
A Model Driven Architecture Approach to Web
Development

Alejandro Gómez Cuesta1, Juan Carlos Granja1, and Rory O’Connor2

1 Software Engineering Department, University of Granada, Spain

elales@gmail.com, jcgranja@ugr.es
2 School of Computing, Dublin City University, Ireland

roconnor@computing.dcu.ie

Abstract. The rise of the number and complexity of web applications is ever
increasing. Web engineers need advanced development methods to build better
systems and to maintain them in an easy way. Model-Driven Architecture
(MDA) is an important trend in the software engineering field based on both
models and its transformations to automatically generate code. This paper
describes a a methodology for web application development, providing a
process based on MDA which provides an effective engineering approach to
reduce effort. It consists of defining models from metamodels at platform-
independent and platform-specific levels, from which source code is
automatically generated.

Keywords: Model Driven Development, Web Engineering, Software
Engineering, Agile Development

1 Introduction

The requirements for web applications involve a great diversity of different services;
multimedia, communication and automation, which reside in multiple heterogeneous
platforms. The development of such systems is a difficult task due to the large number
of complexities involved. Accordingly there is a need for solid engineering methods
for developing robust web applications.

The development of most systems is based on models as abstractions of the real
world. In software engineering the Unified Modelling Language (UML) is becoming
the standard for Object-Oriented (OO) modelling. While OO models traditionally
serve as blueprints for systems implementation, the Model-Driven Architecture
(MDA) [11], [10], which is a software design approach, promotes the usage of models
throughout the entire development process. Such an approach provides a set of
guidelines for specifying, designing and implementing models.

Currently there are many methodologies to define web applications which are
based on models such as: OO-H [6], UWE [9], ADM [5] or WebML [3]. These
methodologies have different levels of abstraction, but all require spending much time
on defining conceptual and usually do not take into account tangible elements such as
pages. However, other approaches such as agile development are not so abstract.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/16510466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MIDAS [12] is an approach to create web applications which merges models and
agile development. The MDA approach defines three levels of model abstraction and
a way to transform them:
• CIM (Computational Independent Model): A model of a system from a

computation independent viewpoint where details of the structure of systems are
not shown. It is used to represent the specific domain and the vocabulary for the
specification of a system.

• PIM (Platform Independent Model): A model of a software or business system that
is independent of the specific technological platform used to implement it.

• PSM (Platform Specific Model): A model of a software or business system that is
linked to a specific technological platform (programming language, operating
system or database).

• QVT (Query, View, Transformations): A way to transform models (e.g., PIM can
be translated into PSM).
The application of both MDA and agile methods to web applications development

can help to build better and fast systems in an easier way than applying traditional
methods [2]. MDA supports agile development, providing an easy way to create
prototypes through automatic code generation.

We have chosen the MIDAS [12], approach as our starting point, as it is both a
development process based on an agile process and an architecture for web
applications based on models. Using an agile approach prioritises the client-developer
relationship and a using model-based approach improves communication between
client and developer models, which allows the system to be seen from a higher level
of abstraction.

The basic structure of web applications consists of three tiers: the Client, the Server
and the Data store. In MIDAS, there are: graphical user interface (GUI), business
logic and persistence, where each tier can be implemented with a different
programming language, but utilising the same data structures. Thus MDA can be
applied to this kind of software: joining all the data structures into a PIM, we can
define the problem as only one and afterwards, splitting it into each tier. Thus we can
define one problem and obtain code for different platforms / programming languages.

The work presented in this paper proposes a methodology for agile web
applications development based on models. We provide a model-driven development
method for the specification and implementation of web applications through our own
metamodels. Our approach establishes a methodological framework by automating
the construction of high-quality web applications (PIM) in a productive way, starting
from a UML based representation for the, then an automated transformation method
for the refinement of engineering models into technology models (PSM), and finally
an automated method for the generation of platform specific code. Our approach has
several advantages, e.g. the diagrams to use are very known and the metamodels are
very simple so developers has not to learn new techniques. In addition, the automatic
code generation provides boosts development time.

In this paper we use the case study of a web bookshop which allows the purchaser
to search books by author, subject or title from a database. Once the user has a listing
with the result, he can select several books which will be added to a cart. The user can
manage this cart adding or deleting his selected books as times as necessary. Finally,
the user can buy those books which are in the cart, and in this moment is when he has

to insert his personal details in the system. We construct a web system for this
example using own described methodology.

2 MDA-Based Approach for web applications

The development of a web application system implies the use of many different
technologies in order to satisfy all user requirements. Usually these technologies
provide low abstraction level constructs to the developer. Therefore, applying a MDA
approach to web applications involves bridging an abstraction gap that must deal with
the technology heterogeneity. Thus, MDA approach raises the abstraction level of the
target platform and, therefore, the amount of code is clearly reduced. We reach a
balance between model based and agile development. Although we are not
completely fulfilling the requirements of MDA (that of abstracting as much as
possible) we are adding some level of work schema to an agile development, even
though this kind of development is not based on restrictions when writing code.

Accordingly our proposed approach for web applications development is based on:
1. Web application PIM.
2. Web application PSMs.
3. Transformations from PIM into PSM.
4. Code generation from PSMs.
5. Validation of this approach.

We can see this methodology is purely based on MDA. As we will see the
metamodels used are not very complex and therefore we are also taking into account a
certain level of agile development.

2.1 The Web application PIM

Our PIM is intended to represent web application which consists of services. A
service can be defined as functionalities offered by the system and whose results
satisfy some specific needs from a user.

Our approach consists in defining at an early stage the services we want our
application to fulfil. The second step is to refine those services into others more
detailed. Finally, for each detailed service a set of messages is defined. These
messages specify the relationship between the previous defined services and the final
system. Moreover, we need to set up a class model collecting the elements that have
to be modelled into the web application and can be used into the previous models.

So, our methodology define four stages - or from an MDA perspective - four
different submodels, which all together shape our web application platform-
independent model:
• Class model: a typical definition of the problem by means of classes.
• Conceptual user service model: defines the actors and services for a web

application.
• Extended service model: details the functionality of a conceptual user service

dividing it into extended services.

• System sequence model: establishes how each actor acts on the web application
through messages or callings to other extended services within a extended service
The conceptual user and extended services are definitions which are taken from

MIDAS, but which have simplified the conceptual user service model and added new
features to the extended service model to support our system sequence model as well
as our class model.

2.1.1 Class PIM

This is a typical class model, but using many simplifications. There is neither
encapsulation for attributes (all are public), complex associations between classes nor
interfaces. It is a simple metamodel of a class model which is useful for the agile
development and keeping the MDA process.

2.1.2 Class PIM

This model is similar to a use case model where the system services as well as who
uses them are represented. System services are called Conceptual User Services
(CUS) and are depicted like a use case, where an actor is somebody or something who
executes a CUS. Actors and services connect themselves the former to the latter.

Figure 1 shows an example CUS. The execution of the BuyBooks service consists
of: searching some books, adding them into a cart. The execution of a CUS is related
to the execution of a web by their actors. This concept is a new feature on conceptual
user service that MIDAS does not include.

Fig. 1. Conceptual user service model.

In Figure 2 we can see the metamodel of this model. Actors are instances of the class
called Actor. CUSs are instances of the ConceptualUserService class. As the
ConceptualUserService class is a subclass of the abstract class UseCase, an
unspecified number of actors can be associated to CUS’s.

Fig. 2. Metamodel for CUS and ES models.

2.1.3 Extended Service Model

Each CUS is related to an extended service model. This model breaks up each CUS
into simpler elements called Extended Services (ES) which are usually either a data
input or output. Figure 3 shows the ES model associated to the Purchaser actor
depicted in Figure. We can see the functions such actor performs within the CUS
called BuyBook; the ESs describe how the actor buys a book, managing them by
means of a cart. The AddBookToCart ES is called by both UpdateCart and
OrderBooks due to the <<include>> associations which go out from them, and
AddBookToCart ES calls to SearchBook. On other hand, we have that SearchBook ES
could be replaced with SearchForAuthor, SearchForSubject or SearchForTitle due to
the <<extends>> associations.

Fig. 3. ES model for the purchaser.

The ES model execution is similar to that of the CUS. It starts from the principal

service and it continues through the <<include>> relations to other ESs depending
on the associated system sequence. If the user executes an ES where <<extend>>
associations are coming in, as SearchBook ES, means that any of those ESs can be
executed instead; the final selection depends on the user. As ESs are similar to
functions, when one is ended, the execution returns to the ES which made the call.

Using the example in Figure 3, a user executes the first extended service,
OrderBook. Later he/she can select either UpdateCart or AddBookToCart extended
services. From UpdateCart can change the number of books selected for a specific
one and he/she can delete one, as well as to add other book selecting the appropriate
extended service. From AddBookToCart the user can makes a search, and this search
can be done for: author, subject o title. This model extends the requirements specified
in the CUS model to have a second level of abstraction. Using this model, it is easy to
check how many parts have a specific CUS. In Figure 2 we have the metamodel of the

ES model. We can see the relation between CUSs and ESs, where the latter owns
several elements of the former, besides the relation principalService.

2.1.4 System Sequence Model

A System Sequence (SS) model describes the functions performed by an ES. This
model is simpler than the legacy sequence models which exist in UML. In the
diagrams of these models there are two vertical lines: first one for actors and the
second one for objects, but in our case we use only one: the System. Figure 4 shows
an example of a system sequence model, in this case for the OrderBook extended
service Figure 3.

Fig. 4. SS Model for OrderBooks ES.

Actors from a specific ES can send two types of messages:
• Functions with return values and/or parameters, where both are objects which

belong to classes defined in the class model. The functions are algorithms which
are not modelled. They are just a reference for code generation, because they will
transform into methods in Java code.

• Calls to other extended services.
Note in Figure 4, the second call to other extended service on the left has a little

box with the text while above. It means that this call can be performed as times as the
user wants. We have defined three kinds of way of execution for the messages on a
box:
• Sequential: is the normal order.
• Repetition: messages are always repeated while the user wants.
• Choose one: from all messages the user selects one.

It is possible to have multiple levels of execution, so for example, we could have
several messages upon a choose one execution and upon that one, other messages as
well as other repetition executions. Therefore we define a specific order for the
execution. MIDAS defines an activity diagram for this purpose, but we have the same
idea using the previous execution concept. Using our approach we define a number of
messages which are closer to implementation without getting into this low level
favoring the agile development.

Figure 5 shows the system sequence metamodel. We can note that every ES has
only a message sequence. An object of a MessageSequence class can have just one
type of elements: Objects from Message class (functions) or MessageSequence
objects (calls to other Ess). The attribute MessageSequenceDefault indicates what
order of execution owns such sequence: sequential, repetition or choose one.

Fig. 5. SS meta-model.

2.2 PSM

MIDAS defines web applications with three-tiers: the GUI, the business logic and the
content. In our case we have one PSM for each part, as each part is a platform-
specific model. We have chosen SQL for the content, Java servlets for the business
logic and a Java servlet application for the GUI.

2.2.2 The Logic Business and Content PSMs

The logic business PSM is a class model, but in this case is the same Class-PIM but
adding interfaces. The content model is a database model which has been taken out
from [8]. Summarizing, we have tables which consist of columns, where each column
owns a SQL data type. Tables have both primary keys and foreign keys and both are
related to a column.

2.2.1 The Web application PSM

A web is the place where users or actors connect to access the web services which are
related to CUSs. A service consists of a number of web pages which are executed in a
certain order. Each page is related to a ES. Every page has associations to others
which are next (outgoings) and previous (incomings) ones; then, crawling among
these pages a concrete service is executed. As each service has a first page we know
from where that listing of services has to start. If we need to define a page which has
the same execution than other one already defined, we can associate the first one to
the second one, e.g., if we need to request certain information twice in different
points, we create one page and the other just calls to this one.

Web

Service: Register

Service: Login

Page with form:
Personal information

Page with form:
Preferences

SystemPage with form:
Data enter

Page:
User logged

Page:
User not logged

Web

Service: Register

Service: Login

Page with form:
Personal information

Page with form:
Preferences

SystemPage with form:
Data enter

Page:
User logged

Page:
User not logged

Fig. 6. Web application example.

Figure 6 shows an example of web application. We want to create a web application
with just two services: register and log in the web application. The first service,
register, has two pages: the first one is where the user writes down his personal
information and the second one does his preferences. Once he writes his personal
information and tries to go to the second page, a web operation saves his personal
information into a temporal container and, when he finishes inserting his preferences,
other web operation sends both personal information and preferences to a data base.
On the other hand, we have the second service, log in, where a form is showed to the
user who can fill it with its information for accessing; other web operation is
executed. If the information provided is not of any user, he is sent to the register page
which belongs to the register service; in other case, he becomes registered. At the end,
the web application will show to the user what service he wants to select: register or
login. Depending on what he chooses, the specific service will be run. Figure 7 shows
our web metamodel. WebOperation class is related to the messages defined in the
previous system sequence model.

WebElement

CommonElement

PageLeadPageFoot

Website

1

0..n

website1

commonElements0..n

Service 10..n
website

1
services
0..n

PageElement

Text

Page

1
firstPage
10..n

1

pages
0..n

service
1

1
callTo
1 1

0..n

page
1

pageElement0..n

0..n0..n
outgoings

0..n
incomings

0..n

Form WebOperation

0..n

1

webOperations
0..n

page
1

11
form
1

operation
1

Fig. 7. Web application meta-model.

Figure 8 shows how the structure of a PIM which consists in actors associated to
CUSs, CUSs associated to a set of ESs, ESs associated to a SS model which has
messages, it is related to a structure in the web applications-PSM where webs have
services, services have pages, and pages have web operations. At this level a
relationship exists between both structures and that is the reason to create a
transformation between each level.

From PIM

From Web
Application-SPM

Actors Conceptual
User Service

Extended
Service

Message

Webs Services` Page
Web

Operation

From PIM

From Web
Application-SPM

Actors Conceptual
User Service

Extended
Service

Message

Webs Services` Page
Web

Operation
Fig. 8. Parallelism between the structure of the PIM and the web application-PSM.

2.3 Transformations

A transformation is defined as an operation that takes as input a model and produces
another one [8]. This process is described by a transformation definition, which
consists of a number of transformation rules. We have three transformations:
1. Class-PIM to content-PSM
2. Class-PIM to business logic-PSM
3. PIM to web application-PSM

As transformations for this methodology are many, due to space limitations we just
introduce them a little bit. In a future work, we will develop them with more detail.

2.3.1 From class-PIM to Content-PSM

The first transformation we have to perform is to transform the class platform-
independent model into the content model. There are many ways to approach this
problem [7] from which we have chosen ‘one class one table’. This transformation is
made up of the rules we can see in Table 1.

Table 1. Transformation Rules

Class PIM Content PSM
Class A table with a column which is a identifier and a

principal key
Extended class A table with a column which is identifier. This

identifier is a foreign key pointing to the identifier of
the resulting transformed table of the parent class. See
Figure 10

Multiple class
association

A table with two columns being both identifiers and
foreign keys and…

1:1 ... each one is also unique and both are the primary
key

1:n .. the column which makes references to '1' in the
multiplicity, is not a primary key, while the other one
is the primary key

n:m ... both columns are the primary key
An attribute A column which is inserted into the resulting table of

the class which has the attribute

2.3.2 From Class-PIM to Business Logic-PSM

This is a complex transformation. We copy the same model from PIM to PSM but we
change each class for an interface and we add a new class which implements such
interface. [1] describe how this is done.

Table 2. Transformation Rules

Class PIM Business logic PSM
Package structure The same package structure is copied.
Datatype structure The same data type structure is copied.
Class c An interface i and a class c’. Both are added to

the same transformed package that the initial
class c was. This new class c’ implements the
new interface i.

Attribute a
(belonging to a
class c)

An attribute a’ whose visibility is private. As c is
transformed into i and c’, the attribute a’ is added
into i and c’.
Besides, two new methods are added to interface
i: some get- and set- public methods which let the
access a’.

An operation o
(belonging to a
class c)

An operation o’ added to the transformed
interface i from the class c. The data types used
in o’ have to be the copied ones.

Association
between classes

An association, with the same features, between
the created interfaces from the initial classes.

Association end An attribute. An association end with multiplicity
equals to '1' is transformed into an attribute
whose type is the class which points to. If the
multiplicity is 'n', the association end is
transformed into other attribute but in this case
the type is Vector<class_which_points_
to> (using Java 5 notation)

2.3.3 From PIM to Web Application-PSM

Even though it is quite easy to see this transformation, it has many rules. A summary
are the following rules which are explained in Table 3.

Table 3. Transformation Rules

Class PIM Graphical User Interface PSM
An actor A web
Conceptual user
service associated to
actor

A service associated to the transformed web for
such actor

An extended service A page. The same structure defined for a
extended service model is built using pages
from the web application-PSM

A message A web operation

2.4 Code generation

The last stage of our methodology is code generation. Once the PSMs are
automatically obtained from the created PIM, they are used to generate source code.
There are many ways to generate source code from models. Most of them are based
on templates considered as other kind of model transformation: model-to-text
transformation [4]. The code generation helps the developer to not start from scratch
his development. We have defined these transformations:
1. From the content PSM, SQL code.
2. From the business logic PSM, Java code.
3. A general web application is created for the web application PSM. This application

just needs the model to run.
In summary, code generation covers business logic which is the data structures,

and data base. Finally instead of creating code for the web application, its model is
directly executed.

2.4.1 From Business Logic-PSM to Java

From a given class-PSM for each class or interface we need to create a new file where
we have to:
• Write the name of the package and define the class or interface.
• Write every attribute: visibility, type & name.
• Write every method with all its parameters. It is possible that some methods have

some associated source code as get and set methods.
[4] provide the following example to illustrate how a template-based model-to-text
transformation is.
<<DEFINE Root FOR Class>>

public class <<name>>{

 <<FOREACH attrs AS a>>

 private <<a.type.name>> <<a.name>>;

 <<ENDFOREACH>>

 <<EXPAND AccessorMethods FOREACH

 attribute>> }

<<ENDDEFINE>>

<<DEFINE AccessorMethods FOR

 Attribute>>

public <<type.name>>

 get<<name.toFirstUpper>>() {

 return this.<<name>>; }

public void

 set<<name.toFirstUpper>>(

 <<type.name>> <<name>>)

{ this.<<name>> = <<name>>; }

<<ENDDEFINE>>

2.4.2 From Content PIM to SQL

From a given relational model and for each table create a new file where we have to:
• Write code which defines a table.
• Look up all its columns and write its name along with its type.
• Usually every table has a primary key which has to be written in the code.
• Finally, if the class has some foreign key.

2.4.3 Web Application-Model to Servlets

Creating the web application has been done by means of other different kind of
transformation. Instead of creating directly code for the web application using JSP or

similar, we directly execute the created model. The final web application is a web
previously constructed which only needs a parameter which is a model, in our case,
the web model automatically generated, to work properly. This is a complex
transformation. We copy the same model from PIM to PSM but we change each class
for an interface and we add a new class which implements such interface. [1] describe
how this is done.

2.5 Validation

A plugin for Eclipse has been developed to validate this process. Such a tool comes
with a GUI which allows to directly draw the diagrams we have seen before for the
PIM. Once this model has been created the next step is to transform it. At this
moment the tool does not allow to modify PSM models, but the transformation can be
performed. When it is done, a new Eclipse project is created and you can see both the
PSM models created and the generated code. Models created with this tool use XMI
format, therefore can be exported to other tools. The proposed example was created
using this approach. Although this application is not very complicated, we have seen
that from CUSs we are defining at the same time requirements and a certain degree of
the navigation of the web application which is being created. Such a navegation is
completely described by means of ESs. Finally, when defining SSs, we are getting
some functions which are very close to code but they are enough abstract to be a part
of the PIM. For the future, the tool should add the possibility of modifying the PSM
models and to define a customed presentation of the web pages. We are now working
on these aspects.

3 Conclusions

In this paper we have shown a methodological approach to web applications
development. We have kept to MDA framework, where the development is performed
by two different abstraction levels: independent and specific from the platform. The
chosen models allow the user who uses this methodology to not lose in any moment
the sense of what he is doing: he will generate code. This method help us construct
better web applications in a time not very high, because it joins on the one hand
advantages of having a set of steps very marked from a model-based methodology
and on the other hand the agile development allows to construct prototypes of the
final system from very early development stages. The automatic code generation
makes MDA promote agile development, since the models from the code which are
generated are kept, and they are the documentation of the final web application.

Using this process, we extend the work made by MIDAS adding new models to
take into account, as well as a new approach closer to agile development such as our
system sequence models. It should be feasible to make a fusion between MIDAS and
our approach to build one more complete one.

Using this method, the web engineering industry has a new way to build simple
web application in a faster manner. Our contribution is to provide metamodels which

are applied. It is not easy to find metamodels which are applied to a specific field.
Usually, other proposed model-based methodologies only offer diagrams and one
cannot see how the process is really working. Besides, they used to be models for
UML class or Java diagrams. We have proposed a set of metamodels for web
engineering as well as concrete syntax for those ones, explaining what each one does
and how the models are transformed.

There is much possible future work to be done. It would be useful to include new
models from UML but considering our goal of simplifies them to keep to agile
development. Also, we could leave the agile development to centre our effort in
constructing a comprehensive methodology for web engineering using complex
models and complex transformations. Independently, our transformations have to be
improved

References

1. Bézivin, J., Hammoudi, S., Lopes, D., Jouault F. 2004. Applying MDA Approach forWeb
Service Platform. Enterprise Distributed Object Computing Conference.

2. Cáceres, P., Marcos, E. 2001. Procesos ágiles para el desarrollo de aplicaciones Web. Taller
de Web Engineering de las Jornadas de Ingeniería del Software y Bases de Datos de 2001
(JISBD2001).

3. Ceri, S., Fraternali, P., Bongio, A. 2000. Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 3 (1-6): 137-157.

4. Czarnecki, K., Helsen, S. 2006. Feature-based survey of model transfomation approaches.
IBM Systems Journal, Vol 45, No 3.

5. Díaz, P., Aedo, I. Montero, S. 2001. Ariadne, a development method for hypermedia. Dexa
2001, Munich. LNCS 2113, 764-774.

6. Gómez, J., Cachero, C. 2002. OO-H Method: Extending UML to Model Web Interfaces.
Idea Group Publishing.

7. Keller, W. 2004. Mapping Objects to Tables.
http://www.objectarchitects.de/ObjectArchitects/papers/Published/ZippedPapers/mappings0
4.pdf, 2004

8. Kleppe, A., Warmer, J., Bast, W. 2003. MDA Explained - The Model-Driven Architecture:
Practice and Promise. Addison-Wesley.

9. Koch, N., Kraus, A. The Expressive Power of UML-based Web Engineering. 2002. Second
International Workshop on Web-oriented Software Technology (IWWOST02).

10. Mellor, S., Scott, K., Uhl, A., Weise, D. 2004. MDA Distilled, Principles of Model Driven
Architecture. Addison-Wesley.

11. Millar, J., Mukerji, J. 2003. MDA Guide Version 1.0.1. http://www.omg.org/cgi-
bin/doc?omg/03-06-01.

12. Vela, B., Cáceres, P., de Castro, V., Marcos, E. 2005. MIDAS: una aproximación dirigida
por modelos para el desarrollo ágil de sistemas de información web, Chapter 4 from the
book "Ingeniería de la web y patrones de diseño", Coordinadores: Mª Paloma Díaz, Susana
Montero e Ignacio Aedo. Pearson - Prentice Hall.

	2.1.1 Class PIM
	2.1.2 Class PIM
	2.1.3 Extended Service Model
	2.1.4 System Sequence Model
	2.2 PSM
	2.2.2 The Logic Business and Content PSMs
	2.2.1 The Web application PSM

	2.3 Transformations
	2.3.1 From class-PIM to Content-PSM
	2.3.2 From Class-PIM to Business Logic-PSM
	2.4.1 From Business Logic-PSM to Java
	2.4.2 From Content PIM to SQL
	2.4.3 Web Application-Model to Servlets

	2.5 Validation

