10 research outputs found

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    LC an effective classification based association rule mining algorithm

    Get PDF
    Classification using association rules is a research field in data mining that primarily uses association rule discovery techniques in classification benchmarks. It has been confirmed by many research studies in the literature that classification using association tends to generate more predictive classification systems than traditional classification data mining techniques like probabilistic, statistical and decision tree. In this thesis, we introduce a novel data mining algorithm based on classification using association called “Looking at the Class” (LC), which can be used in for mining a range of classification data sets. Unlike known algorithms in classification using the association approach such as Classification based on Association rule (CBA) system and Classification based on Predictive Association (CPAR) system, which merge disjoint items in the rule learning step without anticipating the class label similarity, the proposed algorithm merges only items with identical class labels. This saves too many unnecessary items combining during the rule learning step, and consequently results in large saving in computational time and memory. Furthermore, the LC algorithm uses a novel prediction procedure that employs multiple rules to make the prediction decision instead of a single rule. The proposed algorithm has been evaluated thoroughly on real world security data sets collected using an automated tool developed at Huddersfield University. The security application which we have considered in this thesis is about categorizing websites based on their features to legitimate or fake which is a typical binary classification problem. Also, experimental results on a number of UCI data sets have been conducted and the measures used for evaluation is the classification accuracy, memory usage, and others. The results show that LC algorithm outperformed traditional classification algorithms such as C4.5, PART and Naïve Bayes as well as known classification based association algorithms like CBA with respect to classification accuracy, memory usage, and execution time on most data sets we consider

    Deriving Classifiers with Single and Multi-Label Rules using New Associative Classification Methods

    Get PDF
    Associative Classification (AC) in data mining is a rule based approach that uses association rule techniques to construct accurate classification systems (classifiers). The majority of existing AC algorithms extract one class per rule and ignore other class labels even when they have large data representation. Thus, extending current AC algorithms to find and extract multi-label rules is promising research direction since new hidden knowledge is revealed for decision makers. Furthermore, the exponential growth of rules in AC has been investigated in this thesis aiming to minimise the number of candidate rules, and therefore reducing the classifier size so end-user can easily exploit and maintain it. Moreover, an investigation to both rule ranking and test data classification steps have been conducted in order to improve the performance of AC algorithms in regards to predictive accuracy. Overall, this thesis investigates different problems related to AC not limited to the ones listed above, and the results are new AC algorithms that devise single and multi-label rules from different applications data sets, together with comprehensive experimental results. To be exact, the first algorithm proposed named Multi-class Associative Classifier (MAC): This algorithm derives classifiers where each rule is connected with a single class from a training data set. MAC enhanced the rule discovery, rule ranking, rule filtering and classification of test data in AC. The second algorithm proposed is called Multi-label Classifier based Associative Classification (MCAC) that adds on MAC a novel rule discovery method which discovers multi-label rules from single label data without learning from parts of the training data set. These rules denote vital information ignored by most current AC algorithms which benefit both the end-user and the classifier’s predictive accuracy. Lastly, the vital problem related to web threats called “website phishing detection” was deeply investigated where a technical solution based on AC has been introduced in Chapter 6. Particularly, we were able to detect new type of knowledge and enhance the detection rate with respect to error rate using our proposed algorithms and against a large collected phishing data set. Thorough experimental tests utilising large numbers of University of California Irvine (UCI) data sets and a variety of real application data collections related to website classification and trainer timetabling problems reveal that MAC and MCAC generates better quality classifiers if compared with other AC and rule based algorithms with respect to various evaluation measures, i.e. error rate, Label-Weight, Any-Label, number of rules, etc. This is mainly due to the different improvements related to rule discovery, rule filtering, rule sorting, classification step, and more importantly the new type of knowledge associated with the proposed algorithms. Most chapters in this thesis have been disseminated or under review in journals and refereed conference proceedings

    AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model

    Get PDF
    © 2020, The Author(s). The evaluation of machine learning (ML) pipelines is essential during automatic ML pipeline composition and optimisation. The previous methods such as Bayesian-based and genetic-based optimisation, which are implemented in Auto-Weka, Auto-sklearn and TPOT, evaluate pipelines by executing them. Therefore, the pipeline composition and optimisation of these methods requires a tremendous amount of time that prevents them from exploring complex pipelines to find better predictive models. To further explore this research challenge, we have conducted experiments showing that many of the generated pipelines are invalid, and it is unnecessary to execute them to find out whether they are good pipelines. To address this issue, we propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR). The AVATAR enables to accelerate automatic ML pipeline composition and optimisation by quickly ignoring invalid pipelines. Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed
    corecore