17,353 research outputs found

    MDA-based ATL transformation to generate MVC 2 web models

    Full text link
    Development and maintenance of Web application is still a complex and error-prone process. We need integrated techniques and tool support for automated generation of Web systems and a ready prescription for easy maintenance. The MDA approach proposes an architecture taking into account the development and maintenance of large and complex software. In this paper, we apply MDA approach for generating PSM from UML design to MVC 2Web implementation. That is why we have developed two meta-models handling UML class diagrams and MVC 2 Web applications, then we have to set up transformation rules. These last are expressed in ATL language. To specify the transformation rules (especially CRUD methods) we used a UML profiles. To clearly illustrate the result generated by this transformation, we converted the XMI file generated in an EMF (Eclipse Modeling Framework) model.Comment: International Journal of Computer Science & Information Technology-201

    A model driven architecture approach to web development

    Get PDF
    The rise of the number and complexity of web applications is ever increasing. Web engineers need advanced development methods to build better systems and to maintain them in an easy way. Model-Driven Architecture (MDA) is an important trend in the software engineering field based on both models and its transformations to automatically generate code. This paper describes a a methodology for web application development, providing a process based on MDA which provides an effective engineering approach to reduce effort. It consists of defining models from metamodels at platform- independent and platform-specific levels, from which source code is automatically generated

    A Model Driven Architecture Approach to Web Development

    Get PDF
    Abstract. The rise of the number and complexity of web applications is ever increasing. Web engineers need advanced development methods to build better systems and to maintain them in an easy way. Model-Driven Architecture (MDA) is an important trend in the software engineering field based on both models and its transformations to automatically generate code. This paper describes a a methodology for web application development, providing a process based on MDA which provides an effective engineering approach to reduce effort. It consists of defining models from metamodels at platformindependent and platform-specific levels, from which source code is automatically generated

    Model Driven Software Engineering for Web Applications

    Get PDF
    Model driven software engineering (MDSE) is becoming a widely accepted approach for developing complex applications and it is on its way to be one of the most promising paradigms in software engineering. MDSE advocates the use of models as the key artifacts in all phases of the development process, from analysis to design, implementation and testing. The most promising approach to model driven engineering is the Model Driven Architecture (MDA) defined by the Object Management Group (OMG). Applications are modeled at a platform independent level and are transformed to (possibly several) platform specific implementations. Model driven Web engineering (MDWE) is the application of model driven engineering to the domain of Web application development where it might be particularly helpful because of the continuous evolution of Web technologies and platforms. However, most current approaches for MDWE provide only a partial application of the MDA pattern. Further, metamodels and transformations are not always made explicit and metamodels are often too general or do not contain sufficient information for the automatic code generation. Thus, the main goal of this work is the complete application of the MDA pattern to the Web application domain from analysis to the generated implementation, with transformations playing an important role at every stage of the development process. Explicit metamodels are defined for the platform independent analysis and design and for the platform specific implementation of dynamic Web applications. Explicit transformations allow the automatic generation of executable code for a broad range of technologies. For pursuing this goal, the following approach was chosen. A metamodel is defined for the platform independent analysis and for the design of the content, navigation, process and presentation concerns of Web applications as a conservative extension of the UML (Unified Modeling Language) metamodel, together with a cor-responding UML profile as notation. OCL constraints ensure the well-formedness of models and are checked by transformations. Transformations implement the systematic evolution of analysis and design models. A generic platform for Web applications built on an open-source Web platform and a generic runtime environment is proposed that represents a family of platforms supporting the combination of a broad range of technologies. The transformation to the platform specific models for this generic platform is decomposed along the concerns of Web applications to cope in a fine-grained way with technology changes. For each of the concerns a metamodel for the corresponding technology is defined together with the corresponding transformations from the platform independent design models. The resulting models are serialized to code by means of serialization transformations

    Integrating MDA and SOA for improving telemedicine services

    Get PDF
    Through telemedicine, the health sector has seized the opportunity offered by development of information and communications technology (ICT) such as the business or industrial sectors, but ICTs are constantly evolving. To benefit from technological progress it is necessary to adapt the computer applications to these technologies, however this operation is costly to health facilities especially in developing countries. In terms of scientific research, this observation explains the development of model-driven engineering of computer systems such as the Model Driven Architecture (MDA) approach. MDA is a computer design approach for the development of computer systems that considers separately the functional needs of technical needs of an application. MDA mainly uses the models and their transformations whose traces allow MDA to capitalize expertise in terms of technology and to ensure some rapid modernization of applications to new technologies which results in a significant productivity gain. Today there is a huge requirement worldwide in the interoperable services, in particular with regard to their valuable contribution to the collaboration ability of remote information technology systems. Service Oriented Architecture (SOA) is an interesting architectural pattern in which software components contribute to the collaboration and sharing of services. In this way, the principles of SOA are intended to ensure interoperability between heterogeneous and distributed applications. Web services are at the heart of SOA, which splits functions into different services, accessible over a computer network that enables users to associate and reuse them in the exploitation of applications. Health applications have a strong need to communicate with the remote institutions in order to provide the most relevant services to patients and to collaborate with other medical partners to solve complex tasks. For this purpose, the proposed research work shows how the paradigms of SOA and MDA can be configured to implement medical software applications on an e-health platform. The case study concerns the Telemedicine in French-speaking Africa (RAFT) project in which the joint use of MDA and SOA facilitates knowledge combination and reuse in the management of applications supporting a medical collaborative work environment

    An OCL-Based approach to derive constraint test cases for database applications

    Get PDF
    The development of database applications in most CASE tools has been insufficient because most of these tools do not provide the software necessary to validate these appli-cations. Validation means ensuring whether a given application fulfils the user require-ments. We suggest validation of database applications by using the functional testing technique, which is a fundamental black-box testing technique for checking the software without being concerned about its implementation and structure. Our main contribu-tion to this work is in providing a MDA approach for deriving testing software from the OCL specification of the integrity constraints. This testing software is used to validate the database applications, which are used to enforce these constraints. The generated testing software includes three components: validation queries, test cases and initial data inserted before the testing process. Our approach is implemented as an add-in tool in Rational Rose called OCL2TestSW.This work has been partially supported by the project Thuban: Natural Interaction Platform for Virtual Attending in Real Environments (TIN2008-02711), and also by the Spanish research projects: MA2VICMR: Improving the access, analysis and visibility of the multilingual and multimedia information in web for the Region of Madrid (S2009/TIC-1542).Publicad

    Incorporating Agile with MDA Case Study: Online Polling System

    Full text link
    Nowadays agile software development is used in greater extend but for small organizations only, whereas MDA is suitable for large organizations but yet not standardized. In this paper the pros and cons of Model Driven Architecture (MDA) and Extreme programming have been discussed. As both of them have some limitations and cannot be used in both large scale and small scale organizations a new architecture has been proposed. In this model it is tried to opt the advantages and important values to overcome the limitations of both the software development procedures. In support to the proposed architecture the implementation of it on Online Polling System has been discussed and all the phases of software development have been explained.Comment: 14 pages,1 Figure,1 Tabl

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen
    corecore