It is shown that the

effect of changing holding time over a specified range have little performance change

on either energy saving or blocking probability [144]. In [145], demonstrates that

energy saving will increase with the BS density and the variance-to-mean ratio of the

traffic load. Energy saving should not only exploit the traffic load variations, but also

the diversity of the QoS requirements. The trade-off between energy consumption

and delay on the Internet has been extensively studied [15]. In the case of cellular

network, little research has been done due to the limited service types (mainly voice

communications) were available in the early systems (1G, 2G systems). However,

the evolution of cellular systems and the popularity of smart phones, more and more

diverse applications will appear on cellular networks. The ability to differentiate real

time services and delay tolerant services is beneficial, since it is essential for scal-

ing the energy consumption with the traffic type. Recently, some researchers have

exploited the service latency of applications to reduce the energy consumption in

cellular networks [15]. In [146] Energy efficiency in fading channels in the presence

of Quality of Service (QoS) constraints has been studied. Effective capacity, which

provides the maximum arrival rate that a wireless channel can sustain while satisfy-

ing statistical QoS constraints, is considered. Spectral efficiencybit energy tradeoff is

analyzed in the low-power and wideband regimes by employing the effective capacity

formulation, rather than the Shannon capacity. Based on the research, energy re-

quirements under QoS constraints are identified. In low-power regime, minimum bit

energy required under QoS constraints; same as that attained when there are no such

limitations. The minimum bit energy and wideband slope expressions were obtained.

The required bit energy levels are found to be strictly greater than those achieved

when Shannon capacity is considered in this regime. Overall, a characterization of

the energy-bandwidth-delay tradeoff is provided. Energy-efficient radio resource man-
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agement can provide significant energy savings [15], but several important issues are

still exposed: The collaboration between neighbouring cells should be further studied

since the cell mode switching changes the coverage and handoff issues. The effect of

these changes on EE should be evaluated. When the diversity of QoS requirements

for different applications is exploited, a more general and practical QoS requirement

model, as well as the fairness issues between users, should be considered. For exam-

ple, since both the channel condition and the traffic flow are time-varying in wireless

networks, it is possible that a traffic flow has a higher transmission priority according

to its QoS requirement, but the corresponding channel condition is bad. Thus, we

should balance the EE gain based on the diversity of QoS requirements and the QoS

requirements themselves.

2.5 Implementation of Pico or Femto Cells to in-

crease Energy Efficiency of cellular networks

Now-a-days Network operators are deploying Picocells and femtocells in the cellular

network to provide energy efficient and cost-effective services. Femto cellular base

stations, which are commonly known as Femto cells, are usually installed by the

end user to increase indoor coverage. Femto cells reduce energy consumption by

bringing receivers closer to the transmitter; hence by reducing transmit power, the

penetration loss and path loss significantly. On the other hand Picocells provide

localized coverage. Picocells are mostly used in densely populated areas such as

airport terminals, train stations and shopping centres. Picocells and femtocells are

usually installed within buildings for better indoor coverage. Both picocells and

femtocells decreases the distance between the receiver and the transmitters, hence

the penetration loss and path loss get reduced; as a consequence energy efficiency

increases. In [102] the authors showed that 60% of total energy consumption for

high-data rate user demand can be reduced by deploying picocells in urban areas.

The use of femto cells in the existing macrocell network has been proved to be energy
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efficient due to the smaller path loss and lower transmit power. In [108] the authors

have proposed a user activity detection strategy which detects the availability of

active users. Hence the femtocellular BS can turn off its radio transmission and

associated processing during the time when there is no active call available. As

a result energy consumption reduces during the off-peak hour. The authors in [109]

have proposed a new Wireless-over-Cable architecture for femtocells to offer an energy

efficient solution. In [107] the authors have given a detailed description of femto

cellular network design. The authors stressed that the femto cellular networks must

be dealt with proper synchronization and interference management issues. Otherwise

there will be more signalling overhead and consequently more energy consumption.

They have also pointed out some more realistic challenges and potential researches

to implement these femtocellular networks. Hence, a realistic approach to design

energy-efficient femtocellular networks is still an unsolved issue.

The above mentioned researches depict that optimized energy-efficient design (in-

cluding network deployment, transmission scheme and resource management) could

significantly reduce the energy consumption of the entire communication network.

Nevertheless, current research results are still quite preliminary and many challenges

remain unsolved.

2.6 Energy Efficiency in Aerial Base Station

In the recent years, aerial networks have gained a wide popularity as key enablers

for rapid deployment of wireless networks where coverage is provided by on-board

radio heads [36, 4450] [50, 135, 147]. One of the main reason of this popularity is

the remarkable advancement in microelectronics within the last couple of decades,

which has allowed the reduction of size and weight of wireless communication equip-

ments. Moreover, newer technologies and optical fibers have made it possible to

separate remote radio head (RRH) and baseband unit (BBU), thus have reduced the

weight of the equipments carried by tethered aerial platform. This has given huge

opportunities to researchers and industry to propose and implement aerial commu-
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nication networks in which aerial platforms carrying wireless communication equip-

ments can be deployed to provide wireless coverage to terrestrial nodes. These aerial

communication networks have shown great ability in tackling a number of different

challenges including, increased coverage in remote areas, better line-of-sight (LoS)

conditions and resilience to certain disasters. Different use cases have been envi-

sioned for such networks including public safety, massive temporary events, Internet

connectivity in emerging economies, etc. Although there has been increased inter-

est in the aerial network technology, research is still at its nascent stage and there

are quite a number of challenges such as designing energy efficient aerial base sta-

tion, optimal altitude for placement of an aerial platform, aerial channel modeling,

etc. that need to be addressed before we can see aerial communication networks in

action. Some research projects have started to investigate the means of providing

wireless connectivity using aerial platforms. Project CAPANINA [147] studied me-

chanically and electronically steerable antennas to deliver broadband wireless access

using high-altitude platforms. FP7-funded ABSOLUTE project aimed to design and

implement LTEA aerial base-stations using low-altitude platforms (LAPs) to provide

wireless coverage and capacity to public-safety organizations in the aftermath of a

large-scale disaster [50], [135]. Several companies including Google and Facebook

have launched initiatives to explore opportunities to provide Internet connectivity to

emerging economies using aerial platforms. One of the imporptant criteria is to select

an appropriate technology to be used in aerial networks since performance of the aerial

network greatly depends on these technologies. A number of different technologies

such as LTE, WiFi, WiMAX, etc. can be used in conjunction with aerial networks.

The authors in [148] and [149] have evaluated the performance of LTE aerial base-

stations for public-safety communications. In [150], the authors have investigated

the feasibility of deploying WiFi-enabled high-altitude platforms (HAPs) to provi-

sion multimedia broadcast/multimedia multicast services. The authors in [151] have

studied the utilization of balloons in combination with IEEE 802.11 technology to

build an ad-hoc network. In [152], the comparison of the coverage offered by un-

manned aerial vehicles (UAVs) with well-known terrestrial channel models has been
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studied. The authors in [153] have evaluated the performance of LTE in terrestrial

networks. System-level performance of LTE-V2X network has been analysed in [154].

The authors in [155] have evaluated the delay performance of LTE networks in vari-

ous traffic patterns and radio propagation environments. A decentralized multitarget

tracking system for cooperative Unmanned Aerial Vehicles (UAVs) with limited sens-

ing resources is presented in [156]. The proposed system distributively incorporates

a clustering algorithm, an optimal sensor manager, and an optimal path planner.

Authors in [157] presented an analytical framework to estimate the performance of

an aerial platform utilising Air-to-Ground channel model. This analytic framework

allows rapid optimisation of the key parameters influencing aerial platforms such as

the altitude and power, given a certain set of constraints or QoS requirements and

thus, facilitates the rapid and optimum deployment of AeBS by just knowing the

underlying urban statistics. In [158], the performance of UAVs acting as relays for

ground-based nodes in a hierarchical wireless network is investigated. They derived a

closed-form expression for the optimal UAV heading that achieves the highest overall

data rate in the multi-user uplink system. They also developed an adaptive handoff

algorithm to dynamically adjust the UAV-AP (access point) assignments in order

to improve network performance. After studying all of these pioneering work, we

have found that the energy efficiency of aerial platforms, particularly on aerial base

stations is not sufficiently addressed. Energy is a scarce resource for aerial base sta-

tions, hence energy-efficient operation of such networks is important given that the

entire network infrastructure, including the battery-operated ground terminals, ex-

hibits requirements to operate under power-constrained situations. Therefore, the

wise management of energy is quite beneficial for the network lifetime. In this con-

text, we study the means of reducing the total energy consumption by designing and

implementing an energy efficient AeBS as presented in Chapter-5 of this dissertation.
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2.7 Fundamentals in Markov Decision Process

Each day people make a number of decisions that have both immediate and long

term consequences. Decisions cannot be made in isolation. Todays decision impacts

on tomorrow and tomorrows decisions impact on the following days. By not account-

ing for the relationship between present and future decisions, and present and future

outcomes, a good overall performance might not be achieved. For example, in a long

race, the decision to sprint at the beginning might deplete energy reserves quickly

and result in a poor finish. MDP, also referred to as stochastic dynamic programs

or stochastic control problems, are models for sequential decision making when out-

comes are uncertain. Probability theory states that a Markov Model is defined as

a stochastic model that is used to model randomly changing systems where the as-

sumption of future states depend only on the current state and not on the events that

occurred before it is held valid. There are different types of Markov model (MM):

Markov Chains and Hidden Markov Models (HMMs) [159]. HMMs are models where

the states are only partially observable. Observations are related to the state of the

system, but they are typically insufficient to accurately determine the state. This

means that the user enters the current state which is not completely tangible with

the expected state. An extension to such HMMs is the inclusion of actions performed

at each state that leads to the next possible state with a reward. Such cases are

known as Markov Decision Processes (MDPs). However, the extension of an HMM

leads to a Partially Observable Markov Decision Process (POMDP) due to the states

consisting of partial information. At each time interval, the agent gets to make some

observations that depend on the state. The agent only has access to the history of

observations and previous actions when making a decision. It cannot directly observe

the current state, hence unable to acquire complete information regarding the current

state. The MDP model consists of decision epochs, states, actions, rewards, and tran-

sition probabilities. Choosing an action in a state generates a reward and determines

the state at the next decision epoch through a transition probability function. Policies

or strategies are prescriptions as to which action to choose under any eventuality at
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Figure 2-1: States, Action and Reward of a MDP

every future decision epoch. Decision makers seek policies that are optimal in some

sense. The following example gives us a clear idea on how MDP can be helpfull in

taking a decision.

Example [159]: An agent (or robot) exists in a certain environment. The envi-

ronment consists of states, and the agent moves between states in this environment.

Based on the current state information the agent decides which state to move to next.

Depending on the agents action, the environment returns new state information and

some reward. The goal in this problem is to maximize the agents reward. The above

interaction between the agent and the environment can also be shown as Fig.2-1.

Here, the agent starts at state 𝑆0 and initially executes action 𝑎0. This gets the

agent reward 𝑅0 and takes him to state 𝑆1. At state 𝑆1, he executes action 𝑎1, which

gets him reward 𝑅1 and takes him to state 𝑆2 and so on. This environment obeys the

Markov property, i.e., everything in the past can be summed up in the current state;

or, in other words, the future depends only on the current state. It is also assumed that

the environment has a finite number of states and that the goal of the MDP is to find

an optimal way to act in this environment. MDPs are powerful modelling tools that

allow controlling a Markov chain by creating optimal policies that dictate what action

to take as a response to the current state [159]. MDPs have been successfully applied

in a diverse range of industries, from revenue management to a variety of real life

systems including inventory management. A wide range of computer, manufacturing,

and communications systems can also be modeled using the MDP. Moreover, MDP

models have been applied to a number of equipment maintenance and replacement

problems [159]. The key ingredients of the MDP are the followings [159]:
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2.7.1 Decision Epochs

Decisions are made at points of time referred to as decision epochs. Let 𝑇 denote the

set of decision epochs. In discrete time problems, decisions are made at all decision

epochs and the time is divided into periods or stages. The set of decision epochs is

denoted by 𝑇 = 1, 2, ...,𝑀 .

2.7.2 State and Action Sets

At each decision epoch, the system occupies a state. The set of possible system states

is denoted by 𝑆. If, at some decision epoch, the decision maker observes the system

in state 𝑠 ∈ 𝑆, he may choose action 𝑎 from the set of allowable actions 𝐴.

2.7.3 Reward and State Transition Probability

As a result of choosing action 𝑎 ∈ 𝐴, in state 𝑠 at decision epoch 𝑡,

∙ the decision maker receives a reward, 𝑅𝑡(𝑠, 𝑎) and

∙ the system state at the next decision epoch is determined by the probability

distribution 𝑃 [𝑠′|𝑠, 𝑎], where 𝑠′ ∈ 𝑆 denotes the next state.

2.7.4 Decision Rules and Policies

A decision rule prescribes a procedure for action selection in each state at a specified

decision epoch. This decision rule is said to be Markovian (memoryless), when it

depends on previous system states and actions only through the current state of the

system, and deterministic, when it chooses an action with certainty. Deterministic

Markovian decision rules are functions 𝛿𝑡, which specify the action choice when the

system occupies state 𝑠 at decision epoch 𝑡. A policy 𝜋 = (𝛿1, 𝛿2, ..., 𝛿𝑀) is a sequence

of decision rules to be used at all decision epochs, where 𝑀 is the total number of

decision epochs. It provides the decision maker with a prescription for action selection

under any possible future system state or history. A policy is called stationary if 𝛿𝑡 = 𝛿

for all 𝑡 ∈ 𝑇 .
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2.7.5 Optimal Policy

Since the aim of MDP is to maximize the expected total reward 𝑉 (𝑠) for all 𝑠 ∈ 𝑆,

the following optimality equation can be defined by considering a discount factor 𝜆.

𝑉 (𝑠) = 𝑚𝑎𝑥𝑎∈𝐴{𝑅(𝑠, 𝑎) +
∑︁
𝑠′∈𝑆

𝜆𝑃𝑟[𝑠′|𝑠, 𝑎]𝑉 (𝑠′)} (2.1)

The solutions of the optimality equations correspond to the maximum expected total

reward 𝑉 (𝑠) for all states and the MDP optimal policy. Note that the MDP opti-

mal policy indicates the decision as to which option to choose from, given that the

current state is 𝑠. There are various algorithms that are available to solve the opti-

mization problem given in Eq.2.1. Examples include the Value Iteration Algorithm

(VIA), Policy Iteration Algorithm (PIA), and Linear Programming (LP) [159]. The

VIA is an iterative procedure that calculates the expected reward of each state using

the rewards of the neighbouring states until the reward calculated on two successive

iterations are close enough to each other. The PIA picks an initial policy, usually by

taking rewards on states and computing a policy according to the maximum expected

reward principle. Then it iteratively performs the following two steps: value determi-

nation, which calculates the reward of each state given the current policy; and policy

improvement, which updates the current policy if any improvement is possible. The

algorithm terminates when the policy stabilizes [159]. If the state space and action

space are finite, the LP formulation could also be used to find the optimal policy. LP

is a technique for the optimization of an objective, and is subject to linear inequality

constraint. However, in our research we solve this optimization problem by the VIA,

as the PIA and LP is not suitable for large state spaces.

2.8 Handover

In the heterogeneous wireless environment, a mobile user is able to enjoy an unin-

teruppted service using the mobile device while moving from the coverage area of one

BS to another BS. This process is called a handover, by which a mobile terminal keeps
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Figure 2-2: Horizontal handover. (a) Hard handover; (b) Soft handover

its connection active as it migrates from the coverage of one network access point to

another [160]. Handovers are called to be seamless if the handover is transparent to

the user of the available network [161]. A seamless handover is defines as a handover

scheme that maintains the connectivity of all applications on the mobile device when

the handover occurs [162].

2.8.1 Different types of handover

Based on different factors used in the handover decision process, handovers can be

classified in various ways.

Horizontal Handover

Horizontal handover occurs when the mobile station moves from one base station

to another base station within the same technology. Horizontal handover is also

called an intra-technology handover, such as the handover between base stations of

the UMTS, where mobile nodes move from one base station to another base station.

An example of horizontal handover is illustrated in Fig. 2-2. A horizontal handover

can be classified as a hard or soft handover, depending on connectivity during the

handover.

58



Hard Handover

In a hard handover, the mobile node first has to disconnect from the current network

before connecting to the new network. In other words, using hard handoff, a mobile

node is allowed to maintain a connection with only one base station at any given time

as illustrated in Fig.2-2(a).

Soft Handover

In the concept of soft handover, the mobile node can select the new network before

disconnection from the current network. So, in soft handover the mobile node is

connected to two networks at the same time, as illustrated in Figure Fig.2-2(b). Soft

handovers are possible in situations where the mobile node is moving between cells

that are operating on the same frequency.

Vertical Handover

Vertical handover means the handover between different wireless technologies, such as

a handover between the UMTS and WLAN. This is also called an inter-technologies

handover. Vertical handover can be classified into two types: upward handover and

downward handover depending on data rate changes.

Upward Handover

Moving of a mobile node from a small network cell with a high data rate to a big

network cell with a low data rate is called upward handover. Although the small

network has a high data rate, the mobile node has to move into a large network with

low data rate when leaving the transmission range of the existing small network.

Downward Handover

In downward handover, the mobile node moves from a large network cell with a low

data rate to a small network cell with a high data rates. In downward handover,

the mobile node discovers the available network, selects the one that provides the
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highest data rates and then decides to execute the handover. As it is a disadvantage

to remain connected to the low data rate network when a high data rate network is

available, the handover optimizes the overall network performance.

2.8.2 Related work on handover in femtocell networks

Conventional handover schemes do not assure an optimal management of the han-

dover procedures over the HetNets and the handoff from Macrocell to femtocell is

still an open issue. UEs need to select the appropriate target femtocell among many

candidates by taking into account the interference level, UE speed and the available

resources of the target cell. Power consumption is one of the most important prob-

lems affecting new generation systems. In fact, most of energy consumption of the

telecommunication networks is caused by the base stations. Since there are several

femtocells within a macrocell area, the femtocell deployment increases the energy

consumption. The 3GPP TS 36.927 (release 10) [163] identifies as potential solutions

for energy saving (ES) three alternatives: (i) the totally switch-off of the base stations

when there are not users, (ii) the trigger of the ES procedures in case of light traffic,

and (iii) the use of the femtocells in idle mode. Ashraf et al. in [108] proposed to im-

prove the energy efficiency of femtocells via the user activity detection. The proposed

procedure allows the femtocell to switch-off the radio transmissions in presence of no

active calls involved. This method, however, does not foresees an effective procedure

to reduce the ping-pong effect. Therefore, the total power consumption increases if

idle femtocells makes the wrong decision to wake up in order to execute an unneces-

sary handover. In [164] a scheme for unnecessary handover minimization is presented.

Authors proposed a Call Admission Control (CAC) technique to improve the han-

dover process under particular conditions. Three parameters are taken into account:

(i) the Received Signal Strength (RSS), (ii) the time in which a Mobile Station (MS)

maintains the minimum required signal level, and (iii) the Signal-to-Interference Noise

Ratio (SINR). The handover requests are triggered if the SINR from the femtocell is

greater than the SINR from the macro and if the RSS from the femtocell is greater

than a given threshold. In [165] authors proposed a new handover algorithm based

60



on the UEs speed and the QoS requirements. They consider a dense femtocell sce-

nario where users with high mobility cross the femtocell coverage in a short time.

Under these conditions, the authors consider that users with high speed do not need

to make a handover, in particular when they support non-real- time services. Three

different environments are analyzed: (i) low mobile state (from 0 to 15 km/h), (ii)

medium mobile state (from 15 to 30 km/h) and (iii) high mobile state (above 30

km/h). In addition, they consider real-time and non-real-time traffics in the simula-

tion campaigns for the evaluation of the proposed algorithm. Differently from [165],

an handover decision policy based on mobility prediction is proposed in [166] by con-

sidering as maximum speed 10 Km/h. A reactive and proactive handover strategy is

also proposed to mitigate the frequent and unnecessary handover. In [167] the au-

thors proposed a new handover procedure between macrocell and femtocell based on

the use of the UEs residence time in a cell and by exploiting two different thresholds

for the serving and the target cell, respectively. Authors demonstrated that such an

approach allows to reduces the number of unnecessary handovers. In [168] authors

developed a green handover protocol in two-tier OFDMA networks (macrocell and

femtocell). This is mainly based on the prediction of the dwell time (𝑡𝑑𝑤𝑒𝑙𝑙) and aver-

age expected transmission time (𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) of the UE. The algorithm consists of three

phases: (i) free spectrum configuration, (ii) transmission time estimation, and (iii)

green handover decision. In order to improve the energy efficiency of the network,

the handover framework proposed in [168] wake-up periodically the BSs from the

idle mode. In this way, they have a timely response to the network changes. Even

though HO decision making is challenging in the LTE-A femtocell network, only a

few reports are engaged with the matter [25, 75, 113, 114]. Assuming a single femto-

cell single macrocell network layout, the algorithm in [113] uses a combined Received

Signal Strength (RSS) metric to choose between the macrocell and the femtocell ser-

vice. The algorithm in [75] accounts for the UE speed to avoid inbound mobility

to femtocells for medium to high speed users. The authors in [114] perform mobility

prediction to estimate the cell residence time of the user and reduce the number of un-

necessary HO events in the system. The policy in [25] uses standard measurements to
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reduce the mean UE transmit power in the two-tier LTE femtocell network. In [169]

the algorithm is based on the MDP formulation with the objective of maximizing

the expected total reward of a connection. A link reward function is used to model

the QoS of the mobile connection. A signalling cost function is used to model the

switching and rerouting operations when a vertical handoff occurs. This work aims at

illustrating the tradeoff between these two important aspects in the vertical handoff

decision. In [170], a vertical handoff decision algorithm for 4G wireless networks has

been proposed. The problem is formulated as a constrained Markov decision process

(CMDP). In Chapter-6 of this dissertation, we develope an energy efficient handover

algorithm for heterogeneous network. To our best knowledge, Markov decision Pro-

cess (MDP) has never been used to develop an energy efficient hand over decision

algorithm in LTE network. Thus the novelty of our work is in developing a MDP

based energy efficient hand over (HO) decision algorithm for LTE network with small

cells.
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Chapter 3

Optimization of Rate Adaptation

for Energy Efficiency with MQAM

and MFSK

3.1 Introduction

Energy efficiency in wireless communications has become one of the most attractive

issues in recent years. Since, these wireless devices are operated by the batteries,

therefore the maximum number of bits that can be sent are controlled by the finite

battery energy. Consequently, reduction in energy consumption has become a very

pivotal design aspect. Most of the pioneering work in this research area have proposed

several ways to reduce the transmission energy by considering the transmission energy

only. In [17–20], various strategies have been proposed to minimise the transmission

energy, which are suitable for long range applications. In this work presented in this

chapter, we propose a novel strategy to reduce both transmission energy and circuit

energy, so that the total energy consumption can be reduced.

The energy consumption of the circuit has potential impact over the total energy

consumption in wireless communication, specially, for the ad-hoc networks having

dense located nodes, like sensor networks and this consumption is mostly equal and
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sometimes also dominates the transmission energy. This work considers consumption

of both circuit energy and transmission energy, at the sides of transmitter as well as

receiver. Rest of this chapter refers to the energy consumption term, which indicates

the consumption of total energy that includes both the circuit energy and transmission

energy.

In [8] the authors have shown that the energy consumption for both M-ary quadra-

ture amplitude modulation (MQAM) and M-ary frequency shift keying modulation

(MFSK) techniques can be reduced by optimizing transmission time. This chapter

contains the extension of this work towards rate adaptation analysis for optimal en-

ergy consumption and provide novel results showing the relationship between the

distance between the transmitter and receiver and the optimal rate for which maxi-

mum energy efficiency could be achieved. We have explicitly analyzed and found that

optimization of the data rate 𝑅𝑏 or optimum constellation size can reduce energy con-

sumption for the given symbol rate under an AWGN (additive white Gaussian noise)

channel. Rate adaptation has been used by some of the pioneering works [22–24]

for energy efficiency. The authors in [22], analyzed MIMO based rate adaptation in

an 802.11n wireless network interface card and showed the trade-off between high

throughput and energy efficiency. In [23], the authors have considered real-world

network topologies and traffic workloads from Abilene and Intel and have developed

two power management schemes to utilize sleep mode and rate adaptation for energy

efficiency. In [24] the authors proposed a rate adaptation algorithm for energy ef-

ficiency for WiFi based long distance links. Our work analyzes rate adaptation for

energy efficiency in the physical layer of an wireless network utilizing the fundamental

equations.

As per system constrain, peak power constrain and rate constrain are taken into

account and lower and higher boundary of data rate are defined consequently. Then

an equation is derived for total energy consumption from the probability of error

bound approximation for each of the modulation schemes. These equations show

that the energy consumption is a function of data rate and distance for a particular

Bandwidth. As a consequence, significant amount of energy can be reduced by taking
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the maximum bandwidth and optimizing the data rate for a constant bit error rate

(BER).

3.2 System Model

Fig.3-1 shows our considered communication link which connects the wireless trans-

mitter with a receiver. An assumption is made that a Digital to Analog Converter

(DAC) in the transmitter side converts baseband signal to analog signal, which is

followed by a low pass filter. The mixer will then modulate this output signal by the

carrier signal, which is produced by the local oscillator. This signal is then amplified

by a Power Amplifier (PA), before it is released into the wireless channel. At the

receiver side, the received RF signal will be filtered and amplified first by filter and

then by a Low Noise Amplifier (LNA), followed by being down converted by a mixer.

Finally the received signal goes through to an intermediate frequency amplifier (IFA)

and an analog to digital converter (ADC).

Figure 3-1: Circuit blocks in the transceiver and the receiver

The energy consumed by all of the above mentioned circuit blocks are considered

in our work. However the energy consumption of the basic signal processing units (i.e

sampling, coding, digital modulation, pulse shaping etc) are neglected for the sake of

the simplicity of the calculations. Cirtuit blocks from the transmitter side as well as

the receiver sides are assumed to work in three different modes, namely:
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∙ Active mode: When a data needs to be conveyed from transmitter to receiver.

∙ Sleep mode: When there is no data available to be transmitted.

∙ Transient mode: Transition from sleep mode to active mode.

As a result, a significant amount of energy can be saved during the sleep mode.

We assume that, when the data is taken as measurements by each sensor or each

node of the sensor network, then firstly, the measurement is converted into bits of L

number. After that the total L bits will be transmitted towards the central processor

and the node will get back to the sleep mode, after completion of the transmission.

This entire work is completed within a deadline (T) and with a minimum data rate

(𝑅𝑏𝑚𝑖𝑛). Therefore, the time and data rate needed only for the transmission of the L

bits are defined as 𝑇𝑜𝑛 ≤ 𝑇 and 𝑅𝑏 ≥ 𝑅𝑏𝑚𝑖𝑛 respectively. If no more data is available

to be sent after finishing this transmission, then all of the circuit blocks are turned

off to be in sleep mode. In our work, the optimization of 𝑅𝑏 is done towards optimal

rate adaptation for minimizing the energy consumption. It should be mentioned

here that, the start-up time of the frequency synthesizer is to be considered during

sleep to active mode transition, since it is not negligible compared to the start-up

time of the other circuit blocks. Therefore the power consumed by the frequency

synthesizer (𝑃𝑠𝑦𝑛) needs to be included in the power consumption during the transient

mode (𝑃𝑡𝑟). Hence the total energy consumption will be the combination of transmit

energy(𝑃𝑡𝑇𝑜𝑛), power amplifier energy (𝑃𝑎𝑚𝑝𝑇𝑜𝑛), circuit energy (𝑃𝑐𝑇𝑜𝑛) and transient

energy 𝑃𝑡𝑟𝑇𝑜𝑛. If we substitute 𝑅𝑏 = 𝐿
𝑇𝑜𝑛

and 𝑃𝑡𝑟 = 2𝑃𝑠𝑦𝑛 then we can derive the

following equation for the total energy consumption:

𝐸𝑎 =
(1 + 𝛼)𝑃𝑡 + 𝑃𝑐

𝑅𝑏

+
2𝑃𝑠𝑦𝑛𝑇𝑡𝑟

𝐿
(3.1)

Here 𝑃𝑡 denotes the transmit power, 𝑇𝑡𝑟 denotes the transient mode duration

which is equal to the frequency synthesizer settling time, 𝑃𝑠𝑦𝑛 denotes the frequency

synthesizer power consumption and 𝑃𝑐 denotes the total circuit power consumption.

Here, 𝑃𝑐 consists of the power consumed at the transmitter side as well as the receiver
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side. The circuit power consumed at the transmitter side consists of the mixer power

consumption 𝑃𝑚𝑖𝑥, frequency synthesizer power consumption 𝑃𝑠𝑦𝑛, active filter power

consumption 𝑃𝑓𝑖𝑙𝑡 and the DAC power consumption 𝑃𝐷𝐴𝐶 . On the other hand, the

power consumed at the receiver side consists of the the mixer power consumption

𝑃𝑚𝑖𝑥, the frequency synthesizer power consumption 𝑃𝑠𝑦𝑛, the LNA power consumption

𝑃𝐿𝑁𝐴, the active filter power consumption 𝑃𝑓𝑖𝑙𝑟, the IFA power consumption 𝑃𝐼𝐹𝐴,

and the ADC power consumption 𝑃𝐴𝐷𝐶 . It is noteworthy to mention that, we include

the power consumption of the power amplifier 𝑃𝑎𝑚𝑝 separately since it is a function

of the transmit power. The power consumption of the PA is given by, 𝑃𝑎𝑚𝑝 = 𝛼𝑃𝑡,

where 𝛼 = 𝜁
𝜂
− 1, 𝜂 is the drain efficiency and 𝜁 is the peak to average power ratio.

Hence, for a given distance (𝑑) between the transmitter and the receiver, pathloss

exponent 𝑘 and a link margin of 𝑀𝑙, the required transmit power levels for MQAM

and MFSK is given in Eq.3.2 respectively, where we consider a constant bit error

probability (𝑃𝑏) at the receiver end [8].

𝑃𝑡−𝑀𝑄𝐴𝑀 =
4

3
𝑁𝑓𝜎

2(2𝑏 − 1) ln

(︃
4(1 − 2

−𝑏
2 )

𝑏𝑃𝑏

)︃
𝐺𝑑𝐵 (3.2)

𝑃𝑡−𝑀𝐹𝑆𝐾 = 4𝑁𝑓𝜎
2 ln

(︂
2𝑏−2

𝑃𝑏

)︂
𝐺𝑑

2𝐵

2𝑏

here, 𝑁𝑓 is the receiver Noise Figure, 𝜎2 is the double sided noise power spectral

density, 𝐺𝑑 = 𝐺𝑙𝑑
𝑘𝑀𝑙 and 𝐺𝑙 is the gain factor at 𝑑 = 1m which is defined by

system parameters such as the carrier frequency and antenna gains. Considering a

realistic scenario, we impose a constraint on the maximum transmitter power (𝑃𝑚𝑎𝑥)

associated with the communications circuit of the handset, which is given by,

Peak Power Constraint : 0 ≤ (1 + 𝛼)𝑃𝑡 + 𝑃𝑐𝑡 ≤ 𝑃𝑚𝑎𝑥 (3.3)

We also impose a minimum data rate constraint of 𝑅𝑏𝑚𝑖𝑛 based on the technology

standard. On the other hand, the power constraint in Eq.3.3 also poses a maximum

allowable data rate, hence gives us a lower and an upper bounds for the achievable
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data rate as presented in Eq.3.4:

Rate Constraint : 𝑅𝑏𝑚𝑖𝑛 ≤ 𝑅𝑏 ≤ 𝑅𝑏𝑚𝑎𝑥 (3.4)

We find the optimal data rate in the following section for both MQAM and MFSK,

based on the transceiver model and the constraints presented in this section. Note

that we do not explicitly provide a value for 𝑃𝑚𝑎𝑥 in our work but rather leave it open

since it depends on the circuit design and the electrical power budget.

3.3 Energy Consumption for MQAM

As mentioned before, the system is expected to transmit 𝐿 bits with a deadline of

𝑇 seconds in order to meet a given bit error probability 𝑃𝑏 and a total bandwidth

of 𝐵. Let us denote 𝑏 as the number of bits per symbol for the MQAM modulation,

which is given by 𝑏 = log2𝑀 . Then the total number of MQAM symbols required

for the transmission is 𝐿𝑠 = 𝐿
𝑏
. It can also be written as, 𝐿𝑠 = 𝑇𝑜𝑛

𝑇𝑠
, where 𝑇𝑠 is the

period of the symbol. We can find a relationship between the constellation size and

the transmission time from the above mentioned equations, as 𝑏 = 𝐿𝑇𝑠

𝑇𝑜𝑛
. The data

rate is of course given by the fundamental relationship 𝑅𝑏 = 𝐿
𝑇𝑜𝑛

or alternatively as

𝑅𝑏 = 𝑏
𝑇𝑠

. Based on the above definitions and using (3.1) and (3.2), a closed form

expression for the total energy consumption 𝐸𝑎 for MQAM can be derived, given by:

𝐸𝑎 = (1 + 𝛼)
4

3
𝑁𝑓𝜎

2 (2𝑏 − 1)

𝑏
ln

(︃
4(1 − 2

−𝑏
2 )

𝑏𝑃𝑏

)︃
𝐺𝑑

+
𝑃𝑐

𝑏𝐵
+

2𝑃𝑠𝑦𝑛𝑇𝑡𝑟

𝐿

(3.5)

In order to simlate our proposed algorithm, we use the values provided in Table.

3.1. We consider a class A power amplifier for MQAM, which gives us the drain

efficiency, 𝜂 = 0.35. For MQAM 𝜁 = 3
(︁√

𝑀−1√
𝑀+1

)︁
, where 𝑀 = 2𝑏. Using the data

provided in Table3.1 we calculate 𝑏𝑚𝑖𝑛 = 𝐿
𝐵𝑇

= 2 and 𝑅𝑏𝑚𝑖𝑛 = 𝑏
𝑇𝑠

= 𝑏𝐵 = 20𝑘 for

MQAM. From the fundamental equation of data rate we know that, 𝑅𝑏 = 𝑏
𝑇𝑠

, where
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Table 3.1: Parameters used for the system analysis for MQAM and MFSK, directly
adopted from [8]

𝑓𝑐=2.5 GHz k=3.5

𝐵=10 kHz 𝑃𝑚𝑖𝑥 = 30.3 mW

𝑃𝐿𝑁𝐴=20mW 𝑇𝑡𝑟=5us

𝑇=100ms(MQAM) and 𝑇=1.07s(MFSK) 𝑁𝑓=10 dB

𝜂 = 0.35(MQAM) and 𝜂 = 0.75(MFSK) 𝜎2 = 𝑁0

2
= −174dBm/Hz

𝐿=2000 bits, 𝐺𝑙=30 dB 𝑃𝑠𝑦𝑛 = 50 mW

𝑃𝐼𝐹𝐴=3 mW 𝑃𝑓𝑖𝑙𝑡 = 𝑃𝑓𝑖𝑙𝑟=2.5mW

𝑀𝑙 = 40𝑑𝐵 𝑃𝑏 = 10−3

𝑅𝑏𝑚𝑖𝑛 = 20𝑘(MQAM) 𝑅𝑏𝑚𝑖𝑛 = 1869(MFSK)

𝑃𝐴𝐷𝐶 = 6.7𝑒−3 𝑃𝐷𝐴𝐶 = 1.54𝑒−2(MQAM)

𝑇𝑠 is symbol period. If we consider square pulses then 𝑇𝑠 = 1
𝐵

and hence 𝑅𝑏 = 𝑏𝐵.

Therefore we can write the expression of total energy consumption for MQAM in

terms of the data rate 𝑅𝑏 as in the following equation:

𝐸𝑎 =

(1 + 𝛼)4
3
𝑁𝑓𝜎

2
(︁

2
𝑅𝑏
𝐵 − 1

)︁
ln

⎛⎝4

(︂
1−2

𝑅𝑏
2𝐵

)︂
𝑅𝑏
𝐵

𝑃𝑏

⎞⎠𝐺𝑑𝐵

𝑅𝑏

+
𝑃𝑐

𝑅𝑏

+
2𝑃𝑠𝑦𝑛𝑇𝑡𝑟

𝐿

(3.6)

Fig. 3-2 shows the relationship between the energy consumption, 𝐸𝑎 and data rate,𝑅𝑏.

From Fig.3-2 we can see that, a minimum point exists on the energy consumption

curves for some distances, which indicates the existance of optimal data rate for

minimum energy consumption. For instance, for 𝑑 = 5𝑚, a significant amount of

energy can be saved by using optimal data rate 𝑅𝑏

𝑅𝑏𝑚𝑖𝑛
= 5, rather than using 𝑅𝑏

𝑅𝑏𝑚𝑖𝑛
= 1.

3.3.1 Optimal Data Rate for MQAM

Fig.3-2 clearly shows that, there exists an optimal data rate for which the energy

consumption is minimum upto a certain distance between the transmitter and the

reciever. In order to find this optimal data rate for a particular distance, we have to
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Figure 3-2: Total energy consumption for MQAM vs optimized data rate for
different transmission distances,d(m)

find out the 𝑅𝑏 for which the first derivative of 𝐸𝑎 with respect to 𝑅𝑏 will become

zero. In other words, we have to find out the root of 𝑑𝐸𝑎

𝑑𝑅𝑏
for each particular distances.

We have applied the Newton-Raphson method to find these roots.

Newton-Raphson Method As per the Newton-Raphson method [171], 𝑥𝑛+1 is

an updated estimate of the root of the function 𝑓(𝑥𝑛) after 𝑛 iterations, as shown in

eqn(3.7):

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
(3.7)

After a few iterations of the above mentioned equation we are able to find the

root of 𝑓(𝑥𝑛) = 0. We have applied the same method to find the root of 𝑑𝐸𝑎

𝑑𝑅𝑏
. This

root will be the value of 𝑅𝑏 for which we will have the minimum energy consumption

for particular distance, 𝑑. The expression for 𝑑𝐸𝑎

𝑑𝑅𝑏
is given below.
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𝑑𝐸𝑎

𝑑𝑅𝑏

=

2
𝑅𝑏
𝐵 𝐾1𝑑

𝑘 ln

(︃
−𝐵 4

2

𝑅𝑏
2𝐵 −4

𝑃𝑏𝑅𝑏

)︃
𝑅𝑏

− 𝑃𝑐

𝑅2
𝑏

−
𝐾2𝑑

𝑘 ln
(︁
−𝐵 4

2
𝑅𝑏
2𝐵 −4

𝑃𝑏𝑅𝑏

)︁(︁
2

𝑅𝑏
𝐵 − 1

)︁
𝑅2

𝑏

−

𝐾3𝑑
𝑘
(︁

2
𝑅𝑏
𝐵 − 1

)︁ 𝐵

(︃
4

2

𝑅𝑏
2𝐵 −4

)︃
𝑃𝑏𝑅

2
𝑏

+ 2(︂
2
𝑅𝑏
2𝐵

)︂
𝑅𝑏

𝐾4(︂
4

2
𝑅𝑏
2𝐵 −4

)︂

(3.8)

where, 𝐾4 = ln 2
𝑃𝑏

. 𝐾1 = 𝐺𝑙𝑀𝑙𝑁𝑓𝜎
2 ln(2)

(︀
4𝑎
3

+ 4
3

)︀
, 𝐾2 = 𝐵𝐺𝑙𝑀𝑙𝑁𝑓𝑑

𝑘
(︀
4𝑎
3

+ 4
3

)︀
𝜎2,

𝐾3 = 𝐺𝑙𝑀𝑙𝑁𝑓𝑃𝑏𝜎
2
(︀
4𝑎
3

+ 4
3

)︀
.

After applying the Newton-Raphson method, we find the optimal data rate 𝑅𝑏 =

8.1727 for 𝑑 = 1m; 𝑅𝑏 = 4.5508 for d = 5m; 𝑅𝑏 = 1.33 for d = 30m and 𝑅𝑏 = 0.3015

for d = 100m. These results are plotted in Fig.3-4. As 𝑅𝑏 defines the constellation size

for a fixed Bandwidth so we have to find an integer value of optimal data rate,𝑅𝑏𝑜𝑝𝑡.

Therefore we have to find the nearest integer which will give us minimum energy

consumption as shown in Table 3.2. For example, for 𝑑 = 1m 𝑅𝑏 is 7.9491, so we

took the two nearest integers to this value (7 and 8) and found energy consumption

for each of them as −27.9870 dBmJ and −27.9450 dBmJ respectively. As 𝑅𝑏 = 7

gave us the minimum energy so we choose 𝑅𝑏𝑜𝑝𝑡 = 7 for d=1m. Thus we defined that

particular 𝑅𝑏 as the optimal data rate, 𝑅𝑏𝑜𝑝𝑡. On the other hand, the data rate is

related to bit per symbol (𝑏) by the expression, 𝑏 = 𝑅𝑏

𝐵
. Hence optimization of bit

per symbol can also reduce energy consumption.

3.3.2 Optimization Range for MQAM

It is evident from Eq.3.5 that the transmission energy is dependent on the transmis-

sion distance 𝑑 whereas the circuit energy consumption is independent of 𝑑. Hence

energy can be minimised by optimizing the data rate only when the circuit energy
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Table 3.2: Finding the Optimal data rate for MQAM

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑅𝑏/𝑅𝑏𝑚𝑖𝑛
𝑅𝑏𝑓𝑙𝑜𝑜𝑟 𝐸𝑎𝑓𝑜𝑟𝑅𝑏𝑓𝑙𝑜𝑜𝑟 𝑅𝑏𝐶𝑒𝑖𝑙

𝐸𝑎𝑓𝑜𝑟𝑅𝑏𝐶𝑒𝑖𝑙
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑅𝑏 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑛𝑒𝑟𝑔𝑦

1 7.9491 7 -27.9870 8 -27.9450 7

5 4.3469 4 -24.7752 5 -23.6941 4

10 2.9552 2 -22.0347 3 -22.0892 3

15 2.2286 2 -20.3035 3 -18.4045 2

30 1.2087 1 -15.3076 2 -12.9579 1

35 1.0279 1 -13.7114 2 -10.8640 1

40 0.8860 - - - - 𝑙𝑒𝑠𝑠𝑡ℎ𝑎𝑛𝑅𝑏𝑚𝑖𝑛

consumption dominates or is equal to the transmission energy. With increasing dis-

tance the transmission energy starts dominating the circuit energy as the transmission

energy increases with 𝑑. Therefore there should be a maximum distance beyond which

energy saving is no longer possible by optimizing the modulation parameters (i.e. 𝑅𝑏

or 𝑏 ).This maximum distance will make the derivative of 𝐸𝑎 relative to 𝑅𝑏 equal to

zero at the minimum data rate. For the above example, 𝑑 = 35m is the threshold,

where 𝑑𝐸𝑎

𝑑𝑅𝑏
= 0 at the point 𝑅𝑏

𝑅𝑏𝑚𝑖𝑛
= 1. Beyond this distance no more energy saving

is possible by doing rate adaptation for MQAM for the above mentioned numerical

example.

3.4 Energy Consumption for MFSK

Let us now consider the whole scenario for MFSK. If we denote 𝑏1 as the bit per

symbol for MFSK, then the number of orthogonal carriers will be, 𝑀 = 2𝑏
1. The

data rate can defined as 𝑅𝑏1 = 𝑏1
𝑇𝑠

regardless of the modulation technique. The total

bandwidth for MFSK is 𝐵 =
2𝑏1
2𝑇𝑠

as in [77], given carrier separation is 1
2𝑇𝑠

. Therefore,

bandwidth efficiency, 𝐵𝑒 = 𝑅𝑏1

𝐵
= 2𝑏1

2𝑏1
. Bandwidth efficiency can also be defined as,

𝐵𝑒 = 𝐿
𝐵𝑇𝑜𝑛

for any modulation technique. Hence, we can derive the relationship

between 𝑏1 and transmission time as 2𝑏1
2𝑏1

= 𝐿
𝐵𝑇𝑜𝑛

. Now Data rate 𝑅𝑏1 is also defined

as 𝑅𝑏1 = 𝐿
𝑇𝑜𝑛

. Therefore, the relationship between bit per symbol and Data rate for

MFSK is 𝑅𝑏1 = 2𝑏1𝐵
2𝑏1

. We have considered non-coherent MFSK as it is mostly used
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in most of the practical receivers. The authors in [78] have derived the expression

for total energy consumption from the general equation of probability of error 𝑃𝑏 for

MFSK as in the following Eq.3.9:

𝐸𝑎 =
(1 + 𝛼)4𝑁𝑓𝜎

2 ln(2
𝑏1−2

𝑃𝑏
)𝐺𝑑

𝑏1
+

𝑃𝑐2
𝑏

2𝑏1𝐵
+

2𝑃𝑠𝑦𝑛𝑇𝑡𝑟

𝐿
(3.9)

where 𝛼 = 1
𝜂
− 1. We simulate these equations using the same parameters provided

in Table3.1. Note that the DAC and the mixer are not considered for the MFSK

transmitter model [8]. Moreover, for MFSK we have used class B or higher class

power amplifier for which 𝜂 = 0.75 is used. As MFSK is not bandwidth efficient

so it needs more time to transmit the same number of bits compared to MQAM

for a given bandwidth. Therefore the maximum delay is increased to 𝑇 = 1.07𝑠

and consequently the maximum bit per symbol has become 𝑏𝑚𝑎𝑥 = 6. The optimal

modulation parameters (constellation size and data rate) for MFSK are found in the

following section, in order to minimize energy consumption for a given bit error rate

(BER).

3.4.1 Optimal Constellation Size for MFSK

The relation expressed in Eq.(3.9) can be better understood by plot 𝐸𝑎 vs 𝑏1 for

MFSK as in Fig.3-2; which shows that for shorter distances, the enegry consump-

tion decreases with 𝑏, however start increasing after certain 𝑏. Whereas, for longer

distances, this energy consumption decreases with increasing 𝑏.

Fig.3-3 depicts that, for 𝑑 = 1 m, about 80% of the energy consumption can be

reduced by using optimal bit per symbol (𝑏𝑜𝑝𝑡)=2 when compared to using 𝑏1 = 𝑏𝑚𝑎𝑥.

If we apply the Newton-Raphson method as Eq.3.7 then we can find the root of

𝑑𝐸𝑎

𝑑𝑏1
, which provides us the value of 𝑏1 for which we will have minimum energy for

a particular distance. As a result of applying the Newton-Raphson method we find

optimal bit per symbol, 𝑏1 = 3.3935 for d=100m; 𝑏1 = 1.5464 for d=30m; and 𝑏1 =

1.4429 for d=5m. These values of 𝑏1 give us minimum energy for certain distances.

The value of 𝑏1 must be an integer, that is why these optimal 𝑏1 values are then
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Figure 3-3: Total energy consumption for MFSK Vs Constellation size for different
transmission distances

approximated by upper and lower integers (as shown in table3.3) to find the optimal

constellation size for minimum energy consumption. For example, 𝑏1=1.5464 for

d=30m, the lower and upper integer of 1.5465 is 1 and 2. Therefore we calculate the

energy for 𝑏1=1 and 𝑏1=2 and we find the energy as −17.3397 dBmJ and −17.5487

dBmJ respectively. As 𝑏1=2 gives us less energy consumption than 𝑏1 = 1 so we

choose the optimal bit per symbol, 𝑏1 as 2 for d=30.

Using the same approach we find the optimal bit per symbol for all of the dis-

tances. The expression of 𝑑𝐸𝑎

𝑑𝑏1
is used in Newton-Raphson method for finding optimal

constellation size for MFSK as shown below in Eq.3.10:

𝑑𝐸𝑎

𝑑𝑏1
= −𝑘12

𝑏
1

𝑏21
+

𝑘12
𝑏
1 ln 2

𝑏1
+

𝑘2𝑑
𝑘

𝑏1
+

𝑘3𝑑
𝑘 ln
(︁

2(𝑏1−2)

𝑃𝑏

)︁
𝑏21

(3.10)

here 𝑘1 = 𝑃𝑐

2𝐵
; 𝑘2 = 𝐺𝑙𝑀𝑙𝑁𝑓𝜎

2 ln 2(4𝑎 + 4) and 𝑘3 = 𝐺𝑙𝐿𝑀𝑙𝑁𝑓𝜎
2(4𝑎 + 4)
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Table 3.3: Finding the Optimal constellation size and data rate for MFSK

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏 𝑏𝑓𝑙𝑜𝑜𝑟 𝑅𝑏𝑓𝑙𝑜𝑜𝑟 𝐸𝑎 𝑓𝑜𝑟 𝑅𝑏𝑓𝑙𝑜𝑜𝑟 𝑏𝐶𝑒𝑖𝑙 𝑅𝑏𝐶𝑒𝑖𝑙 𝐸𝑎 𝑓𝑜𝑟 𝑅𝑏𝐶𝑒𝑖𝑙
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏 𝑎𝑛𝑑 𝑅𝑏

1 1.4427 1 5 -17.8251 2 6 -17.8252 b=2; 𝑅𝑏𝑜𝑝𝑡=6

5 1.4429 1 5 -17.8242 2 6 -17.8246 b=2; 𝑅𝑏𝑜𝑝𝑡=6

10 1.4451 1 5 -17.8142 2 6 -17.8191 b=2; 𝑅𝑏𝑜𝑝𝑡=6

15 1.4525 1 5 -17.7800 2 6 -17.8000 b=2; 𝑅𝑏𝑜𝑝𝑡=6

30 1.5465 1 5 -17.3397 2 6 -17.5487 b=2; 𝑅𝑏𝑜𝑝𝑡=6

35 1.6127 1 5 -17.0231 2 6 -17.3612 b=2; 𝑅𝑏𝑜𝑝𝑡=6

39 1.6798 1 5 -16.6983 2 6 -17.1632 b=2; 𝑅𝑏𝑜𝑝𝑡=6

40 1.6984 1 5 -16.6073 2 6 -17.1067 b=2; 𝑅𝑏𝑜𝑝𝑡=6

45 1.8021 1 5 -16.0967 2 6 -16.7814 b=2; 𝑅𝑏𝑜𝑝𝑡=6

50 1.9212 1 5 -15.5032 2 6 -16.3861 b=2; 𝑅𝑏𝑜𝑝𝑡=6

60 2.1929 2 5 -15.4106 3 6 -15.0863 b=2; 𝑅𝑏𝑜𝑝𝑡=5

75 2.6424 2 4 -13.6358 3 5 -13.8034 b=3; 𝑅𝑏𝑜𝑝𝑡=5

90 3.0983 3 3 -12.2765 4 4 -11.9759 b=3; 𝑅𝑏𝑜𝑝𝑡=3

105 3.5373 3 3 -10.6645 4 4 -10.6944 b=4; 𝑅𝑏𝑜𝑝𝑡=4

120 3.9513 3 2 -9.0717 4 3 -9.3428 b=4; 𝑅𝑏𝑜𝑝𝑡=3

135 4.3389 4 2 -7.9900 5 3 -7.9076 b=4; 𝑅𝑏𝑜𝑝𝑡=2

150 4.7009 4 1 -6.6760 5 2 -6.7664 b=4; 𝑅𝑏𝑜𝑝𝑡=1

165 5.0395 5 1 -5.6381 6 2 -5.4414 b=5; 𝑅𝑏𝑜𝑝𝑡=1

195 5.6551 5 1 -3.4876 6 2 -3.5389 b=6; 𝑅𝑏𝑜𝑝𝑡=2

205 5.8443 5 1 -2.8104 6 2 -2.9196 b=6; 𝑅𝑏𝑜𝑝𝑡=2

210 5.9362 5 1 -2.4797 6 2 -2.6143 b=6; 𝑅𝑏𝑜𝑝𝑡=2

213 5.9905 5 1 -2.2838 6 2 -2.4326 b=2; 𝑅𝑏𝑜𝑝𝑡=2

215 6.0263 6 0 -2.3122 7 1 -2.1511 NA as b>bmax and Rb<Rbmin

225 6.2017 6 0 -1.7179 7 1 -1.6212 NA as b>bmax and Rb<Rbmin

240 6.4533 6 0 -0.8532 7 1 -0.8370 NA as b>bmax and Rb<Rbmin

255 6.6922 6 0 -0.0216 7 1 -0.0701 NA as b>bmax and Rb<Rbmin

3.4.2 Optimal Data Rate for MFSK

We can find the relation between total energy consumption with data rate by using the

relationship between 𝑅𝑏1 and 𝑏1 (bit per symbol). The optimal data rate for minimum

energy consumption can be found from the optimal bit per symbol as derived in the

above mentioned section. We use the equation 𝑅𝑏1 = 2𝑏1𝐵
2𝑏1

to find out this optimal

data rate for MFSK and as a result we find 𝑅𝑏𝑜𝑝𝑡1 =6, 5, 3, 2, 1, 1 for d=10, 60, 90,

135, 150 and 210 meters respectively.
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3.4.3 Optimization range for MFSK

Similar to MQAM, in MFSK as well, there exists a maximum distance, 𝑑 above which

there is no energy savings possible by optimizing modulation parameters. To find this

threshold, we find the value of 𝑑 for which the derivative of 𝐸𝑎 relative to 𝑏1 for the

maximum value of 𝑏1 becomes zero. For the specific set of parameters in Table3.1,

𝑑 = 213𝑚 is the threshold, where 𝑑𝐸𝑎

𝑑𝑏1
= 0 at 𝑏1 = 𝑏𝑚𝑎𝑥 for MFSK.

3.5 Comparison of Optimal Data Rate for MQAM

and MFSK

In the following Fig.3-4 we have compared the optimal data rate for MQAM and

MFSK. In Fig.3-4 region I is the desired region where the data rate is greater than or
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Figure 3-4: Optimal data rate vs distance for both MQAM and MFSK

equal to 𝑅𝑏𝑚𝑖𝑛 and region II is the unaccepted region where the data rate is less than

𝑅𝑏𝑚𝑖𝑛. In this figure it is evident that, for MQAM, rate adaptation can be used to

reduce energy consumption for shorter distances between transmitter and receiver for

a given BER, packet size and bandwidth. Whereas for MFSK, rate adaptation can

76



result in energy efficiency for longer distance between transmitter and receiver for a

given BER, packet size and bandwidth. Hence it can be said that rate adaptation is

a good approach to save energy for short range applications using MQAM, whereas

MFSK is suitable for long range applications.

3.6 Parametric Effects on the Optimal Rate for

Energy Efficiency

This section analyzes the effect of varying bandwidth and pathloss exponent on the

optimal data rate for energy efficiency for both MQAM and MFSK techniques.

3.6.1 Effect of Varying Path loss exponent

We calculate optimal data rate for different path-loss exponent by keeping the other

system parameters constant and show the result in Fig.3-5, which shows that the

optimal data rate and optimization range decreases with increasing path loss expo-

nent for both MQAM and MFSK. Therefore if we need to use the system for longer

distances or if we require higher data rate then we should select lower value for path

loss exponent.

3.6.2 Effect of Varying Bandwidth

In this section, the total energy consumption of MQAM for different bandwidth (BW)

has been observed for a particular distance between transmitter and receiver as pre-

sented in Fig.3-6. The total energy consumption of MFSK is also analyzed for different

bandwidth (BW) for a particular distance between transmitter and receiver, and the

results are presented in Fig.3-7. Finally, the optimal data rate for different Bandwidth

is shown in Fig.3-8 with respect to distance, for both MQAM and MFSK. Note that,

only the curves for the operational region (where 𝑅𝑏 is greater than 𝑅𝑏𝑚𝑖𝑛) are shown

in Fig.3-8. From these figures, we can see that, larger bandwidth gives us higher

optimal data rate and longer optimization range for both MQAM and MFSK, this is
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Figure 3-5: Optimal data rate vs distance for both MQAM and MFSK for different
path loss exponent(k)

Figure 3-6: Total energy consumption for MQAM Vs optimized data rate for
different bandwidth for a particular transmission distance

because optimal data rate and optimization range both are monotonically increasing

function of bandwidth. Therefore for a system design we should select the maximum
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bandwidth for a particular distance and for a given bit error rate. As a consequence

the maximum energy efficiency can be achieved by selecting larger optimal data rate

for longer transmission distances.

Figure 3-7: Total energy consumption for MFSK Vs optimized data rate for
different bandwidth for a particular transmission distance

3.7 Summary of Contribution and Conclusion

In this chapter, we have shown that the total energy consumption of a point to point

communication system can be minimized by optimizing the data rate for MQAM and

MFSK in an AWGN channel. Here we assume that the system transmits a fixed

length of packet with a fixed bandwidth to meet a given bit error rate. In order to

find the optimal parameters we have used Newton-Raphson method. Our simulation

results show that MQAM can minimize a significant amount of energy consumption by

optimizing the data rate for shorter transmission distances; whereas MFSK can reduce

energy consumption by optimizing the data rate for longer transmission distances.

These results from our work can be directly used for an entire network for every

transceiver node such that a greater energy efficiency could be obtained globally.
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Figure 3-8: Optimal data rate vs distance for both MQAM and MFSK for different
Bandwidth(BW)
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Chapter 4

Energy Efficiency of Cellular Base

Stations with Ternary-State

Transceivers

4.1 Introduction

The ever-growing expansion of the cellular networks and the number of subscribers

has increased the demand for cellular traffic. These mushrooming of networks have

pushed the limits of energy consumption in wireless networks, which in return are

having severe impact on the industrys overall carbon footprint. A massive expansion

of network infrastructure is triggered by these rapid growth of mobile data traffic.

As a consequence, the energy consumption in wireless communication is increasing

dramatically [133]. As a result, the urgent need of energy efficient designs is increasing

from both economic and environmental aspects. The base stations (BS), which are

also known as eNodeBs, are the most energy consuming parts of a cellular network,

consuming approximately 60 − 80% of the total energy [26] consumption. Hence

control and optimization of energy consumption at the base stations are the main

focus of any green communication scheme. Most of the pioneering works on green

communication are dedicated to the reduction of the transmit power of the base
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stations; where the main idea is to optimize transmission power ensuring Quality

of service in terms of capacity and coverage [134, 142, 172]. However, the problem

with these approaches is ignoring the significant part of energy consumption which

exists even for low traffic condition; therefore these schemes alone are insufficient

to reduce the energy consumption of wireless networks. The main reason behind

this is the load-independent components of the energy consumption, which makes

low load resources totally inefficient in terms of energy. In order to address these

issues of energy consumption in wireless communication, we propose a novel strategy

to reduce the base station energy consumption ensuring a good quality of service.

One of the encouraging fact about our research work presented in this chapter is

that, the base stations in dense urban areas are deployed very close to each other,

as a result their coverage area overlaps with each other. This coverage overlapping

provides an excellent opportunity to put some of the base stations into sleep mode

in low traffic condition without degrading the quality of service (QOS) requirement.

As a consequence, the energy consumption of the base station and the total network

reduces significantly on low traffic condition. In this chapter, we propose a novel

strategy of controlling BS sleep mode and wake up mode under quality of service

(QOS) constraint.

4.2 Related Work and Novelty of our Proposed

Model

Energy efficiency in wireless networks and communication has been studied elabo-

rately in literature [10, 27, 30, 31, 34–44, 132, 134, 136, 173]. One of the mostly appre-

ciated approach is implementing low power consumption mode in the base stations,

which has been proposed in some research papers [10,27,30,31,34–38,40–44,132,134,

136] for reducing energy consumption in wireless communication. The authors in

paper [10] has proposed a Markov decision based optimal controller that associates

to each traffic an activation/deactivation policy that maximizes a multiple objective
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function of the QOS and the energy consumption.

The authors in [39] proposed an approach to reduce energy consumption in mo-

bile networks by introducing discontinuous transmission on the base station side. In

some of the pioneering works [10, 30, 31, 42, 43, 69], markov decision process (MDP)

has been used as an effective approach for sleep mode implementation for green com-

munications. However, the majority of such studies have proposed either deep sleep

mode or the stand-by mode for the inactive base station under low traffic condition

and the base station will be in active mode for rest of the time, we refere to this

model as ’2-state power consumption model’. A base station consumes ideally zero

power in deep sleep mode and requires some significant time to wake up from sleep

mode, which introduces latency in the service due to the time needed to wake up.

Whereas the stand-by mode require less time to wake up, however consumes some

energy inspite of being in inactive mode. The authors in paper [10, 30, 31, 34, 36–38]

has shown that this 2-state (either deep sleep or stand-by sleep) power consumption

model can reduce energy consumption of the whole network with compromising qual-

ity of service or introducing latency in the service. In order to mitigate this problem,

depending on quality of service (QOS) requirements and the traffic condition, we

propose an energy efficient ’3-state power consumption model’ for the transceivers

used within a base station by implementing all of these three modes, namely Active

mode, Stand-by mode, Sleep mode, on the transceivers(TRXs) in order to reduce

energy consumption as well as wake up delay. We have explained the operation and

transition procedure of these modes in the following sections. Our simulation results

depict that a significant amount of energy can be saved in low traffic condition as a

result of applying this 3-state model , while we can also fulfil the quality of service

requirement in terms of data rate and can avoid delay. Another novelty point of our

work is that we proposed the sleep mode for the transceivers (TRXs) within a base

station, whereas the above mentioned papers have implemented the sleep mode in the

entire base station itself. We keep one of the TRXs always active in order to assure

the coverage of the base station at all time, which is a significant novelty of our work.
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4.3 Network Model

Let us assume that we have a base station with 𝑁 number of TRXs. We adopt the

architecture of a BS as proposed by the researchers from Fujitsu company [131] as

shown in Fig.4-1. We assume that all of the N TRXs needs to be in active mode in

the peak hour when the traffic condition is high. We assume equal distribution of

BW among the TRXs, hence if the total bandwidth of the BS is 𝐵𝑊𝑇 then each of

the TRX will be able to offer a bandwidth of 𝐵𝑊𝑇

𝑁
to the users. When all the TRXs

are active ,then the BS can support maximum number of users for a given arrival

rate and death rate of calls within its coverage area, provided that all the users get

satisfactory data rate. We periodically monitor the number of active users within the

coverage area after some certain duration, 𝑑𝑡. Then we determined the required signal

to noise ratio (SNR) per user by link budget calculation, consequently the required

bandwidth for all of the active users using Shannon’s capacity formula for a minimum

target data rate and hence we determined the required number of active, stand-by

and sleeping TRXs.

Figure 4-1: Radio Architecture of a BS
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Traffic Model We adopt a traffic model where the users arrive according to a

Poisson process in the coverage area of the BS with a certain arrival rate, 𝜆 and

death rate, 𝜇.

Propagation Channel Model We consider the log-normal shadowing model with

a pathloss exponent, 𝛼 and a shadowing variance, 𝜎2 under an AWGN channel. The

received signal to noise ratio (SNR) per user is determined by a link budget calculation

using Eq.4.1, where 𝑃𝑜𝑢𝑡 is the transmit power of the BS; 𝑃𝐿 is the pathloss; 𝐺𝑡 and 𝐺𝑟

are the transmit and receive antenna gains respectively; 𝑋 is log-normal shadowing

and 𝑃𝑛 is the noise power. Eq.4.2 is used to find the pathloss 𝑃𝐿, where 𝑑0 is a

reference distance, 𝑓𝑐 is the carrier frequency, 𝑐 is the speed of light and 𝑑 is the

distance between the BS and the user. The values of 𝑑0 and 𝑐 are constant and are

provided in Table.4.1.

𝑆𝑁𝑅𝑝𝑒𝑟𝑈𝑠𝑒𝑟(𝑑𝐵) = 𝑃𝑜𝑢𝑡 + 𝐺𝑡 + 𝐺𝑟 − 𝑃𝐿−𝑋 − 𝑃𝑛 (4.1)

𝑃𝐿 = 20𝑙𝑜𝑔(
4𝜋𝑑0𝑓𝑐

𝑐
) + 10𝛼𝑙𝑜𝑔(

𝑑

𝑑0
) (4.2)

4.4 Three state Markov Model for a Transceiver

Accroding to our proposed three state model, all of the 𝑁 number of TRXs of a base

station needs to be active during peak hour, hence can provide the required data rate

to all the active users during high traffic condition. During the low traffic condition,

our algorithm determines the required number (𝑁𝑎𝑐𝑡) of active transceivers to provide

the acceptable QOS in terms of data rate to all of the active users. At the same time

we let one (𝑁𝑠𝑡𝑑 = 1) of the transceivers to stay in standby mode so that it can be

activated with minimum delay when required. Please note that, 𝑁𝑠𝑡𝑑 = 0 when all of

the TRXs are active during peak traffic demand. The rest of the transceivers are kept

in sleep mode i.e. 𝑁𝑠𝑙𝑝 = 𝑁𝑚𝑎𝑥−𝑁𝑎𝑐𝑡−𝑁𝑠𝑡𝑑 in order to reduce energy consumption. As

per our proposed model, when the number of active transceivers need to be increased

due to higher date rate requirement, then the stand-by transceiver goes to the active
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mode and one of the sleeping transceivers goes into stand-by mode. On the other

hand, when the traffic demand decreases, then the stand-by TRX goes back to sleep

mode, and one of the active TRX goes into stand-by mode. We also ensure that one

of the TRXs is always there in stand-by mode (unless 𝑁𝑚𝑎𝑥 = 𝑁𝑎𝑐𝑡). The transition

of all these three states can be represented as a three-state Markov model [159].

Fig.4-2 represents the markov model for one TRX, where the states of the TRX are

represented by 𝑆0, 𝑆1 and 𝑆2 when it is in sleep, stand-by or active mode respectively.

𝑃𝑟𝑖𝑗 represents the transition probability between states 𝑆𝑖 and 𝑆𝑗, where i=(1,2,3)

and j=(i-1, i, i+1).

State 1: 
Active 

State 2: 
Stand-by 

State 3: 
Sleep 

Pr11 

Pr22 

Pr12 

Pr23 

Pr21 

Pr32 
Pr33 

Pr31 

Pr13 

Figure 4-2: Proposed Three-state Markov Model for a Transceiver

4.4.1 Markovian Model for the Base Station

In this section we develop the Markov model for the base station. Having 𝑁 number

of TRXs in the base station and the states of the TRXs are represented by 𝑆0, 𝑆1 and

𝑆2 when it is in sleep, stand-by or active mode respectively, the 1st state of the BS

can be represented as, 𝜋1 = [𝑆2 𝑆1 𝑆0 𝑆0 𝑆0 . . . . . . . 𝑆0] where one of the TRXs is

in active mode (i.e. denoted by state 𝑆2), one of the TRXs is in stand-by mode (i.e.
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denoted by state 𝑆1) and rest of the TRXs are in sleep mode (denoted by state 𝑆0).

Similarly the 2nd State of the BS, 𝜋2 = [𝑆2 𝑆2 𝑆1 𝑆0 𝑆0 . . . . . . . 𝑆0], 3rd State of

the BS, 𝜋3= [𝑆2 𝑆2 𝑆2 𝑆1 𝑆0 . . . . . . . 𝑆0], ...... (N-1)th State of the BS, 𝜋(𝑁−1)

= [𝑆2 𝑆2 𝑆2 𝑆2 𝑆2 . . . . . . . 𝑆1] and Nth State of the BS, 𝜋𝑁 = [𝑆2 𝑆2 𝑆2 𝑆2 𝑆2 .

. . . . . . 𝑆2]. Therefore the Markov chain for the base station can be shown as in

Fig.4-3. For the BS Markov model as depicted in the figure 𝑃𝑟𝐵𝑆
𝑖𝑗 are the transition

probabilities between the BS states 𝜋𝑖 and 𝜋𝑗, where i=(1,2..N) and j=(i-1, i, i+1).
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Figure 4-3: Markov Model for the Base Station

4.5 Power Consumption Model

The total power consumed in the BS depends on the number of active, standby and

sleeping transceivers. The following power consumption model presented in Eq.4.3,

which is derived from the paper [4] and [9] can be used to determine the total power

consumption of the entire BS.

𝑃 = 𝑁𝑎𝑐𝑡(𝑃𝑜 + 𝑑𝑃𝑃𝑜𝑢𝑡) + 𝑁𝑠𝑡𝑑𝑃𝑠𝑡𝑑 + 𝑁𝑠𝑙𝑝𝑃𝑠𝑙𝑝 (4.3)

where 𝑁𝑎𝑐𝑡, 𝑁𝑠𝑡𝑑 and 𝑁𝑠𝑙𝑝 are the number of TRXs in active mode, stand-by mode
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and sleep mode respectively; 𝑃𝑜𝑢𝑡 is the output power or transmit power; 𝑑𝑃 is the

slope of load-dependent power consumption; 𝑃𝑜 and 𝑃𝑠𝑡𝑑 are the power consumption

at minimum non-zero load and in stand-by mode respectively. Please note that the

TRXs in sleep mode consume zero power. Table 4.1 shows the reference values of all

these variables for a macro base station [4]. Some researchers from Ericson company

have reported that a transceiver consumes approximately 10𝑊 power in stand-by

mode and takes approximately 30𝑢𝑠 to go into the active mode [39], on the contrary,

it consumes zero power in sleep mode, however takes approximately 10𝑠 to wake

up [39]. In order to find the total energy consumption of the BS we applied trapezoidal

numerical integration [171] on the Power consumption curve. It is worth mentioning

that if we do not apply any sleep or standby mode to the transceivers, in other

word if we consider that all the transceivers are always active regardless of the traffic

requirement then the power consumption model become as Eq.4.4 where 𝑁 is the total

available transceivers in the eNodeB and 𝑁𝑡𝑥 =number of transmitting transceivers.

𝑃 = 𝑁 𝑃𝑜 + 𝑁𝑡𝑥 𝑑𝑃 𝑃𝑜𝑢𝑡 (4.4)

Two-State Power Consumption Model In order to compare with our proposed

three-state model, we are describing the two-state model here. In the ’two-state power

consumption model’ [30–32,39,131], some of the transceivers in the BS consumes some

power even when there is no active user at all. Here the authors have proposed a

micro sleep mode or standby mode for some of the transceivers of the BS in low traffic

condition and rest of the transceivers of the BS will be in active mode. Hence they

have not proposed any ’complete sleep mode’ in the system, thus the BS consumes

some power even when there is no active user at all. This model can be expressed as

the following power consumption equation Eq.4.5.

𝑃 = 𝑁𝑎𝑐𝑡(𝑃𝑜 + 𝑑𝑃𝑃𝑜𝑢𝑡) + 𝑁𝑠𝑡𝑑𝑃𝑠𝑡𝑑 (4.5)
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4.6 Energy Saving Algorithm for the Base Station

using Three-State Model

We propose the following algorithm as in Fig.4-3 to determine the required number of

active, stand-by and sleeping TRX to assure the required quality of service (QOS in

terms of required data rate and BW) for all of the active users and hence we switch the

state (i.e. active or stand-by or sleep mode) of the transceivers as per requirement. As

mentioned earlier,the total available bandwidth of the BS is assumed to be 𝐵𝑊𝑇 and

there are 𝑁 TRXs in the BS. Therefore each of the TRXs will be able to offer a BW

of 𝑏1 = 𝐵𝑊𝑇

𝑁
to the users since we are assuming equal distribution of the BW among

the TRXs. As per our algorithm, we monitor the number of active users in every

particular duration, 𝑑𝑡. The quality of serive is ensured by guaranteeing a minimum

target data rate (𝑅𝑡) per user. Then we use the above mentioned propagation model

and traffic model to determine the total required BW for all of the active users during

that particular time duration (𝑑𝑡) and accordingly we activated the required number

of TRXs denoted as 𝑁𝑎𝑐𝑡. Moreover, we always put one of the transceivers in stand-by

mode (𝑁𝑠𝑡𝑑 = 1 unless all of the TRXs are in active mode) in order to avoid the delay

needed to wake up from sleep mode to become active. We put rest of the TRXs in

sleep mode i.e. 𝑁𝑠𝑙𝑝 = 𝑁 −𝑁𝑎𝑐𝑡 −𝑁𝑠𝑡𝑑 in order to reduce energy conusmption, since

they are not required to provide service. If the required bandwidth become less than

(𝑏1 − 𝑎) then we activate only one TRX as one TRX can offer upto 𝑏1 BW, here 𝑎

is an integer which is a small fraction of 𝑏1. Please note that we have allocated only

(𝑏1 − 𝑎) to one TRX, though its max capacity is 𝑏1, that is because we want to avoid

the drop off or delay in serving a new user which might arrive during this time. If

the total required bandwidth goes above (𝑏1 − 𝑎) then we immediately activated the

stand-by TRX and switch one of the sleeping TRXs to stand-by mode. On the other

hand, when the BW requirement decreases, then one of the active TRXs goes back to

sleep mode, provided that one of the TRXs is always there in stand-by mode (unless

𝑁 = 𝑁𝑎𝑐𝑡). Following the same procedure, we can change the states of all of the

transceivers as per the total BW requirement. The bandwidth allocation for all of
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the N TRXs are shown in algorithm 1.

Algorithm 1 Algorithm to calculate required number of active, stand-by and sleep
mode TRXs

1: Set the total number of transceiver, 𝑁 , Set another variable 𝑛 = 1
2: Set minimum target data rate, 𝐶
3: Calculate 𝑆𝑁𝑅𝑝𝑒𝑟𝑈𝑠𝑒𝑟 using above mentioned propagation model
4: required minimum 𝐵𝑊𝑝𝑒𝑟𝑈𝑠𝑒𝑟 = 𝐶

𝑙𝑜𝑔2(1+𝑆𝑁𝑅𝑝𝑒𝑟𝑈𝑠𝑒𝑟)

5: Total required minimum 𝐵𝑊𝑇 =
∑︀

(𝐵𝑊𝑝𝑒𝑟𝑈𝑠𝑒𝑟)
6: Check in every 𝑑𝑡 duration
7: while 1 ≤ 𝑛 ≤ 𝑁 do
8: if ((𝑛− 1)𝑏1 − 𝑎) < 𝐵𝑊 ≤ (𝑛𝑏1 − 𝑎) then
9: 𝑁𝑎𝑐𝑡 = 𝑛
10: else
11: 𝑛 = 𝑛 + 1
12: end if
13: end while
14: while 𝑁𝑎𝑐𝑡 ̸= 𝑁 do
15: 𝑁𝑠𝑡𝑑 = 1
16: 𝑁𝑠𝑙𝑒𝑒𝑝 = (𝑁 −𝑁𝑎𝑐𝑡 −𝑁𝑠𝑡𝑑)
17: end while

4.7 Expected Energy Consumption for the Ternary

State Markov Model

In this section, the convergence of the proposed three state Markov model for the

transceivers is being analysed. A well known property of a Markov process is that, it

follows the following formula [159] of convergence,

𝑉𝑠𝑠 = 𝑃𝑚𝑉𝑖 (4.6)

or equivalently

𝑉𝑠𝑠 = 𝑃𝑉𝑠𝑠 (4.7)

where, 𝑉𝑖 is the initial state vector; 𝑃 is the Transition probability matrix; 𝑉𝑠𝑠 is the

steady state matrix and 𝑚 is the number of iteration. Therefore, firstly we determine
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the state transition probabilities for each of the transceivers. Then from the initial

state matrix the steady state matrix for each of the transceivers is determined for

our proposed three state model. These steady state matrices assure the convergence

of our three state Markov model as they follow the Eq.4.7. We use the steady state

vectors of each transceivers to find the total energy consumption using the following

Eq. 4.8.

𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑁∑︁
𝑖=1

𝑉 𝑖
𝑠𝑠𝐸𝑠 (4.8)

Here, 𝑁=number of transceivers, 𝑉 𝑖
𝑠𝑠 is the steady state vector for 𝑖𝑡ℎ transceiver and

𝐸𝑠 = [𝐸𝑎𝑐𝑡𝑖𝑣𝑒, 𝐸𝑠𝑡𝑎𝑛𝑑−𝑏𝑦, 𝐸𝑠𝑙𝑒𝑒𝑝] is the three state energy consumption vector. Here

𝐸𝑎𝑐𝑡𝑖𝑣𝑒, 𝐸𝑠𝑡𝑎𝑛𝑑−𝑏𝑦 and 𝐸𝑠𝑙𝑒𝑒𝑝 are the energy consumption of one transceiver if it is in

active, stand-by or sleep mode respectively for the entire time. We use Eq.4.8 to

determine the expected energy and the results are provided in the simulation result

section.

4.8 Simulation Results

We use the parameters provided in Table 4.1 to simulate our proposed algorithm

using Matlab simulation. We use the traffic model as mentioned in the network model

section to determine the total number of users in the coverage area of the base station

under the above mentioned propagation channel environment. In order to implement

the traffic model in the simulation, we generate some random number of users for a

time index (𝑡1), in the next time index (𝑡2) some of these users terminate their calls

and rest of them continue with their calls; these numbers depend on the birth rate and

death rate. We use the same birth rate to add some new users at time instant (𝑡2).

Hence users are generated and terminated at each time index (𝑡1, 𝑡2, 𝑡3, ....𝑡𝑛) until

we reach the end of our total simulation time. We compare our work with the case

where all of the TRXs are always active regardless of the traffic condition, which is

refered as ’All TRX active’ model; as well as with the model proposed by Frenger et.
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al. in [39] where all of the inactive TRXs are kept in stand-by mode, which is refered

as ’Frengers 2-state mode’ model. Fig.4-4 shows the power consumption of a BS for

’All TRX active’ model, ’Frengers 2-state model’ and for our ’Proposed 3-state model’

(where we are implementing active, stand-by and sleep mode on the TRXs). It clearly

shows that our proposed model offers a significant amount of power saving than two

state model and ’all TRX active’ model in low traffic condition. The reason is, in our

proposed model some of the TRXs are in active mode, one of them is in stand-by

mode and rest of them are in sleep mode; whereas, in the 2-state model none of the

TRXs stay in stand-by mode (they are either in stand-by mode or in active mode,

hence consume more power). As one may expect, the power consumption is highest

for the ’all TRX active’ mode at all time. Therefore, the TRXs in sleep mode consume

less power as per our proposed model, as a result the total power consumption of the

BS decreases. Also, as expected, the power consumption is the same for two state and

three state models in higher traffic condition, as almost all of the TRXs have to be

in active mode in order to support the load. Therefore our proposed model has been

proved to be a power efficient model in low traffic condition. In order to find the total

energy consumption of the BS we apply trapezoidal numerical integration [171] on

the power consumption curve and find the energy consumption to be 4.13𝑀𝐽 for all

active mode, 3.5𝑀𝐽 for Frengers 2-state mode and 3.2𝑀𝐽 for prposed 3-state mode

model when there are maximum number of users is 40 in the coverage area. Hence

our proposed ’3-state model’ proved to be the most energy efficient model compared

to the others.

Table 4.1: BS parameters for the power consumption model (adopted from [9]
and [10])

BS range, L = 2.5𝑘𝑚 carrier frequency, 𝑓𝑐 = 1800𝑀𝐻𝑧 Path loss Exponent, 𝛼 = 2.5
Transmit power = 40𝑊 Antenna Gain = 10𝑑𝐵 and 2𝑑𝐵 𝐵𝑊𝑇 = 6𝑀𝐻𝑧
Shadowing Mean = 0 Variance = 1 Total TRXs, 𝑁 = 3

𝜆 = 0.01 𝜇 = 0.005 𝑃𝑚𝑎𝑥 = 40𝑊
BW per TRX = 2𝑀𝐻𝑧 𝑃𝑜 = 185𝑊

𝑑𝑃 = 4.7 𝑃𝑠𝑡𝑑 = 150𝑊 𝑃𝑠𝑙𝑝 = 0𝑊
𝑑𝑡 = 2𝑠𝑒𝑐 𝑏1 = 2𝑀𝐻𝑧 𝑎 = 0.2𝑀𝐻𝑧
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Figure 4-4: Power consumption of the Base Station (BS)

In order to verify the convergence of the Markov model, we found the steady

state vectors as [1, 0, 0], [0.9889, 0.0111, 0] and [0.0186, 0.9703, 0.0111] for transceiver

1, 2 and 3 respectively for the given set of data provided in Table.4.1, where the

observation period was 1 hours. When we used Eq.4.8 to find the expected total

energy for a base station with 3 transceivers we found it to be 𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 3.2247𝑀𝐽 .

we compared this energy consumption with the calculated energy consumption from

Eq.4.3, which is 𝐸𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 3.2245𝑀𝐽 for our proposed three state model and found

that both of the results are close to each other.

4.8.1 effect of varying different parameters

We observe the effect of varying the user arrival rate or birth rate on the energy

consumption and the results are shown in Fig.4-5 and Fig.4-6 for two different death

rates. These figures depict that the energy consumption for both 2-state and 3-state

mode increases with the increase of birth rate, however they get saturated after a

certain limit. as expected the 3-state mode consumed less energy than the other two

modes. We simulate the results for two different death rates (0.005 and 0.01) and find
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that the energy consumption starts increasing after higher birth rate for the later one.

We also find that, the simulated energy consumption for the ternary state Markov

model matches with the expected energy consumption calculated from Eq.4.3.
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Figure 4-5: Effect of Varying Birth Rate for Fixed Death Rate = 0.005
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Figure 4-6: Effect of Varying Birth Rate for Fixed Death Rate = 0.01

Now we vary the range of the BS as in Fig4-7 and found that the energy con-

94



sumption increases with the range but gets saturated after a certain period. Note

that different ranges of BSs represent different types of BS (Pico, Femto, Micro,

Macro etc). Therefore our proposed model is the most energy efficient model for any

type of BSs. Finally we investigate the effect of varying target data rate as shown in

Fig.4-8 and find that energy consumption increases with the increase of target data

rate and reaches at saturation after certain time (for our case after 500𝑘𝑏𝑝𝑠). In all

of these cases, our proposed ’3-state model’ is the most energy efficient one compared

to ’2-state model’ and ’all TRX active’ model.
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Figure 4-7: Effect of Varying BS Range

4.9 Summary of Contribution and Conclusion

In our work presented in this chapter, we proposed a novel strategy to implement

low power consumption mode in the transceivers of a base station in LTE infrastruc-

ture. We propose an algorithm with ’ternary state Markov model’ which can put the

transceivers of a BS into active mode, stand-by mode and sleep mode depending on

the traffic condition and QOS requirement. Hence we have shown that the BS can

save a significant amount of energy in low traffic condition following our proposed
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Figure 4-8: Effect of Varying Target Data Rate

’ternary state power consumption mode’, which proved to be more energy efficient

compared to the conventional ’two-state power consumption mode’.
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Chapter 5

Energy Efficient and Delay Aware

Ternary-State Transceivers for

Aerial Base Stations

5.1 Introduction

Aerial base stations (AeBSs), which are the unmanned aerial vehicles mounted base

stations, provide a promising solution to complement the capacity and coverage of ter-

restrial cellular systems, especially in some special situations when the terrestrial base

stations are not enough to provide coverage and capacity. With significant progress in

the drone technology, like increased payload capacity, longer average flight time, bet-

ter power management techniques, and the capability to harvest solar energy, aerial

base stations can serve a multitude of purposes such as surveillance, localization and

communication, making them a flexible solution to augment and enhance the capa-

bilities of the current terrestrial cellular systems. Aerial platforms are categorized

according to their altitude capability as follows:

High altitude platforms (HAPs): Where platforms operate above the strato-

sphere (ranging from 17 km to 22 km) [174].

Low altitude platforms (LAPs): Where platforms operate in the troposphere.
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(ranging from a few dozens to a few thousands meters) [50].

Our research is focused on LAPs, which provide coverage for smaller region com-

pared to HAPs . A LAP can be operated at elevations between a few dozens to a

few thousands meters depending on multiple factors such as the different types of an-

tennas, aircraft, radio technologies, available payload power and type of the intended

relief missions. The quick deployment of the unmanned aerial vehicles (UAVs) such

as helikites, drones or airships, with respect to terrestrial infrastructure, make them

suitable candidates in tackling a number of different challenges including, increased

coverage in remote areas, better line-of-sight (LoS) conditions and resilience to un-

expected disastrous situations. Facebook Aquila Drone [45] is a good examples of

ongoing AeBS projects, which propose a novel solution for providing internet access

from the sky by using the AeBSs. Aerial networks can also be deployed by the tele-

com operators in remote areas as temporary solution of patching coverage gaps [46].

The Google Loon [47] experiment is an ambitious project intended to provide network

coverage to rural and remote areas. A major advantage of the aerial base stations

over static terrestrial base stations is that they can change their positions to serve

the dynamic network of users optimally. An AeBS can be efficiently integrated into

terrestrial cellular wireless networks to either serve the ground users directly or relay

traffic to the terrestrial network [48], [49]. Fig.5-1 provides a good overview of how

aerial networks co-exists with terrestrial cellular infrastructure.

Although there has been increased interest in this topic, research is still at its

nascent stage and there are quite a number of challenges such as energy efficient

AeBS design, optimal altitude for placement of an aerial platform, aerial channel

modeling, etc. that need to be addressed before we can see aerial communication

networks in action. In order to address these challanges, some pioneering work has

been found in literature. In the the European Commission project ABSOLUTE

[50], a hybrid satellite-UAV ground network is developed using AeBSs to address

public safety and capacity enhancement based on LTE communication systems. The

main objective of the ABSOLUTE project is to design and validate an innovative

98



Aerial 
Platform

UE

Aerial
Coverage

Cellular Covergae

AtG link

Terrestrial
eNB

UE

UE

UE

UE UE

Terrestrial
eNB

Figure 5-1: Aerial network supporting terrestrial cellular coverage.

holistic network architecture ensuring dependable communication services based on

the rapid deployment, flexibility, scalability, resilience and provision of inter-operable

broadband services. We provide detail literature review in the next section, where

our study finds that the energy efficiency of aerial platforms, particularly on AeBSs

is not sufficiently addressed.

Energy is a scarce resource for aerial base stations, hence energy-efficient operation

of such networks is important given that the entire network infrastructure, including

the battery-operated ground terminals, exhibits requirements to operate under power-

constrained situations. Therefore, wise management of energy is quite beneficial for
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the network lifetime. In this context, we study the means of reducing the total

energy consumption by designing and implementing an energy efficient AeBS. One

of the effective approaches of increasing energy efficiency is switching off the network

resources that are not necessary to guarantee the target QoS for the offered traffic.

In this scenario, a minimal or zero power consumption mode of a resource can play

a very crucial role if the aim is to increase energy efficiency of the network. Thus,

network resources such as frequency carriers, power amplifiers or transceivers (TRXs)

can be turned off or put in low power consumption mode to reduce the total energy

consumption when these resources are not needed. However, we must also consider

the delay caused by the required wake up time from sleep mode. The deep sleep mode

consumes ideally zero power, but it can cause a significant delay in service due to the

wake up time from sleep mode; whereas in a lighter sleep mode (also known as stand-

by mode) a resource consumes little power but wakes up very quickly. Our proposed

model provides a good trade–off between energy efficiency and wake-up delay, while

ensuring user-perceived QoS. In our work presented in this chapter, we implement low

and zero power consumption modes on the transceivers (TRXs) of a AeBS, without

having to switch off the complete cell site. We also ensure that at least one TRX is

active at all times so that the network provides the coverage to the region all the time.

We propose three different power consumption modes for the transceivers (TRXs) of

a AeBS and a novel MDP based algorithm to control these modes of the TRXs of an

AeBS under a QoS constraint.

5.2 Related Work

Energy efficiency in wireless networks and communication systems has been studied

widely in the literature [10, 27, 30, 31, 34–44, 132, 134, 136, 173]. However, very lim-

ited works in the literaure has focused on the energy efficiency of AeBSs. Most of

the work on aerial platforms [156], [157], [158] have focosued on multitarget track-

ing system, air-to-ground channel modeling, their performance as relay etc. In [140],

the authors analyzed the effectiveness of implementing cooperative relay to improve
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the energy efficiency of the terrestrial terminals while communicating with the LAP

platforms deployed for emergency recovery operations. Autors in [139] have pro-

posed a real-time adaptive transmission strategy for dynamically selecting the direct

and cooperative links based on the channel conditions for improved energy efficiency.

They showed that the cooperation between mobile terrestrial terminals on the ground

could improve the energy efficiency in the uplink depending on the temporal behav-

ior of the terrestrial and the aerial uplink channels. The design and evaluation of

an adaptive cooperative scheme is proposed in [135] with the aim of extending the

survivability and improving energy efficiency of the battery operated aerial-terrestrial

communication links. Some research papers [10, 27, 30, 31, 34–38, 40–44, 132, 134, 136]

have proposed different algorithms to implement sleep mode in the LTE base stations

(BSs). The authors in [39] proposed an approach to reduce energy consumption in

mobile networks by introducing discontinuous transmission on the base station side.

In some of the pioneering works [10, 30, 31, 42, 43, 69], MDP has been used as an ef-

fective approach for sleep mode implementation for green communications. In [10],

the authors proposed an MDP based optimal controller that associates to an acti-

vation/deactivation policy that maximizes a multiple objective function of the QoS

and improves energy efficiency. They showed that their algorithm saves more than

25% of energy needed to run the network over a typical day. Other papers such

as [42], [43] consider a single user and use a Markov chain technique to evaluate the

energy savings due to the sleep mode mechanism of a single user terminal. The au-

thors in [43] take correlated packet arrivals into account to evaluate an MDP based

sleep mode mechanism. Authors in [44] consider a similar setting of one user and one

station and show how to derive the optimal sleep policy numerically by formalizing

the problem as a Semi-MDP. The authors in [132] proposed a novel scheme for the

sleep scheduling based on a decentralized partially observable MDP (Dec-POMDP).

However almost all of the above mentioned papers have proposed sleep mode for the

BS in low traffic conditions and the BS will be in active mode for the rest of the time.

We refer to this model as a ’2-state model’.The authors in papers [10,42–44,132] have

shown that this 2-state power consumption model can reduce energy consumption of
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the whole network significantly. However, the problem is that the BS takes significant

time to wake up from sleep mode, which may cause a call drop to the new users. This

wake up time can range from tens of seconds to a couple of minutes for small cells

and up to 10-15 mins for a macro cell [41]. This is clearly a significant performance

constraint for an energy efficient system. The authors in paper [39] proposed a low

power consumption mode, which consumes some small amount of power but wakes

up within negligible time. Their power consumption model is similar to what we

propose as stand-by mode. Unlike the approaches published in the literature so far,

we propose a MDP based algorithm on the transceivers of a AeBS so that they can

intelligently switch among three different modes, thereby offering even greater energy

savings without significantly compromising QOS.

Novelty of our work: As already presented in some pioneering works [10, 27,

30, 31, 34–38, 40–44, 132, 134, 136], switching off a TRX within a BS is a very good

approach to reduce energy consumption during low traffic conditions, however each

sleeping TRX takes significant amount of time to wake up and become fully operable.

As a consequence, some users may experience a delay in accessing the network and

some calls might be dropped as well. In order to overcome the problem of call dropping

due to the wake up delay, we propose an energy efficient ’3-state MDP model’ for the

TRXs within a BS. We propose three different modes, namely ’Active mode’, ’Stand-

by mode’ and ’Sleep mode’ for the TRXs of a BS. The TRXs are switched between

the three modes, depending on the traffic condition and QoS requirements. The mode

transition behaviour of the TRXs was presented as a Markov model in our previous

work as in [175]. In our work, we utilize this Markov model to find the optimal policy

in terms of energy efficiency using the Markov decision process (MDP). We have also

shown the energy-delay trade–off in order to design an efficient base station. We have

differentiated the stand-by mode from the sleep mode by defining that a TRX in

stand-by mode consumes some small amount of energy but takes negligible time to

return to the active mode; whereas a TRX in sleep mode does not consume any energy

but takes more time to wake up. Hence sleep mode gives us the advantage of power

saving, whereas stand-by mode allows us to avoid the wake up delay. The hardware
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and software setups for these low power consumption and zero power consumption

modes have already been proposed in the literature [41] and [39], but this is the first

time to author’s knowledge that both sleep and stand–by modes have been employed

to reduce energy consumption of a AeBS. Another novelty of our work is in defining

a reward function for the Markov decision process (MDP), which helps us to get an

optimal policy for selecting a particular mode for each TRX. As a result of applying

the proposed 3-state MDP model, we find that a significant amount of energy can be

saved under low traffic conditions while still fulfilling the QoS requirement in terms

of data rate and call drop out performance. We also ensure that at least one of the

TRXs is always active so that the coverage is always preserved.

5.3 Network Model

The global network architecture of an aerial-terrestrial network is shown in Fig. 5-2,

which depicts a communication environment managed by a aerial base station, which

are linked to multiple terrestrial UEs and supported by an evolved packet core (EPC)

backhaul links. An aerial base station platform may constitute the deployment of one

or more aerial devices depending on the particular requirement for a communications

system to support the required services. These aerial devices carry communication

payload (4G LTE) with the backhaul links supported by satellite communication

(DVB-S2/RCS uplink broadcast) [135]. The first responders in the terrestrial segment

are equipped with multi-radio mobile terminals (UE), with radio technologies such as

LTE/WiMAX to communicate with the Aerial BS and WiFi/WPAN (IEEE 802.15.4)

to communicate with the ground terminals.

We consider a cell served by one aerial BS, which is equipped with 𝑁 number of

TRXs. In our proposed model we are implementing low and zero power consumption

modes on the TRXs of the aerial BS. We have adopted the architecture of a BS as

described in [131], which is shown in the RF front end of Fig.5-3. From this figure

we can see that a BS has several remote radio heads (RRH), which consist of an

amplifier (AMP) and a TRX. The proposed algorithm is managed in the algorithm
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Figure 5-2: Aerial Network Architecture.

management unit, which is included in the base band unit of the BS as shown in

Fig.5-3. The Mobility Management Entity (MME) unit of the Evolved Packet Core

(EPC) also has some contribution in the algorithm, as the MME can inform the BS if

any new user is approaching the cell and if any handover is about to happen. Thus,

the MME can help the BS to update the total number of active users. Hence the

centralized management unit is included in the MME.

Traffic Model: We adopt a traffic model where the users arrive according to a

Poisson process in the coverage area of the BS with a certain arrival rate, 𝑢𝜆 and

death rate, 𝑢𝜇. Here we include all the users originating calls in the cell as well as

the users being handed over from other cells.

Propagation Channel Model: The radio channel in aerial networks is different

from that of the traditional terrestrial networks. In terrestrial networks, the trans-

mitted signal travels through the urban or suburban environment, therefore the signal
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Figure 5-3: LTE-Radio Architecture [Remote Radio Head (RRH), Amplifier (AMP),
Transceiver (TRX), Home Subscriber Server (HSS), Mobility Management Entity
(MME), Serving Gateway (S-GW), Packet Data Network Gateway (P-GW), Base

Band Unit (BBU)].

FSPL

Excessive 

Pathloss

AeBS

ATG link

Figure 5-4: ATG propagation model between an AeBS and UEs.
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decays as a function of distance. Usually, the pathloss of a terrestrial network is mod-

eled as a log-distance model and includes path-loss exponent in the estimaton. On

the other hand, in aerial networks, the transmitted signal travels through free space

before reaching the urban or suburban environment where it undergoes scattering.

An air-to-ground (AtG) channel model for an aerial network was proposed in [176]

and [148] which depends on the height of the AeBS and the elevation angle seen

from the UE located at ground as shown in Fig.5-4. In our work, we adopt this AtG

channel model as described subsequently. According to [176] and [148], the path loss

is is given by Eq.5.1:

PL = FSPL + 𝜂 (5.1)

Here 𝜂 is the excessive pathloss which is estimated using the model described in

section-V of [176] for 2000 MHz frequency; FSPL is the free space pathloss, which

can be calculated from Eq.5.2:

FSPL = 20log(
∆ℎ

sin𝜃𝑛
) + 20log(𝑓𝑀𝐻𝑧) − 27.55 (5.2)

where Δℎ
sin𝜃𝑛

is the distance (𝑑) between the AeBS and the UE, and 𝑓𝑀𝐻𝑧 is the

system centre frequency in MHZ; ∆ℎ = ℎ𝐴𝑒𝐵𝑆 − ℎ𝑈𝐸; ℎ𝐴𝑒𝐵𝑆 is the altitude of the

AeBS and ℎ𝑈𝐸 is the height of the UE; 𝜃𝑛 is the elevation angle measured in degree,

which represents as the angle at which the AeBS is seen from the UE’s location.

Furthermore, we assume that the UEs have slow movement on the ground, and

therefore the channel is not varying over time, at least over several transmissions.

The propagation effect on the terrestrial side due to various obstacles is modeled

by a random shadowing component 𝑋 on top of the mean pathloss PL [177]. In

particular, we adopt the log-normal shadowing model for 𝑋(𝑑𝐵) as described later

in this section. The received signal to noise ratio (SNR) per user is given by a link

budget calculation using Eq.5.3:

𝑆𝑁𝑅(𝑑𝐵) = ¶𝑜𝑢𝑡 + 𝐺𝑡 + 𝐺𝑟 − PL + 𝑋 − 𝑃𝑛 (5.3)
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Table 5.1: Required time for a TRX to become active(Hence approximate delay
experienced by a new user)

TRX become active Required time

From active mode 0 sec (delay group-1)

From stand-by mode 30 𝜇sec (delay group-2)

From sleep mode 50 sec (delay group-3)

where ¶𝑜𝑢𝑡 is the transmit power of the BS in dB; 𝐺𝑡 and 𝐺𝑟 are the transmit

and receive antenna gains in dBi respectively; 𝑃𝑛 is the noise power in dB and 𝑋

is log-normal shadowing in dB, given by a gaussian random variable with mean 0

and standard variation 𝜎 [177]. Then Shannon’s capacity formula [177] is used to

determine the required bandwidth for all of the active users for a minimum target

data rate, as shown in Eq.5.4:

𝐵𝑊req =
𝑅𝑡

log2(1 + 𝑠𝑛𝑟)
(5.4)

where 𝑅𝑡 is the target data rate and 𝑠𝑛𝑟 is signal to noise ratio in linear value.

5.4 Markov Modeling of Transceivers and the Base

Station

We consider an aerial BS with 𝑁 number of TRXs. In low traffic condition we need

only few of the TRXs to be active to provide satisfactory service, hence it gives us

the opportunity to put rest of the TRXs in in–active mode, where they are non-

operational, and consume less power. However, each TRX needs some significant

time to wake up from sleep mode, which causes a delay in providing service to the

new users. Table. 5.1 outlines the delay required for a TRX to remain in active mode,

or switch to active from either stand-by or sleep mode.

Therefore in order to design an energy efficient ,as well as delay aware BS, we

propose a three state model for the TRXs of an aerial BS. These states can be defined

as follows:
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1. Active Mode: In active mode the TRX is in fully operational mode and

consumes maximum power of all states.

2. Stand-by Mode: In stand-by mode, the TRX is in low power consumption

non-operational mode, where it consumes a small amount of power but requires

negligible wake-up time to go back to the active mode. Researchers from Ericson

[39] have reported that a cell consumes approximately 10𝑊 power in stand-by

mode and takes approximately 30𝜇𝑠 to go into the active mode.

3. Sleep Mode: In sleep mode, the TRX is totally switched off so that it consumes

almost zero power, however takes longer time to wake up. The authors in [41]

have reported that small cells can take tens of seconds to couple of minutes to

wake up from sleep mode, where a macro BS takes 10− 15 minutes to wake up

from sleep mode. Note that there is some non-zero ultra–low power consumption

during sleep mode, however this ultra–low power consumption is assumed to be

negligible compared to the power consumed in active mode. Hence sleep mode

is treated as zero power consumption mode in this work.

5.4.1 Motivation of using three different modes

The well known advantage of implementing sleep mode in base staions is the reduc-

tion in energy consumption. However, the main cost of implementing sleep mode in

a TRX is the switching delay since it takes at least 40−60 seconds [40] to switch into

fully operational mode. On the contrary, any TRX in stand-by mode consumes con-

siderable power, but it takes negligible time (around 30𝜇𝑠 ) to switch to operational

mode. Therefore we utilize both of the modes so that we can have the power saving

advantage from sleep mode and reduce activation delay by utilizing stand-by mode.

Fig. 5-5 graphically depicts the time and energy required to switch between active

mode and sleep mode. The energy gain for being in sleep mode equals (¶𝑎𝑐𝑡−¶𝑠𝑙𝑝)𝑡𝑠𝑙𝑝

, where ¶𝑎𝑐𝑡 and ¶𝑠𝑙𝑝 represent the power consumption in active and sleep mode, re-

spectively, and 𝑡𝑠𝑙𝑝 is the duration of the time spent in sleep mode. It is clearly shown

in the figure that a TRX needs quite a long time (𝑡𝑠𝑙𝑝−𝑎𝑐𝑡) to wake up from sleep
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Figure 5-5: Graphical representation of energy saving and energy wasting due to
activating BS from sleep mode.

mode and become active. This wake up delay issue of sleep mode was highlighted

on Fig.6 of paper [40], where Gomez et. al showed that, a resource element takes

approximately 5𝑠𝑒𝑐 to shut down (switch to sleep mode), and approximately 60𝑠𝑒𝑐 to

switch on (switch to active mode). In a power limited aerial base station, switching

delay significantly limits the base station’s ability to meet the QOS requirements.

However, wake-up delay can be minimised by adding an intermediate stand-by mode

to the sleep mode. This additional state model gains the energy efficiency by utilizing

sleep mode, as well as the reduced wake-up delay from stand-by mode.

5.4.2 Markov Model for a Transceiver

As per our proposed model, TRX-1 is a single state transceiver since is always active

to preserve the coverage and TRX-2 is only capable of switching between active

and stand-by mode. The state transition model for TRX-1 is presented in Fig.5-6-

a, while the two state transition model for TRX-2 is presented in Fig.5-6-b. The

remaining TRXs follow a three state transition model following traffic load, and QoS
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Figure 5-6: State Transition Model for (a)TRX-1 and (b)TRX-2.

requirements. The proposed three state transition model can be represented as a

stochastic three-state Markov model [178] as in Fig.5-7. 𝑆𝑛
0 , 𝑆𝑛

1 , and 𝑆𝑛
2 represent

the three possible states of the 𝑛𝑡ℎ TRX at sleep mode, stand-by and active mode

respectively; while 𝑎𝑛−1
0 , 𝑎𝑛−1

1 and 𝑎𝑛−1
2 represent the base station’s action to put the

(𝑛 − 1)𝑡ℎ TRX in sleep, stand-by and active mode respectively, where 3 ≤ 𝑛 ≤ 𝑁 .

The possible transition model at each time instant(𝑡) is presented by the probability

𝑃𝑟[𝑆𝑛
𝑞 (𝑡 + 1)|𝑆𝑛

𝑗 (𝑡), 𝑎𝑛−1
𝑙 (𝑡)]; where 𝑞, 𝑗, 𝑙 ∈ 0, 1, 2 represent the indexes of state and

action receptively, 𝑆(𝑡) represents current state and 𝑆(𝑡+1) represents the next state

after taking action 𝑎(𝑡) at time instant (𝑡). In Fig.5-6, Fig.5-7 and the remaining

sections of this chapter, we ignore the time index in the transition probabilities for

the sake of simplicity.

5.4.3 Markov Model for the Base Station

Based on the states of the TRXs as defined in the previous section, we can further

define the states of the aerial BS, which would the the combinations of the different

states of all the TRXs as described in this section.
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Figure 5-7: Proposed Three-state Markov Model for 𝑛𝑡ℎ Transceiver where
3 ≤ 𝑛 ≤ 𝑁 .

States of the BS: Based on the states 𝑆𝑛
𝑗 of the TXS, where 𝑛 = 1, 2, 3, ...., 𝑁 and

𝑗 ∈ {0, 1, 2}, the 1𝑠𝑡 state of the BS is given by, Π1 = [𝑆1
2 𝑆2

1 𝑆3
0 𝑆4

0 𝑆5
0 . . . . . . .

𝑆𝑁
0 ] where the first TRX is in active mode, the second TRX is in stand-by mode and

rest of the TRXs are in sleep mode. Similarly the second state of the BS is given by,

Π2 = [𝑆1
2 𝑆2

2 𝑆3
1 𝑆4

0 𝑆5
0 . . . . . . . 𝑆𝑁

0 ], and the 𝑁 𝑡ℎ state of the BS is given by, Π𝑁

= [𝑆1
2 𝑆2

2 𝑆3
2 𝑆4

2 𝑆5
2 . . . . . . . 𝑆𝑁

2 ]. Hence, the state space of the BS is given by,

Π = Π1 × Π2 × .....× Π𝑁 , where × represents the cartesian product.

5.5 MDP based Algorithm for the Aerial Base Sta-

tion

In this section, we present our algorithm of applying the three different modes on

the TRXs of an AeBS. According to our proposed model, we change the states of the

TRXs one at a time therefore it is sufficient that we only perform our decision policy on
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the 3𝑟𝑑 TRX if it is on sleep mode, or the 𝑚𝑡ℎ TRX which is on stand-by mode, where

3 ≤ 𝑚 ≤ 𝑁 . This way we only need to run a decision making strategy (the MDP

solution) only on the chosen TRX as mentioned above for finding the optimal policy

for the entire aerial BS. We use value iteration algorithm (VIA) [159] to solve the

MDP and find the optimal policy to estimate state transition sequence for 𝑚𝑡ℎ TRX

based on the reward function as explained in the following subsection. Additionally,

the optimal policy decides the optimal action and hence the state transition sequence

for (𝑚 − 1)𝑡ℎ TRX. Thus the transition probability for the 𝑚𝑡ℎ and (𝑚 − 1)𝑡ℎ TRX

is calculated based on forward algorithm [159] using these state transition sequences

of the particular TRXs. The detail of the MDP and VIA is provided in the following

subsection. The rest (𝑁 − 𝑚) TRXs are kept in sleep mode if the optmail policy

decides to keep the 𝑚𝑡ℎ TRX in stand-by mode. However, if the optimal policy

decides to switch the 𝑚𝑡ℎ TRX to active mode then the (𝑚 + 1)𝑡ℎ TRX will become

stand-by, keeping the remaining TRXs in sleep mode.

Fig.5-8 depicts different states of TRXs of an AeBS for different traffic condition,

which is a result of applying our porposed algorithm for a sample traffic condition

over a certain period of time considering an AeBS with 5 TRXs. The figure shows

the state transition sequence of each TRX for varying traffic condition.

5.5.1 MDP Algorithm

In this section, we define action, reward function and transition probability to formu-

late the MDP based algorithm of the aerial base station. Afterward, value iteration

algorithm (VIA) is used to obtain the optimal policy to solve the MDP.

Action: If we apply the Markov decision policy on the 𝑛𝑡ℎ TRX, then action 𝑎
(𝑛−1)
0 ,

𝑎
(𝑛−1)
1 and 𝑎

(𝑛−1)
2 represent the action of keeping or transitioning (𝑛− 1)𝑡ℎ TRX into

sleep, stand-by and active mode respectively. Hence the action for the aerial BS is,

𝜁 = 𝑎
(𝑛−1)
𝑘 , where 𝑘 = 0, 1, 2.
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Figure 5-8: State transition for the TRXs for a sample traffic

Reward: The reward function for a state Π𝑖 and action 𝜁 is defined as Eq.5.5, where

𝑖 = 1, 2...𝑁

𝑅(Π𝑖, 𝜁) = 1 − Energy Conumption (5.5)

On the other hand, energy consumption of the AeBS is proportional to the number

of active TRXs (𝑛𝑎𝑐𝑡) as Energy consumption = 𝑁𝑎𝑐𝑡

𝑁
and The number of active TRXs

is proportional to the total required bandwidth to provide satisfactory QOS. Hence

the reward function can be represented as Eq.5.6

𝑅(Π𝑖, 𝜁) = 1 − 𝑏𝜁 − 𝑏𝑚𝑖𝑛

𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛

(5.6)

Where, 𝑏𝜁 is the total required bandwidth to provide satisfactory QOS for a cer-

tain action 𝜁, 𝑏𝑚𝑎𝑥 and 𝑏𝑚𝑖𝑛 are the maximum available bandwidth and minimum

bandwidth that can be offered by the AeBS respectively.
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Transition Probability: The transition probability between the states of the transceivers

is learned using forward algorithm [159] based on optimal policy. To be more pre-

cise, the transition probabilities for the 𝑛𝑡ℎ and (𝑛− 1)𝑡ℎ TRXs are calculated based

on forward algorithm [159] using state transition sequences of the 𝑛𝑡ℎ and (𝑛 − 1)𝑡ℎ

TRXs, these state transition sequences are obtained from the optimal action taken

by the optimal policy when MDP is applied to the 𝑛𝑡ℎ TRX. For simulation purpose,

the state transition probabilities for the transceivers for a particular set of simulation

parameters are presented in the simulation results section.

Value Iteration Algorithm: If we denote 𝑉 (Π𝑖) as the maximum expected total

reward for an initial state Π𝑖 and next state Π𝑖+1 then the optimality equation is

given by Eq.5.7 as follows:

𝑉 (Π𝑖) = max
𝜁𝑚∈𝜁

{𝑅(Π𝑖, 𝜁𝑚) +
∑︁

Π𝑖+1∈Π

𝜆𝑃𝑟[Π𝑖+1|Π𝑖, 𝜁𝑚]𝑉 (Π𝑖+1)}

Here, 𝑅(Π𝑖, 𝜁𝑚) is the reward function for a state Π𝑖 ∈ Π and action 𝜁𝑚 as explained

in Eq.5.6; 𝑃𝑟[Π𝑖+1|Π𝑖, 𝜁𝑚] is the transition probability between current state Π𝑖 ∈ Π

and future state Π𝑖+1 ∈ Π for an action 𝜁𝑚 ∈ 𝜁; 𝜁 is the set of all possible actions,

Π is the set of all possible states and 𝜆 is the discount factor. The solution of the

optimality equation correspond to the maximum expected total reward 𝑉 (Π𝑖) and the

MDP optimal policy 𝜑(Π𝑖). This MDP optimal policy 𝜑(Π𝑖) indicates the decision of

allocating a certain mode to a particular transceiver. As explained in Algorithm.2,

VIA [159] is used to solve this optimization problem, where 𝜆 is the discount factor.

In this algorithm, we initialize the future value of the optimal policy to be zero at

step 1. Then step 1 to step 4 is repreated to update this value function until we get

the optimal policy, for which we get the maximum reward. Step 3 and 4 are done to

ensure the convergence of the algorithm.

We assume equal distribution of bandwidth (BW) among the TRXs, hence each of

the TRXs is able to offer a bandwidth of 𝐵𝑊𝑇

𝑁
to the users, where the total bandwidth
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Algorithm 2 Value Iteration Algorithm

1: Set 𝑉 0(Π𝑖+1) = 0 for each state Π𝑖. Set a variable, 𝑘 = 0.
2: For each state Π𝑖, compute 𝑉 𝑘+1(Π𝑖) by 𝑉 𝑘+1(Π𝑖) = max𝜁𝑚∈𝜁{𝑅(Π𝑖, 𝜁𝑚) +∑︀

Π𝑖+1∈Π 𝜆Pr[Π𝑖+1|Π𝑖, 𝜁𝑚]𝑉 (Π𝑖+1)}
3: 𝛿 = max(𝑉 𝑘+1(Π𝑖) − 𝑉 𝑘(Π𝑖))
4: If 𝛿 < 1−𝜆

2𝜆
, go to step 5. otherwise increase 𝑘 by 1 and return to step 2.

5: Output a stationary optimal policy, 𝜑, such that 𝜑(Π𝑖) = arg max𝜁𝑚∈𝜁{𝑅(Π𝑖, 𝜁𝑚)+∑︀
Π𝑖+1∈Π 𝜆Pr[Π𝑖+1|Π𝑖, 𝜁𝑚]𝑉 (Π𝑖+1)} and stop

of the BS is 𝐵𝑊𝑇 . When all the TRXs are active, then the BS can support the

maximum number of users by offering them the satisfactory QoS (in terms of data

rate) for a given call arrival rate and death rate within its coverage area. Our proposed

model is more effective in low traffic condition when some of the TRXs can be put to

low power consumption mode without degrading the QoS. We first start by monitoring

the number of active users in the coverage area and then calculate the total required

bandwidth using the above mentioned propagation model at each decision epoch.

After that, we calculate the reward using this required bandwidth and determine the

transition probabilities as mentioned above. Finally, VIA is used to determine how

many TRXs (𝑁𝑎𝑐𝑡) are required to be in active, stand-by and in sleep mode during

that decision epoch. Note that we always keep one of the TRXs in stand-by mode

(unless all of the TRXs needs to be active) (𝑁𝑠𝑡𝑑 = 1) so that the new users experience

minimal delay in accessing the network. The entire algorithm is presented in the flow

diagram in Fig.5-9.

5.6 Power Consumption Model

The total power consumed in the AeBS depends on the number of active, standby

and sleeping TRXs. The following power consumption model presented in Eq. 5.7 is

used to determine the total power consumption of a AeBS for our proposed 3-state

model, it is derived from the papers [4] and [9].

¶3−𝑠𝑡𝑎𝑡𝑒 = 𝑁𝑎𝑐𝑡(¶𝑜 + 𝑑¶ · ¶𝑜𝑢𝑡) + 𝑁𝑠𝑡𝑑 · ¶𝑠𝑡𝑑 + 𝑁𝑠𝑙𝑝 · ¶𝑠𝑙𝑝 (5.7)
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Figure 5-9: Flow chart of the algorithm.
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where 𝑁𝑎𝑐𝑡, 𝑁𝑠𝑡𝑑 and 𝑁𝑠𝑙𝑝 denote the number of TRXs in active mode, stand-by

mode and sleep mode respectively; ¶𝑜𝑢𝑡 is the output power or transmit power; 𝑑¶

is the slope of load-dependent power consumption which is represented as a linear

transmission power dependence factor in [9]; ¶𝑜 and ¶𝑠𝑡𝑑 are the power consumption

at minimum non-zero load and in stand-by mode respectively. Please note that the

TRXs in sleep mode ideally consume zero power. The reference values of all these

variables for an AeBS [4] is shown in Table .5.2. In order to find the total energy

conusmption of the AeBS, we apply trapezoidal numerical integration [171] on the

power consumption curve of the AeBS. For the ’All TRX active’ mode we do not apply

any sleep or standby mode to the TRXs, hence we consider that all of the TRXs are

always active regardless of the traffic requirement. The power consumption model

for this mode is given in Eq. 5.8 where 𝑁 is the total available TRXs in the eNodeB

and 𝑁𝑡𝑥 is the number of transmitting TRXs which is equivalent to 𝑁𝑎𝑐𝑡 in Eq.5.7.

¶𝑎𝑙𝑙−𝑇𝑅𝑋−𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑁 · ¶𝑜 + 𝑁𝑡𝑥 · 𝑑¶ · ¶𝑜𝑢𝑡 (5.8)

Two-State Power Consumption Model: In the ’two-state model’, as proposed

by most of the pioneering work [10, 27, 30, 31, 34–38, 40–44, 132, 134, 136], all of the

inactive TRXs are kept in either stand-by mode or in sleep mode. This model can be

expressed as the following power consumption model as in Eq. 5.9, where 𝑁𝑙𝑜𝑤 the

number of TRXs either in stand-by mode or in sleep mode. We have compared our

proposed model with two different ’two-state models’, namely ’Frenger 2 state (active-

standby) model’ where 𝑁𝑙𝑜𝑤 = 𝑁𝑠𝑡𝑑 and ’Combes MDP based 2 state (active-sleep)

model’ where 𝑁𝑙𝑜𝑤 = 𝑁𝑠𝑙𝑝.

¶2−𝑠𝑡𝑎𝑡𝑒 = 𝑁𝑎𝑐𝑡(¶𝑜 + 𝑑¶ · ¶𝑜𝑢𝑡) + 𝑁𝑙𝑜𝑤 · ¶𝑠𝑡𝑑 (5.9)

5.7 Simulation Results

We use Matlab simulation to get the simulation results presented in this section. We

use the traffic model as mentioned in the network model section to determine the total
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Figure 5-10: Power consumption of the AeBS for different models.
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Figure 5-11: Energy consumption of different models normalized with respect to ’All
TRX Active’ model.
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Table 5.2: Parameters used in the simulation

Parameters Values
Altitude of AeBS, ℎ 200 m
Carrier frequency, 𝑓𝑐 2000 MHz

AeBS Transmit Power 40 W
Shadowing Mean 0

Variance, 𝜎2 7
Total number of TRXs, 𝑁 3

Antenna Gain 10 dB and 2 dB
User arrival rate, 𝑢𝜆 0.01
User death rate, 𝑢𝜇 0.005

¶𝑚𝑎𝑥 40 W
Minimum data rate 𝑅𝑡 300 kbps

Discount factor, 𝜆 0.975
𝑑¶ 4.7
¶𝑠𝑡𝑑 10 W
¶𝑠𝑙𝑝 0 W

𝐵𝑊𝑇 6 MHz
𝑏𝑚𝑎𝑥 6 MHz
𝑏𝑚𝑖𝑛 2 MHz

BW per TRX 2 MHz
𝑑𝑡 2 sec

number of users in the coverage area of the AeBS at each decision epoch under the

above mentioned propagation channel environment. The value iteration algorithm

is used to solve the optimal policy, which determines the particular mode (active,

stand-by and sleep) for each TRXs during every decision epoch. Finally the above

mentioned power consumption model is used to find the total power consumption of

the base station for different models. The total observation period is 2 hour and the

simulation parameters are given in Table. 5.2. For the set of parameters provided

in Table. 5.2, we find the transition probability matrix for the second TRX (TRX2)

as the eq.5.10 and the transition probabilities for the third transceiver(TRX3) are

shown in Fig.5-13.

𝑃𝑟𝑇𝑅𝑋2 =

⎡⎢⎢⎢⎣
0.9842 0.0158 0

0.0044 0.9956 0

0 0 0

⎤⎥⎥⎥⎦ (5.10)

For the third TRX, the transition probabilities among all of the three states for
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Figure 5-12: Percentage of users experiencing delay.

certain actions are presented in Fig.5-13. In this figure, 𝑆0, 𝑆1 and 𝑆2 represents

the states of the transceiver (TRX3) at sleep mode, stand-by and active mode re-

spectively; and 𝑎21 and 𝑎22 represent the action of TRX2 becoming or remaining at

stand-by and active mode respectively.

Fig.5-10 compares the power consumption of an AeBS for always active TRXs

referred as ’All TRX Active’; 2-state model proposed in [39] referred as ’Frenger 2

state (active-standby) model’; MDP based 2-state model [10] referred as ’Combes

MDP based 2 state (active-sleep) model’; and our proposed 3-state MDP model

referred as ’proposed MDP based 3 state model’. These models can be defined as

below:

∙ All TRX Active: According to this model, all of the TRXs of the AeBS are

always active.

∙ Frenger 2 State (active-standby) Model: According to this model, the

TRXs are capable of switching between active mode and stand-by mode de-

pending on the traffic load [39].

∙ Combes MDP based 2 State (active-sleep) Model: According to this
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Figure 5-13: Three-state Markov Model for TRX3 with the transition probailities
calculated using the parameters provided in Table. 5.2.

model, the TRXs are capable of switching between active mode and sleep mode

depending on the traffic load [10].

∙ Proposed MDP based 3 State Model: According to this model, the TRXs

are capable of switching among active mode, stand-by mode and sleep mode

depending on the traffic load.

Fig.5-10 clearly shows that using the proposed MDP model, we can save a sig-

nificant amount of power than ’All TRX active’ and ’Frenger 2 state model’ in low

traffic condition. This is because, as per our proposed model, some of the TRXs are

in active mode, one of them is in stand-by mode and rest of them are in sleep mode;

whereas in ’Frenger 2 state model’ all of the unused TRXs are in stand-by mode. On

the other hand, the ’Combes MDP model’ put all of the unused TRXs in sleep mode

only, which results in less power consumption compared to our proposed model but

causes more wake up delay. This wake up delay can cause some call drops for the new

users who would need to wait for a sleeping TRX to wake up and provide service. In
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order to see the delay performance of the above mentioned four different models we

generate Fig.5-12, which shows the percentage of the total users experiencing delay

(from delay group defined in Table. 5.1) in receiving service within the observation

period for the four different models. As expected, all the users in ’All TRX active’

model will experience no delay (delay group-1) at all because all of the TRXs are al-

ways active for this mode. On the other hand, ’Frenger 2 state model’ uses stand-by

mode and ’our proposed model’ uses standby and sleep mode, therefore few (around

12%) of the users experience approximately 30 𝜇sec (delay group-2) of delay for both

of these models. On the contrary, these users (around 12%) experience a higher delay

which is appx. 40sec (delay group-3) of delay in the ’Combes MDP model’ as this

model implements only sleep mode for the unused TRXs. From these results we can

say that although the users experince small amount of delay in our proposed model

as a consequence of applying stand-by and sleep mode in the unused TRXs; but this

disadvantage is outweighed by the benefits of reduced energy consumption. However,

as expected, the power consumption is the same for the two states and three states

models in higher traffic condition, as almost all of the TRXs needs to be active in

order to support the load. Therefore, our proposed model offers a fair share of energy

efficiency and delay in low traffic condition.

The bar chart shown in Fig.5-11 compares the energy consumption between all the

models and shows that the MDP based three state model can reduce approximately

40% energy consumption compared to the enerrgy consumption of the ’All TRX ac-

tive’ model. Note that the energy consumption of this figure has been normalized

by the energy consumption of ’All TRX active’ mode. We have applied trapezoidal

numerical integration [171] on the power consumption curves in order to find the total

energy consumption of the BS.
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5.7.1 Steady state analysis and expected energy consump-

tion of the aerial base station

If we consider an aerial base station with three transceivers, then there would be three

possible states for the AeBS:

∙ State-1: 1 TRX active, 1 TRX stand-by and 1 TRX in sleep mode.

∙ State-2: 2 TRXs active, 1 TRX stand-by and 0 TRX in sleep mode.

∙ State-3: 3 TRXs active, 0 TRX stand-by and 0 TRX in sleep mode.

The transition probabilities between these states are found from the state transi-

tion probabilities of the TRXs.

For instance, the transition probability between state-1 and state-2 is as follows:

𝑃12 = 𝑃𝑟122𝑃𝑟212𝑃𝑟301 (5.11)

Where, 𝑃𝑟122, 𝑃𝑟212 and 𝑃𝑟301 are the probability of transition between active-active for

TRX-1, probability of transition between standby-active for TRX-2 and probability

of transition between sleep-standby for TRX-3 respectively. Following the similar

steps we find the state transition probability matrix for the entire BS as presented in

Eq.5.12. ⎡⎢⎢⎢⎣
0.9956 0.0044 0

0.0168 0.93 0.05

0 0.03 0.97

⎤⎥⎥⎥⎦ (5.12)

As the state transition process of the TRXs and AeBS follow a MDP model, therefore

they converge at the steady state, when the current state become same as the future

state. Hence if the state vectors of the AeBS is [Π1Π2Π3] at steady state, then it must

follow the following conditions as in Eq.5.13 and Eq.5.14:

[︁
Π1 Π2 Π3

]︁
·

⎡⎢⎢⎢⎣
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

⎤⎥⎥⎥⎦ =
[︁
Π1 Π2 Π3

]︁
(5.13)
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Π1 + Π2 + Π3 = 1 (5.14)

By solving Eq.5.13 and Eq.5.14 we find the values for the state vectors of the AeBS

as Eq.5.15: [︁
Π1 Π2 Π3

]︁
=
[︁
0.75 0.09 0.16

]︁
(5.15)

Once we get the state probability vector for the AeBS, then we can find the expected

energy consumption of the entire BS from Eq.5.16:

𝐸[𝜒] =
𝑁∑︁
𝑖=1

𝑃𝑟[Π𝑖]𝜒𝑖 (5.16)

Here 𝑁 is the total number of states of the BS, 𝑃𝑟[Π𝑖] is the probability of being in 𝑖𝑡ℎ

state of the BS which is found from the state vector, and 𝜒𝑖 is the energy consumption

at that particular state. Using the given set of parameters provided in Table. 5.2

for a BS consisting three transceivers, we find the expected energy consumption as

0.40996𝑀𝐽 which is close to the calculated energy consumption (0.407018𝑀𝐽) of the

BS with three state transceivers using MDP model. Therefore our expected energy

consumption provides pretty close estimation to our calculated energy consumption

for proposed MDP based three state model.

5.7.2 Effect of the Parametric Variation

In this section, we vary the different parameters and show their effect on the en-

ergy consumption of the aerial BS. At first, we vary the altitude of the AeBS in

Fig.5-14 and find that the energy consumption increases with the altitude of the

AeBS, however become almost constant after a certain altitude (above 900 meters)

for the given set of parameters; this is because, all of the TRXs need to active in

order provide satisfactory service above that particular altitude. These results de-

pict that our proposed model consumes less energy than ’All TRX active’ model and

’Frenger 2 state (active-standby) model’, however consumes little more energy than

’Combes MDP based 2 state (active-sleep) model’. Fig.5-15 shows the expected delay

experienced by the users, from where we can see that ’Combes MDP based 2 state
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Figure 5-14: Effect of varying the altitude of the AeBS on energy consumption.

(active-sleep) model’ offers more delay than ’Proposed 3 state model’,’Frenger 2 state

(active-standby) model’ and ’All TRX active’ model. The delay decreases with the

AeBS altitude since higher altitude requires more TRXs to be active, hence put less

TRXs in sleep/stand-by mode, and consequently reduces the required delay to wake

up.

We also observe the effect of different shadowing variance on the energy consump-

tion and expected delay and the results are shown in Fig.5-16 and Fig5-17. These

figures depict that the energy consumption and the delay of the AeBS almost remain

same for various shadowing variance, this is because the signal travels in free space

for most of the time and is rarely affected by shadowing in the path between the

AeBS and the UE. Finally, the effect of varying minimum acceptable data rate on

the energy consumption is shown in Fig. 5-18, we find that the energy consump-

tion increases with target data rate, This is because more active TRXs are needed

to support the increased target data rate, hence the energy consumption increases.

Fig5-19 shows the expected delay experienced by the users for different target data

rate, which shows that increasing the target data rate decreases the delay after certain
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Figure 5-15: Delay experienced by users vs Altitude of the AeBS.
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Figure 5-16: Effect of varying variance of shadowing on energy consumption.
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Figure 5-17: Delay experienced by users vs Shadowing varianvce.
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Figure 5-18: Effect of varying target data rate on energy consumption.
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Figure 5-19: Delay experienced by users vs data rate.

point, that is because higher data rate put less TRXs in sleep/stand-by mode, hence

reduces the required delay to wake up. All of these figures depict that ’Combes MDP

based 2 state (active-sleep) model’ offers higher delay than ’Proposed 3 state model’,

’Frenger 2 state (active-standby) model’ and ’All TRX active model’. All of these

results again show that, our proposed model is an efficient model which reduces not

only energy consumption but also call dropping caused by wake-up delay.

5.8 Summary of Contribution and Conclusion

In this chapter, we have proposed a novel strategy to improve the energy efficiency

of aerial base stations using the Markov Decision process. The proposed method

considers a three-state transceiver model with active, sleep and standby modes where

the states are adopted between each other based on the MDP based algorithm. In the

MDP based approach we have proposed a novel reward function, which helps us to find

the optimal policy to improve the energy efficiency depending on the traffic condition

and QoS requirement. Our results indicate that the AeBS can save a significant
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amount (appx. 40%)of energy in low traffic condition, where delay experienced by

the user due to wake-up time of sleeping transceivers is very small. Therefore, the

proposed model has proven to offer fair share of energy efficiency and delay for an

aerial base station.
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Chapter 6

A MDP-based Energy Efficient

Handover decision Algorithm for

LTE-Advanced Heterogeneous

network cell Network

6.1 Introduction

Over the past few years, wireless connectivity at anywhere and anytime has gradu-

ally become a reality and has resulted in remarkably increased mobile traffic. Mobile

data traffic from prevailing smart terminals, multimedia-intensive social applications,

video streaming, and cloud services are expected to grow at a compound annual

growth rate of 61% before 2018, and is expected to outgrow the capabilities of the

current 4G (fourth generation) and Long Term Evolution (LTE) infrastructure by

2020 [61]. Release 10 of the 3rd Generation Partnership Project (3GPP) for the Long

Term Evolution (LTE) system, namely LTE-Advanced (LTE-A), describes a wide

range of technical improvements for the LTE system, which includes but not limited

to, advanced multi-antenna techniques, carrier aggregation, relaying and enhanced

support for heterogeneous deployments [71], [179]. Support of smallcells is an inte-
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gral part of the LTE-A system since it plays a vital role for its wide adoption in a broad

scale. Femtocells are low-cost and low-power cellular access points which incorporate

the functionality of a regular base station, however support fewer users compared to

macrocells. Femtocells operate in the mobile operators licensed spectrum [52]. These

smallcells are capable of enhancing the Quality of Service (QoS) perceived by the users

and can improve the energy efficiency for the network nodes. Existing reports of wire-

less networks are aticipating that within the next few years, the number of deployed

smallcells will surpass that of macrocells by up to six times [72]. To this extent, the

smooth integration of smallcells into the macro-cellular network layout is critically im-

portant for heterogenous LTE-A networks. However, many technical challenges arises

with implementation of smallcells, including but not limited to the areas of energy effi-

ciency [112] and handover (HO) decision making [25,70,73–75,112–114,169,178–181].

Energy saving is essential in the presence of smallcells, because of the vastly over-

lapping cell coverage and the dense network layout. However more sophisticated HO

decision making is required in the presence of LTE-A smallcells to sustain a low HO

probability without sacrificing the smallcell utilization opportunities. Existing lit-

erature includes various energy saving approaches for the LTE-A smallcell network

which mainly focus on the reduction of the energy expenditure at the cells [112]. Dif-

ferent from existing energy saving approaches, in this chapter we focus on reducing

the energy-expenditure at the User Equipment (UE). To this extend, we propose a

Markov decision process (MDP) based energy efficient HO decision making algorithm,

an approach which has not been thoroughly investigated in the literature.

Even though HO decision making is challenging in the LTE-A smallcell network,

only a few reports are engaged with the matter [25,53,54,69,75,113,114,169,170]. As-

suming a single-smallcell single-macrocell network layout, the algorithm in [113] uses

a combined Received Signal Strength (RSS) metric to choose between the macrocell

and the smallcell service. The algorithm in [75] accounts for the UE speed to avoid

inbound mobility to smallcells for medium to high speed users. The authors in [114]

perform mobility prediction to estimate the cell residence time of the user and re-

duce the number of unnecessary handovers in the system. The policy in [25] uses
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standard measurements to reduce the mean UE transmit power in the two-tier LTE

smallcell network. Authors in [53] has proposed an algorithm based on the received

signal strength (RSS) and wireless transmission loss in hierarchical cell networks,

which considers the discrepancy in transmit power between macrocell and smallcell

base stations. The article [169] presents an algorithm which is based on the MDP

formulation with the objective of maximizing the expected total reward of a connec-

tion. They use a link reward function to model the QoS of the mobile connection

and a signaling cost function to model the switching and rerouting operations when a

vertical handoff occurs. In [170], a vertical handoff decision algorithm for 4G wireless

networks has been proposed were the problem is formulated as a constrained Markov

decision process (CMDP). In article [69] handover decision algorithm considering data

arrival, handover delay and signaling cost has been proposed based on Markov de-

cision processes. Their expected total reward seeks a balance between transmission

latency and handover signaling overhead, under dynamic traffic arrivals. To our best

knowledge, Markov decision Process(MDP) has never been used to develop an energy

efficient and delay aware HO decision algorithm in LTE networks. Hence the novelty

of our work is in developing a MDP based hand over (HO) decision algorithm for

LTE network which not only reduces energy consumption, but also reduces handover

latency. Also the main contribution of our work is in formulating a novel reward

function for finding the optimal policy to reduce energy consumption and handover

delay.

6.2 System Model

We consider a LTE-Advance network consisting a cell with one macro Base station

(BS) and few small BSs as shown in Fig.6-1. Macro BS is referred to as evolved

Node B (eNB), while small BS as Home eNB (HeNB). We are assuming that the

small BSs are co-located in the coverage region of a macro BS. The small BSs are

assumed to work in OSG (open subscriber group) mode. Let us assume that there

are 𝑋 number of users in the coverage area of the macro BS. A UE (𝑢1) moves along
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the road and passes through a series coverage areas of small BSs; also note that the

macro BS is always available. We focus our analysis on the HO decision phase for the

Figure 6-1: Network diagram with Macro BS(eNB) and small BS

user 𝑢1, which is served by macro BS (𝑐𝑀) and is in the proximity (candidate and

accessible) of the small BS (𝑐𝑓 ). The user is suppose to have a prescribed mean signal

to interference and noise ratio (𝑆𝐼𝑁𝑅) target, denoted by 𝛾𝑡 to support its ongoing

services.

Let us assume that we derive all the following parameters in the context of the HO

decision phase over the time interval, namely, Time To Trigger (𝑇𝑇𝑇 ). We condister

the log-distance pathloss for the macro BS as given in Eq.6.1 and that for the small BS

ass given in Eq.6.2. Here 𝑅𝑀 and 𝑅𝑓 are the distance between the UE and the eNB

and HeNB respectively, 𝑓𝑐𝑀 and 𝑓𝑐𝑓 are the carrier frequency of the eNB and HeNB

respectively, 𝑛𝑀 and 𝑛𝑓 are the pathloss exponent of the eNB and HeNB respectively,

𝑑0 = 1𝑚 and 𝐿𝑤 is the wall penetration loss.

𝑃𝐿𝑚𝑎𝑐𝑟𝑜[𝑑𝐵] = 20log10(
4𝜋𝑑0𝑓𝑐𝑀

𝑐
) + 10𝑛𝑀 log10(

𝑅𝑀

𝑑0
) (6.1)

𝑃𝐿𝑠𝑚𝑎𝑙𝑙[𝑑𝐵] = 20log10(
4𝜋𝑑0𝑓𝑐𝑓

𝑐
) + 10𝑛𝐹 log10(

𝑅𝑓

𝑑0
) + 𝐿𝑤 (6.2)
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For a target uplink 𝑆𝐼𝑁𝑅 (𝛾𝑡) (𝑑𝐵) we can calculate the uplink transmit power

of user 𝑢1 as given by Eq.6.3 and Eq.6.4 for macro and small base station (BS)

respectively, where 𝑃𝑛 is the noise power in linear scale; 𝐼𝑀 is the interference power

at the macro BS in linear scale; 𝐼𝑓 is the interference power at the small BS in linear

scale and 𝐺𝑀 , 𝐺𝑈𝐸 and 𝐺𝐹 are the antenna gain of the macro BS, UE and Femto

BS in 𝑑𝐵 respectively; and 𝑋𝑀 , 𝑋𝑓 are the log-normal shadowing components in dB

values, which are Guassian distributed with zero mean and variance 𝜎2
𝑀 and 𝜎2

𝑓 for

macro and small BS respectively.

𝑃𝑈𝐸−𝑀𝑎𝑐𝑟𝑜[𝑑𝐵𝑚] = 𝛾𝑡 −𝐺𝑀 −𝐺𝑈𝐸 + 𝑃𝐿𝑚𝑎𝑐𝑟𝑜 + 10log10(𝑃𝑛 + 𝐼𝑀) + 𝑋𝑀 (6.3)

𝑃𝑈𝐸−𝐹𝑒𝑚𝑡𝑜[𝑑𝐵𝑚] = 𝛾𝑡 −𝐺𝐹 −𝐺𝑈𝐸 + 𝑃𝐿𝑠𝑚𝑎𝑙𝑙 + 10log10(𝑃𝑛 + 𝐼𝑓 ) + 𝑋𝑓 (6.4)

Eq.6.3 and Eq.6.4 can be used to estimate the mean power consumption of user

𝑢1 if we assume the transmit power to be the primary contributor to the UE power

consumption. We use the UE transmit power for the small BS (𝑃𝑈𝐸−𝐹𝑒𝑚𝑡𝑜) and macro

BS (𝑃𝑈𝐸−𝑀𝑎𝑐𝑟𝑜) and handover delay to formulate the reward funcion in MDP in order

to take the handover decision.

In order to solve the above equations the UE needs the information from the

eNB and HeNB about their transmit power, antenna gain, longitude and latitude

coordinates for both the eNB and HeNB in order to estimate the distance. We obtain

these information from the synchronization information [182]. Please note that the

eNB and HeNB positioning information needs to be sent just once, which is in the

beginning of the synchronization as the location of eNB and HeNB are fixed. Thus

this process is not much energy consuming. We are also assuming that the UE has

indoor and outdoor localization via its GPS. This localization procedure is out of

the scope of this work, the readers can refer to the paper [183] for more information

on the localization. This total information gathering procedure may be completed

in few bytes only. Hence the energy needed to be spent in this process (𝐸𝑠𝑦𝑛𝑐) can
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be calculated as the following Eq.6.5, where 𝑃𝑡𝑥 is the transmit power, 𝐵𝑠𝑦𝑛𝑐 is data

needed to receive information and 𝑏 is the total data rate. Therefore the total energy

saved in our algorithm = (Energy saved - Energy spent in synchronization).

𝐸𝑠𝑦𝑛𝑐 =
𝑃𝑡𝑥 *𝐵𝑠𝑦𝑛𝑐

𝑏
(6.5)

6.3 Markov Decision Process (MDP) Model for-

mulation

MDP, also known as stochastic dynamic programs, is a commonly used model for

sequential decision making for stochastic problems with uncertain outcomes. An MDP

model mainly consists of five elements: decision epochs, states, actions, transition

probabilities and rewards. Choosing an action from the action set in a current state

generates a reward. This reward, along with the transition probability, determines

the state at the next decision epoch. Policies and strategies are prescriptions of which

action to choose under any eventuality at every future decision epoch.

In this section, we explain how the handover decision problem in a heterogenous

network can be formulated as an MDP and how value iteration algorithm (VIA) solves

the MDP problem to obtain the optimal policy of selecting the appropriate candidate

BS at each decision epoch.

Decision Epochs: The decision epoch is defined as a sequence of time 𝑇 = 1, 2, ..., 𝑄

which represents the time of succesive decision as shown in Fig.6-2.

State: In the proposed handoff decision algorithm, the state is defined as the target

base station that the UE is going to be connected with. Hence the state sapce is

presented as Eq.6.6:

𝑆 ∈ {𝑀𝑎𝑐𝑟𝑜, 𝐹𝑒𝑚𝑡𝑜} (6.6)
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Figure 6-2: Timing diagram of an Markov decision process

Action: For our proposed model, the action represents the selection of the appro-

priate target base station that the UE is going to connect with at a particular decision

epoch based on the reward function. The reward function is defined in the next para-

graph. Based on the action chosen by the policy, the UE may stay connected to the

current serving base station or choose another target base station in order to reduce

energy consumption and handover delay. Hence, the action (𝐴) is defined as selecting

the appropriate candidate BS and is represented as 𝐴 ∈ {𝑎𝑚𝑚, 𝑎𝑚𝑓 , 𝑎𝑓𝑚, 𝑎𝑓𝑓}, where

𝑎𝑚𝑚 represents the action of staying with the macro BS, 𝑎𝑚𝑓 represents the action

of switching from macro BS to small BS, 𝑎𝑓𝑚 represents the action of switching from

small to macro BS and 𝑎𝑓𝑓 represents the action of staying with small BS.

Our proposed model can be represented as Fig.6-3, where 𝑃𝑟𝑚𝑚, 𝑃𝑟𝑚𝑓 , 𝑃𝑟𝑓𝑚

and 𝑃𝑟𝑓𝑓 represents the transition probability between macro-macro, macro-small,

small-macro and small-small respectively.

Reward: For a state 𝑠 ∈ 𝑆 and selected action 𝑎 ∈ 𝐴, the reward function 𝑅(𝑠, 𝑎)

is defined as Eq.6.7,

𝑅(𝑠, 𝑎) = 𝑤𝑝𝑓𝑝(𝑠, 𝑎) + 𝑤𝑑𝑓𝑑(𝑠, 𝑎) (6.7)

Where 𝑓𝑝(𝑠, 𝑎) and 𝑓𝑑(𝑠, 𝑎) are the power consumption reward function and delay

reward function respectively; 𝑤𝑝 and 𝑤𝑑 are the respective weight factors where 𝑤𝑝 +

𝑤𝑑 = 1. The power consumption and delay reward functions are defined as Eq.6.8

and Eq.6.9:
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Figure 6-3: Proposed markov model

𝑓𝑝(𝑠, 𝑎) =
𝑝𝑚𝑎𝑥 − 𝑝𝑎
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

(6.8)

𝑓𝑑(𝑠, 𝑎) =
𝑑𝑚𝑎𝑥 − 𝑑𝑎
𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

(6.9)

where 𝑝𝑎 and 𝑑𝑎 are the UE power consumption and handover delay of the BS

selected by action 𝑎 respectively; 𝑝𝑚𝑎𝑥 is the maximum transmit power of the UE,

𝑑𝑚𝑎𝑥 is the maximum tolerable time delay to transfer a call to the new BS, 𝑝𝑚𝑖𝑛 is

the minimum transmit power required to meet the QOS, and 𝑑𝑚𝑖𝑛 is zero.

Transition Probability: For a current state is 𝑠 ∈ 𝑆 and the chosen action is

𝑎 ∈ 𝐴, the probability that the next state would be 𝑠′ ∈ 𝑆 is denoted as transition

probability 𝑃𝑟[𝑠′|𝑠, 𝑎]. We determine the percentage of coverage area [177] for each

base station in order to calculate transition probability. It is noteworthy that, some

locations within the coverage area of the BS will be below the desired received signal

strength threshold due to random effects of shadowing. Hence the percentage of the

coverage area gives us a good estimation of the transition probability. We start by
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calculating the radius of the cells from link budget calculation for a mean received sig-

nal strength (𝛾). If 𝑅𝑝(𝑟) is the received signal at the UE located at 𝑟 radial distance

from the BS, then the probability that this received signal exceeds the threshold 𝛾 is

represented by the following eqaution Eq.6.10, where 𝑛 is the pathloss exponent:

𝑃𝑟(𝑅𝑝(𝑟) > 𝛾) = 𝑄

(︂
𝛾 −𝑅𝑝(𝑟)

𝜎

)︂
=

1

2
− 1

2
𝑒𝑟𝑓(

𝛾 −𝑅𝑝(𝑟)

𝜎
√

2
)

=
1

2
− 1

2
𝑒𝑟𝑓(

𝛾 − [𝑃𝑡 − (𝑃𝐿(𝑑0) + 10𝑛𝑙𝑜𝑔( 𝑟
𝑑0

))]

𝜎
√

2
) (6.10)

Where 𝑄(.) is the Gaussian tail integral function and 𝑒𝑟𝑓(.) is the Gaussian error

function. In order to determine the path loss as referenced to the cell boundary

(where 𝑟 = 𝑅), we refer to the following equation Eq.6.11

𝑃𝐿(𝑟) = 10𝑛𝑙𝑜𝑔(
𝑅

𝑑0
) + 10𝑛𝑙𝑜𝑔(

𝑟

𝑅
) + 𝑃𝐿(𝑑0) (6.11)

Therefore Eq.6.10 may be expressed as Eq.6.12

𝑃𝑟(𝑅𝑝(𝑟) > 𝛾) =
1

2
− 1

2
𝑒𝑟𝑓(

𝛾 − [𝑃𝑡 − (𝑃𝐿(𝑑0) + 10𝑛𝑙𝑜𝑔( 𝑅
𝑑0

) + 10𝑛𝑙𝑜𝑔( 𝑟
𝑅

))]

𝜎
√

2
) (6.12)

If we let 𝑎 =
𝛾−𝑃𝑡+𝑃𝐿(𝑑0)+10𝑛 𝑙𝑜𝑔( 𝑅

𝑑0
)

𝜎
√
2

and 𝑏 = 10𝑛 𝑙𝑜𝑔 𝑒

𝜎
√
2

, then the percentage of coverage

area with a received signal greater than or equal to 𝛾 is expressed as Eq.6.13

𝑈(𝛾) =
1

2
− 1

𝑅2

∫︁ 𝑅

0

𝑟 𝑒𝑟𝑓(𝑎 + 𝑏 𝑙𝑛
𝑟

𝑅
) 𝑑𝑟 (6.13)

By substituting 𝑡 = 𝑎 + 𝑏 𝑙𝑛 𝑟
𝑅

in Eq.6.13 we get,

𝑈(𝛾) =
1

2
(1 − 𝑒𝑟𝑓(𝑎) + 𝑒𝑥𝑝(

1 − 2𝑎𝑏

𝑏2
)[1 − 𝑒𝑟𝑓(

1 − 𝑎𝑏

𝑏
)]) (6.14)

Hence for a given value of 𝑛 and 𝜎, Eq.6.12 and Eq.6.14 can be used to determine

139



the probability that the received signal strength will be greater than the threshold

and the percentage of coverage area that would receive coverage above the threhold

received signal respectively. Then from the percentage coverage area of macro BS

(𝐴𝑚) and the percentage coverage area of small BS (𝐴𝑓 ), we can find the transi-

tion probabilities between different cells. For instance, the probability of staying

with macro BS, 𝑃𝑟𝑚𝑚 =
𝐴𝑚−𝐴𝑓

𝐴𝑚
; the transition probability between macro-small BS,

𝑃𝑟𝑚𝑓 =
𝐴𝑓

𝐴𝑚
; the transition probability between small-macro BS, 𝑃𝑟𝑓𝑚 =

𝐴𝑚−𝐴𝑓

𝐴𝑚
; and

the probability of staying with small BS, 𝑃𝑟𝑓𝑓 =
𝐴𝑓

𝐴𝑚
.

Optimality Equations and Value Iteration Algorithm: Let us now denote

𝑉 (𝑠) as the maximum expected total reward for an initial state 𝑠, then the optimality

equations are given by Eq. 6.15 as follows:

𝑉 (𝑠) = 𝑚𝑎𝑥𝑎∈𝐴{𝑅(𝑠, 𝑎) +
∑︁
𝑠′∈𝑆

𝜆𝑃𝑟[𝑠′|𝑠, 𝑎]𝑉 (𝑠′)} (6.15)

The solution of the optimality equation correspond to the maximum expected total

reward 𝑉 (𝑠) and the MDP optimal policy 𝜋(𝑠). This MDP optimal policy 𝜋(𝑠)

indicates the decision of selecting the appropriate candidate cell. Value iteration

algorithm (VIA) [159] is used to solve this optimization problem. The VIA is shown

in algorithm 3 where 𝜁 is an error function.

Algorithm 3 Value Iteration Algorithm (VIA)

1: Set 𝑉 0(𝑠′) = 0 for each state 𝑠. Specify 𝜁 > 0, and set 𝑘 = 0.
2: For each state 𝑠, compute 𝑉 𝑘+1(𝑠) by

𝑉 𝑘+1(𝑠) = 𝑚𝑎𝑥𝑎∈𝐴{𝑅(𝑠, 𝑎) +
∑︀

𝑠′∈𝑆 𝜆𝑃𝑟[𝑠′|𝑠, 𝑎]𝑉 𝑘(𝑠′)}
3: 𝛿 = 𝑚𝑎𝑥(𝑉 𝑘+1(𝑠) − 𝑉 𝑘(𝑠))
4: If 𝛿 < 𝜁 1−𝜆

2𝜆
, go to step 5.

otherwise increase 𝑘 by 1 and return to step 2.
5: Output a stationary optimal policy, 𝜋, such that

𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴{𝑅(𝑠, 𝑎) +
∑︀

𝑠′∈𝑆 𝜆𝑃𝑟[𝑠′|𝑠, 𝑎]𝑉 𝑘+1(𝑠′)}
and stop
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6.3.1 Handover decision process

The handover decision process involves three main phases: 1) Base station discovery;

2) Base station analysis; and 3) Base station selection for the handoff execution.

∙ Base station Discovery: During the Base station(BS) discovery phase, the

user equipment determines which BS is available for handover. In our proposed

method the advertised information from the candidate BS is the required trans-

mit power of UE for target BS and delay needed to be connected to the target

BS. Please note that the transmit power is determined from a target 𝑆𝐼𝑁𝑅,

which ensures that the service meets the QOS requirement. The traffic loads

in the BS may also change with time and therefore the BSs are monitored after

a particular period of time,𝑇𝑇𝑇 . We refer to this time as decision epochs as

mentioned earlier. At each decision epoch the UE determines its state based on

the maximum reward function for the candidate BS.

∙ Base Station Analysis: In this stage, the expected total reward and transition

probability for all of the target BSs are determined using the above mentioned

equations.

∙ Base Station Selection: Finally by executing all the steps of VIA, we get

the optimal policy for handoff execution. A candidate BS which has highest

corresponding value of the total expected reward (TER) is selected as the best

BS to handoff. Therefore for our environment we can select the small BS if

𝑇𝐸𝑅𝑠𝑚𝑎𝑙𝑙 > 𝑇𝐸𝑅𝑀𝑎𝑐𝑟𝑜. Fig.6-4 shows a sample sequence of states and actions

taken by optimal policy for providing maximum expected reward, over a sample

time period. According to this sample policy, at first the UE will be connected

to the macro BS (state 𝑆1), then will take action 𝑎𝑚𝑓 and will handover to the

small BS (state 𝑆2). At the next decision epoch the optimal policy will take

action 𝑎𝑓𝑓 and let the UE stay at state 𝑆2 followed by taking action 𝑎𝑓𝑚 and

switching to state 𝑆1 at the following decision epoch.

Our proposed HO decision process is illustrated in fig.6-5.
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Figure 6-4: A sample of states and actions taken by optimal policy

6.3.2 Avoiding Ping Pong effect

We might face a problem while executing handover, namely Ping-pong effect, where

the UE can jump between the macro and small BSs very frequently. In order to

get rid of this problem we introduce hysteresis time 𝑑𝑇 . Therefore if a BS offers

maximum expected reward for a time not less than the hysteresis time 𝑑𝑇 , only then

the UE would be handed over to it. That way we can avoid the frequent occurance

of handover.

6.4 Performance analysis of the proposed model

This section evaluates the performance of the proposed algorithm. For the simulation

purpose, we consider a macro BS with certain coverage region, two small BSs are

located within this region. A certain user 𝑢1 is moving linearly from eNB to HeNB

with speed 𝑣𝑠. There are some other active users as well, who causes interference.
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Figure 6-5: Signal flow of the proposed Handover algorithm

Table 6.1: System-level simulation model and parameters for the Macro BS and the
Femto BS

Parameter eNB (macrocells) HeNB (smallcells)
Carrier Frequency 2000𝑀𝐻𝑧 2020𝑀𝐻𝑧

Channel Bandwidth 20𝑀𝐻𝑧 20𝑀𝐻𝑧
RS transmit power 43𝑑𝐵𝑚 23𝑑𝐵𝑚

Cell coverage 500𝑚 50𝑚
Log-normal shadowing variance 8 4

path loss exponent 3.5 2.8
Interference Power -80 dBm -90 dBm

Table 6.2: Other parameters for simulation

Mean UL SINR target,𝛾𝑡 = 10𝑑𝐵 Noise power = −145 dBm
Overall simulation time =1000 sec 𝜁 for the VIA = 10−3

User speed = 10𝑘𝑚/ℎ discount factor, 𝜆 for the VIA = 0.975

Fig.6-6 presents a sample scenario used in the simulation, where we have one Macro

BS and two femto BSs and a user can originate a call from any random location
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Figure 6-6: A sample scenario used for simulation

(𝑥0, 𝑦0) and move onto any random direction. We have run the simulation for 5000

times and averaged the results over 5000 realizations of the scenario. We have used

fixed interference power for the sake of simplicity. We assume that each handover

is successful and there is no call drop. Transmission links experience log-normal

shadowing with mean zero and variance 𝜎2
𝑚 and 𝜎2

𝑓 for eNB and HeNB, respectively.

We use MDP algorithm to decide if the UE should handover to any other candidate

BS other than its serving BS, so that the UE consumes less power and fulfill the

QOS requirement. In order to find the transition probability we have considered

the ratio of the percentage coverage area of eNB and HeNB. With the cell coverage

values provided in table.6.1 and table.6.2 we find the transition probability of macro-

macro,𝑃𝑟𝑚𝑚 = 0.9; macro-small, 𝑃𝑟𝑚𝑓 = 0.1; small-small, 𝑃𝑟𝑓𝑓 = 0.1 and small-

macro, 𝑃𝑟𝑓𝑚 = 0.9. For the handover delays, we assume that they are uniformly

selected from the set 20𝑚𝑠, 40𝑚𝑠, 60𝑚𝑠, 80𝑚𝑠. According to the proposed algorithm,

value iteration algorithm solve the MDP and will provide optimal policy on which BS
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to select at each decision epoch. By following the decision provided by optimal policy,

thus by choosing the BS with maximum expected reward we can assure maximum

energy efficiency and minimum delay, while satisfying the QOS requirement.
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Figure 6-7: UE power consumption comparison for different algorithm

We compare our result with two other handover algorithms proposed by P. Xu

et. al. in [53] and J. Pan et. al. in [69], we refer to these models as ’Algorithm by

Xu’ and ’Algorithm by Jun Pan’ respectively. P. Xu proposed a handover algorithm

based on the received signal strength (RSS) and wireless transmission loss as in pre-

sented [53]; whereas J. Pan proposed a MDP based handover algorithm considering

handover delay, data arrival and signaling cost as their decision factors as presented

in [69]. Also we compare our proposed model with the case with no HO at all. Fig.6-7

shows the UE power consumption for our proposed handover algorithm and that of

the above mentioned algorithms, which depicts that our algorithm consumes the min-

imum amount of power among all of the other algorithms. This is because, according

to our optimal policy the UE stays connected to the small cell for which its power
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Figure 6-8: Normalized energy consumption (normalized with respect to ’No HO
algorithm’)

consumption is the lowest and avoids frequent handover in order to reduce delay in

providing service. Fig.6-8 and Fig.6-9 shows the energy consumption and handover

delay for the four different models, from where we can see that our proposed model

consumes minimum energy among all of the other algorithms, as well as offers low-

est handover delay among all of the algorithm. It is evident from the figures that

our proposed handover (HO) decision algorithm is the power efficient (consequently

energy efficient) model as well as offers less handover delay.

In Fig.6-10, we observe the effect of different weight factors (used in the reward

function) on the energy consumption. As expected, our proposed model is no longer

a power efficient model when the power weight factor is very less less. Hence, the

power weight factor should be selected as more than 0.5 for an energy efficient HO

algorithm.
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Figure 6-9: Average handover delay experienced by the user

6.5 Summary of Contribution and Conclusion

In this chapter, we proposed a Markov Decision Process based handover decision al-

gorithm for the LTE-A heterogeneous (macro-small) network, which jointly considers

the impact of user mobility and energy efficiency. Our main contribution to this work

is to derive individual reward function of each QoS parameter used for making energy

efficient handover decision. The proposed algorithm finds the optimal policy by VIA

to sustain service continuity and reduce the mean UE transmit power. System-level

simulations showed that the proposed algorithm significantly reduces energy expendi-

ture at the UEs and latency introduced by handover procedure compared to existing

algorithms.
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Chapter 7

Conclusion and Future Research

Paradigms

In this research, we explore the field of energy efficiency in MAC and Physical layers of

wireless netorks in order to enhance the performance and reliability of future wireless

networks as well as to reduce its environmental footprint. The research questions

and the relevant contributions of this thesis are addressed individually in chapters

3-6. The four research questions are based on energy efficient approaches for different

layers of wireless networks, which cover some gaps found in existing literature.

While addressing research question-1, we have shown that the total energy con-

sumption of a point to point communication system can be minimized by optimizing

the data rate for MQAM and MFSK in an AWGN channel. Here we assume that the

system transmits a fixed length of packet with a fixed bandwidth to meet a given bit

error rate. In order to find the optimal parameters we have used Newton-Raphson

method. Our simulation results show that MQAM can minimize a significant amount

of energy consumption by optimizing the data rate for shorter transmission distances;

whereas MFSK can reduce energy consumption by optimizing the data rate for longer

transmission distances. These results from our work can be directly used for an entire

network for every transceiver node such that a greater energy efficiency could be ob-

tained globally. The future work related to RQ-1 may correspond to implementing

the rate adaptation strategy at the network level and perform link level simulations
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using the results obtained in this work.

While addressing research question-2, we propose a novel strategy to imple-

ment low power consumption mode in the transceivers of a cellular base station in

LTE infrastructure. We propose an algorithm with ’ternary state Markov model’

which can put the transceivers of a BS into active mode, stand-by mode and sleep

mode depending on the traffic condition and QOS requirement. Hence we have shown

that the BS can save a significant amount of energy in low traffic condition follow-

ing our proposed ’ternary state power consumption mode’, which proved to be more

energy efficient compared to the conventional ’two-state power consumption mode’.

The future work related to RQ-2 may focus on implementing an optimal controller

to organize these mode transitions and also on implementing this strategy into Het-

erogeneous network.

While addressing research question-3, we propose a novel strategy to improve

the energy efficiency of aerial base stations using the Markov Decision process. The

proposed method considers a three-state transceiver model with active, sleep and

standby modes where the states are adopted between each other based on the MDP

based algorithm. In the MDP based approach, we have proposed a novel reward

function, which helps us to find the optimal policy to improve the energy efficiency

depending on the traffic condition and QoS requirement. Our results indicate that the

AeBS can save a significant amount (appx. 40%) of energy in low traffic condition,

where delay experienced by the user due to wake-up time of sleeping transceivers is

very small. Therefore, the proposed model has proven to offer fair share of energy

efficiency and delay.

The future work related to RQ-3 may focus on experimenting the proposed

method on a three state prototype transceiver base station in house and comparing

the simulation based study. Moreover, a stochastic geometry based energy efficiency

analysis may to be done as part of the future work.

While addressing research question-4, we propose a Markov Decision Process

based handover decision algorithm for the LTE-A heterogeneous (macro-femto) net-

work, which jointly considers the impact of user mobility and energy efficiency. Our
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main contribution to this paper is to derive individual reward function of each QoS

parameter used for making handover decision. The proposed algorithm finds the op-

timal policy by VIA to sustain service continuity and reduce the mean UE transmit

power. System-level simulations showed that the proposed algorithm significantly re-

duces energy expenditure at the UEs and latency introduced by handover procedure

compared to existing algorithms. The future work related to RQ-4 may focus on im-

plementing the MDP based HO decision algorithm to reduce the energy consumption

at the base station end.

Throughout this research, we relied on verifying the analytic results and formulas

against computer simulations using Matlab simulations. We also presented practical

numerical examples to reflect the usefulness of the presented methodologies. The

majority of the work presented in this dissertation was published in-part or as a

whole in peer-reviewed conference proceedings or otherwise currently undergoing a

peer review process for journal publications. These publications has been highlighted

and identified towards the end of the first chapter.
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