

Model Driven Software Engineering for
Web Applications

Andreas Kraus

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften

an der Fakultät für Mathematik, Informatik und Statistik
der Ludwig-Maximilians-Universität München

vorgelegt am 23.04.2007

Model Driven Software Engineering for Web Applications

Tag der Einreichung: 23.04.2007

Tag des Rigorosums: 04.07.2007

Berichterstatter

Prof. Dr. Rolf Hennicker

(Ludwig-Maximilians-Universität, München)

Prof. Dr. Antonio Vallecillo

(Universidad de Malaga, Spanien)

 2

Model Driven Software Engineering for Web Applications

Summary

Model driven software engineering (MDSE) is becoming a widely accepted approach for
developing complex applications and it is on its way to be one of the most promising para-
digms in software engineering. MDSE advocates the use of models as the key artifacts in
all phases of the development process, from analysis to design, implementation and testing.
The most promising approach to model driven engineering is the Model Driven Architec-
ture (MDA) defined by the Object Management Group (OMG). Applications are modeled
at a platform independent level and are transformed to (possibly several) platform specific
implementations. Model driven Web engineering (MDWE) is the application of model
driven engineering to the domain of Web application development where it might be par-
ticularly helpful because of the continuous evolution of Web technologies and platforms.

However, most current approaches for MDWE provide only a partial application of the
MDA pattern. Further, metamodels and transformations are not always made explicit and
metamodels are often too general or do not contain sufficient information for the automatic
code generation. Thus, the main goal of this work is the complete application of the MDA
pattern to the Web application domain from analysis to the generated implementation, with
transformations playing an important role at every stage of the development process. Ex-
plicit metamodels are defined for the platform independent analysis and design and for the
platform specific implementation of dynamic Web applications. Explicit transformations
allow the automatic generation of executable code for a broad range of technologies. For
pursuing this goal, the following approach was chosen.

A metamodel is defined for the platform independent analysis and for the design of the
content, navigation, process and presentation concerns of Web applications as a conserva-
tive extension of the UML (Unified Modeling Language) metamodel, together with a cor-
responding UML profile as notation. OCL constraints ensure the well-formedness of mod-
els and are checked by transformations. Transformations implement the systematic evolu-
tion of analysis and design models. A generic platform for Web applications built on an
open-source Web platform and a generic runtime environment is proposed that represents a
family of platforms supporting the combination of a broad range of technologies. The
transformation to the platform specific models for this generic platform is decomposed
along the concerns of Web applications to cope in a fine-grained way with technology
changes. For each of the concerns a metamodel for the corresponding technology is de-
fined together with the corresponding transformations from the platform independent de-
sign models. The resulting models are serialized to code by means of serialization trans-
formations.

 3

Model Driven Software Engineering for Web Applications

 4

Model Driven Software Engineering for Web Applications

Zusammenfassung

Die modellgetriebene Softwareentwicklung (MDSE) entwickelt sich zu einem der vielver-
sprechendsten Paradigmen für die Entwicklung komplexer Anwendungen. Modelle spielen
dabei die zentrale Rolle in allen Phasen des Entwicklungsprozesses, von Analyse und Ent-
wurf bis zur Implementierung. Die Model Driven Architecture (MDA) ist der derzeit er-
folgversprechendste Ansatz zur modellgetriebenen Softwareentwicklung. Anwendungen
werden dabei auf einer plattformunabhängigen Ebene modelliert und durch Transformatio-
nen in eine plattformspezifische Implementierung überführt. Die modellgetriebene Web-
Anwendungsentwicklung (MDWE) wendet das Prinzip der modellgetriebenen Software-
entwicklung auf den Bereich der Web-Anwendungen an, wo sich dieser Ansatz als beson-
ders nützlich erweist, gegeben durch die andauernde Weiterentwicklung von Web-
Technologien und –Plattformen.

Die meisten aktuellen MDWE-Ansätze setzen den MDA-Ansatz allerdings nur teilweise
um. Ferner werden die verwendeten Metamodelle und Transformationen oft nicht explizit
definiert, und die Metamodelle sind oft zu allgemein oder enthalten nicht ausreichend In-
formationen zur automatischen Code-Generierung. Daher ist das Hauptziel dieser Disserta-
tion die umfassende Übertragung des MDA-Ansatzes auf den Bereich der Web-
Anwendungsentwicklung, von der Analyse bis zur Implementierung, wobei Transformati-
onen eine entscheidende Rolle in jeder Phase des Entwicklungsprozesses spielen. Explizite
Metamodelle werden definiert für die Analyse, den plattformunabhängigen Entwurf und
die plattformspezifische Implementierung. Eindeutig definierte Transformationen ermögli-
chen die automatische Code-Generierung für ein Vielzahl von Web-Technologien. Um
dieses Ziel zu erreichen wurde der folgende Ansatz gewählt.

Für die Analyse und für den plattformunabhängigen Entwurf der Inhalts-, Navigations-,
Prozess- und Präsentationsebenen einer Web-Anwendung wird ein Metamodell als eine
konservative Erweiterung des UML-Metamodells (Unified Modeling Language) definiert.
Ein entsprechendes UML-Profil dient dabei als Notation. OCL-Constraints, die durch
Transformationen überprüft werden, stellen die Wohlgeformtheit der Modelle sicher.
Transformationen implementieren auch die systematische Entwicklung der Analyse- und
Entwurfsmodelle. Eine generische Plattform ermöglicht eine Aufspaltung der Transforma-
tion plattformunabhängiger Modelle in einzelne Transformationen für die verschiedenen
Ebenen einer Web-Anwendung. Für jede Ebene wird dazu ein Metamodell für die entspre-
chende Implementierungstechnologie und eine entsprechende Transformation definiert,
wodurch eine Vielzahl von Technologien kombiniert werden kann. Die resultierenden Mo-
delle werden dann durch Serialisierungstransformationen in Code umgewandelt.

 5

Model Driven Software Engineering for Web Applications

Acknowledgments

First of all, I would like to thank my two supervisors Rolf Hennicker and Antonio
Vallecillo, and Martin Wirsing. Then, thanks go to my colleagues, especially Nora Koch
and Alexander Knapp for the fruitful discussions on Web engineering topics, and to Mat-
thias Ludwig and Stephan Janisch for the time working together in the GLOWA-Danube
project. Finally, I thank all of my students and all the people from abroad I have been
working together over the last years.

My special thanks go to Sabine, our families and friends for their support and patience.

This work has been supported by the German BMBF-project GLOWA-Danube.

 6

CONTENT

1 Introduction __ 13

1.1 Problem Statement __ 14

1.2 Approach __ 14

1.3 Introduction to the DANUBIA Case Study __________________________ 19

1.4 Organization of the Work __ 20

2 Model Driven Software Engineering ____________________________________ 21

2.1 Model Driven Architecture (MDA)_________________________________ 23
2.1.1 Model Types__ 24

2.1.1.1 Computation Independent Models (CIM) _______________________ 25
2.1.1.2 Platform Independent Models (PIM) ___________________________ 25
2.1.1.3 Platform Specific Models (PSM) ______________________________ 25
2.1.1.4 Platform Models (PM) ______________________________________ 26

2.1.2 Transformation Types___ 26
2.1.2.1 Model Type Transformations _________________________________ 26
2.1.2.2 Model Instance Transformations ______________________________ 27

2.2 Object Management Group Meta Architecture ______________________ 27
2.2.1 Metamodel Layering ___ 28
2.2.2 Meta Object Facility (MOF)____________________________________ 29
2.2.3 Unified Modeling Language (UML) _____________________________ 30
2.2.4 UML Extensions___ 31

2.3 Transformation Approaches ______________________________________ 32
2.3.1 Classification ___ 32

2.3.1.1 Hard-Coded Transformations_________________________________ 33
2.3.1.2 Model-To-Code Approaches _________________________________ 33
2.3.1.3 Direct-Manipulation Approaches ______________________________ 34
2.3.1.4 Relational Approaches ______________________________________ 35
2.3.1.5 Graph-Transformation-Based Approaches_______________________ 36
2.3.1.6 Structure-Driven Approaches_________________________________ 37
2.3.1.7 Hybrid Approaches___ 37
2.3.1.8 Other Model-To-Model Approaches ___________________________ 37

Model Driven Software Engineering for Web Applications

2.3.1.9 Discussion ___ 38
2.3.2 Query/Views/Transformations (QVT) ___________________________ 38

2.3.2.1 Declarative Rules (Relations) ________________________________ 40
2.3.2.2 Imperative Rules (Operational Mappings) ______________________ 42
2.3.2.3 Tools ___ 43

2.3.3 Atlas Transformation Language (ATL) __________________________ 44
2.3.3.1 Modules___ 45
2.3.3.2 Queries ___ 49
2.3.3.3 Refining Mode__ 49
2.3.3.4 Tools ___ 49

2.3.4 Transformation Modularization ________________________________ 50
2.3.5 Discussion ___ 51

3 Model Driven Web Engineering _______________________________________ 55

3.1 Elaborationist versus Translationist Approach ______________________ 55

3.2 Separation of Concerns__ 58

3.3 Transformation Environment ____________________________________ 60

3.4 Related Work__ 62
3.4.1 UML-based Web Engineering (UWE) ___________________________ 62

3.4.1.1 ArgoUWE ___ 63
3.4.1.2 UWEXML___ 64
3.4.1.3 Transformation Techniques and Model Driven Process____________ 66

3.4.2 WebSA ___ 67
3.4.3 MIDAS ___ 68
3.4.4 WebML ___ 68
3.4.5 OOWS __ 69
3.4.6 HyperDE __ 70
3.4.7 Moreno et al. ___ 71
3.4.8 Muller et al. __ 71
3.4.9 W2000 __ 72

4 Platform Independent Analysis and Design ______________________________ 73

4.1 General Techniques___ 76
4.1.1 Checking Well-Formedness of Models___________________________ 76
4.1.2 Transformation Traces _______________________________________ 78
4.1.3 Expression Language __ 82

4.2 Requirements__ 84
4.2.1 Metamodel___ 85

 8

Model Driven Software Engineering for Web Applications

4.2.2 Analysis Content: Example ____________________________________ 88
4.2.3 Web Use Cases: Example______________________________________ 89

4.3 Content ___ 90
4.3.1 Metamodel ___ 91
4.3.2 Transformation Requirements2Content ___________________________ 92
4.3.3 Manual Refinement __ 94

4.4 Navigation ___ 96
4.4.1 Metamodel ___ 98
4.4.2 Navigation Space ___ 103

4.4.2.1 Transformation RequirementsAndContent2Navigation____________ 103
4.4.2.2 Manual Refinement _______________________________________ 107

4.4.3 Addition of Indices __ 108
4.4.3.1 Transformation AddIndices _________________________________ 108
4.4.3.2 Manual Refinement _______________________________________ 110

4.4.4 Addition of Menus __ 111
4.4.4.1 Transformation AddMenus _________________________________ 111
4.4.4.2 Manual Refinement _______________________________________ 114

4.5 Process ___ 114
4.5.1 Process Integration __ 116

4.5.1.1 Metamodel __ 116
4.5.1.2 Tranformation ProcessIntegration ____________________________ 118
4.5.1.3 Manual Refinement _______________________________________ 120

4.5.2 Process Data and Flow _______________________________________ 120
4.5.2.1 Metamodel __ 121
4.5.2.2 Transformation CreateProcessDataAndFlow____________________ 126
4.5.2.3 Manual Refinement _______________________________________ 134

4.6 Presentation___ 139
4.6.1 Metamodel __ 140
4.6.2 Transformation NavigationAndProcess2Presentation _______________ 145
4.6.3 Manual Refinement ___ 150

4.7 Transition to the Platform Specific Implementation _________________ 152

5 Platform Specific Implementation _____________________________________ 153

5.1 Generic Platform __ 154
5.1.1 Spring Framework __ 158
5.1.2 Runtime Environment _______________________________________ 163
5.1.3 Configuration __ 167

 9

Model Driven Software Engineering for Web Applications

5.1.3.1 XML Metamodel___ 170
5.1.3.2 Transformation Rules _____________________________________ 171
5.1.3.3 Serialization to Code ______________________________________ 176

5.2 Content via JavaBeans ___ 176
5.2.1 Java Metamodel__ 178
5.2.2 Example__ 180
5.2.3 Transformation Content2JavaBeans ____________________________ 180
5.2.4 Serialization to Code __ 185

5.3 Content via RMI __ 186
5.3.1 Example__ 187
5.3.2 Transformation Content2RMIInterfaces_________________________ 187

5.4 Navigation ___ 190
5.4.1 Example__ 191
5.4.2 Transformation Navigation2Conf ______________________________ 192

5.5 Process __ 193
5.5.1 Process Runtime Environment: The Web Process Engine ___________ 194
5.5.2 Example__ 199
5.5.3 Transformation Process2Conf_________________________________ 200

5.6 Presentation __ 202
5.6.1 JSP Metamodel __ 203
5.6.2 Example__ 204
5.6.3 Transformation Presentation2JSP ______________________________ 205
5.6.4 Serialization to Code __ 208

6 Case Study__ 211

6.1 Platform Independent Analysis and Design ________________________ 211
6.1.1 Requirements__ 211

6.1.1.1 Analysis Content ___ 211
6.1.1.2 Web Use Cases __ 213

6.1.2 Content __ 215
6.1.2.1 Results of Transformation Requirements2Content_______________ 216
6.1.2.2 Manual Refinement_______________________________________ 217

6.1.3 Navigation __ 219
6.1.3.1 Navigation Space___ 219
6.1.3.2 Addition of Indices _______________________________________ 222
6.1.3.3 Addition of Menus _______________________________________ 226

6.1.4 Process___ 228

 10

Model Driven Software Engineering for Web Applications

6.1.4.1 Process Integration __ 228
6.1.4.2 Process Data and Flow _____________________________________ 231

6.1.5 Presentation ___ 240
6.1.5.1 Results of Transformation NavigationAndProcess2Presentation ____ 240
6.1.5.2 Manual Refinement _______________________________________ 244

6.2 Platform Specific Implementation ________________________________ 247
6.2.1 Content ___ 247

6.2.1.1 Results of Transformation Content2JavaBeans __________________ 250
6.2.1.2 Manual Refinement _______________________________________ 252

6.2.2 Navigation __ 252
6.2.2.1 Results of Transformation Navigation2Conf ____________________ 253
6.2.2.2 Manual Refinement _______________________________________ 255

6.2.3 Process ___ 255
6.2.3.1 Results of Transformation Process2Conf_______________________ 262
6.2.3.2 Manual Refinement _______________________________________ 264

6.2.4 Presentation ___ 264
6.2.4.1 Results of Transformation Presentation2JSP ____________________ 265
6.2.4.2 Manual Refinement _______________________________________ 267

6.3 Evaluation __ 269

7 Conclusion __ 271

7.1 Results ___ 271

7.2 Limitations ___ 272

7.3 Future Research ___ 274

8 Table of Figures__ 277

9 References __ 283

A UML Profile___ 301

A.1 Tabular Overview__ 302

A.2 Trace __ 303

A.3 Requirements ___ 304

A.4 Navigation __ 304

A.5 Process ___ 305

A.6 Presentation___ 306

B ATL Transformations ___ 309

 11

Model Driven Software Engineering for Web Applications

B.1 Transformation Environment Setup ______________________________ 309

B.2 Metamodels __ 310
B.2.1 UWE Metamodel___ 311

B.2.1.1 KM3 Metamodel ___ 311
B.2.1.2 Constraint Checking Query_________________________________ 315

B.2.2 Java Metamodel__ 324
B.2.2.1 KM3 Metamodel ___ 324
B.2.2.2 Constraint Checking Query_________________________________ 326
B.2.2.3 Serialization Query _______________________________________ 327

B.2.3 XML Metamodel___ 330
B.2.3.1 KM3 Metamodel ___ 330
B.2.3.2 Constraint Checking Query_________________________________ 331
B.2.3.3 Serialization Query _______________________________________ 331

B.2.4 JSP Metamodel __ 332
B.2.4.1 KM3 Metamodel ___ 332
B.2.4.2 Constraint Checking Query_________________________________ 333
B.2.4.3 Serialization Query _______________________________________ 333

B.3 PIM2PIM Transformations _____________________________________ 334
B.3.1 Refinement Header ___ 334
B.3.2 Trace Header __ 335
B.3.3 Transformation Requirements2Content _________________________ 336
B.3.4 Transformation RequirementsAndContent2Navigation _____________ 337
B.3.5 Transformation AddIndices___________________________________ 343
B.3.6 Transformation AddMenus ___________________________________ 344
B.3.7 Transformation ProcessIntegration _____________________________ 347
B.3.8 Transformation CreateProcessDataAndFlow _____________________ 350
B.3.9 Transformation NavigationAndProcess2Presentation ______________ 360

B.4 PIM2PSM Transformations_____________________________________ 369
B.4.1 Configuration Header _______________________________________ 370
B.4.2 Transformation Content2JavaBeans ____________________________ 373
B.4.3 Transformation Content2RMIInterfaces_________________________ 379
B.4.4 Transformation Navigation2Conf ______________________________ 384
B.4.5 Transformation Process2Conf_________________________________ 385
B.4.6 Transformation Presentation2JSP ______________________________ 390

 12

1 INTRODUCTION

Recently, model driven software engineering (MDSE) is becoming a widely accepted ap-
proach for developing complex applications and it is on its way to be one of the most
promising paradigms in software engineering. MDSE advocates the use of models as the
key artifacts in all phases of the development process, from system specification and
analysis to design and testing. Models are even replacing code as low-level artifacts. De-
velopers are forced to focus on the problem space (models) and not on the (platform spe-
cific) solution space. Thus, the basic functionality of a system can be separated from its
final implementation. Additionally, tool support for model driven engineering has continu-
ously improved over the last years, from CASE tools with hard coded metamodels and
hard coded code generation facilities to tools with flexible and/or extensible metamodels
and model transformation facilities. The most promising approach to model driven engi-
neering is the Model Driven Architecture (MDA) defined by the Object Management
Group (OMG) [Miller03]. Applications are modeled at a platform independent level and
are transformed by means of model transformations to (possibly several) platform specific
implementations.

Web engineering is a relatively new direction of Software Engineering with focus on the
development of Web-based systems [Kappel03a]. Several approaches for the development
of Web applications have been proposed in the last years. Model driven Web engineering
(MDWE) is the application of model driven engineering to the domain of Web application
development where it might be particularly helpful because of the continuous evolution of
Web technologies and platforms. Different concerns of Web applications are captured by
using separate models, e.g. for the content, navigation, process and presentation concern.
These models are then transformed to code, whereas code comprises web pages, configura-
tion data for Web frameworks as well as traditional program code.

Model Driven Software Engineering for Web Applications

1.1 Problem Statement

Today, many MDWE approaches, such as W2000 [Baresi05], MIDAS [Cáceres04] or
UWE [Koch06b], claim to be MDA compliant. However, most of them provide only a par-
tial application of the MDA pattern, for example by not providing platform specific mod-
els. Further, almost each approach uses specific modeling elements for analysis and design
with special elements for representing typical concepts of Web applications such as, for
instance, navigation nodes and links, but only some of them define an explicit metamodel
which is an essential prerequisite for applying model driven techniques. Additionally, these
metamodels are often too general or do not contain sufficient information for the automatic
code generation.

Additionally, although data-intensive Web applications are now handled well by most cur-
rent approaches, there is still insufficient support for dynamic Web applications, i.e. Web
applications supporting the execution of complex workflows, i.e. Web processes.

Further, many current approaches are not based on standards for metamodeling, notation
and transformation, which complicates tool interoperability, reusability and extensibility.
Often a proprietary graphical notation is used for the representation of the modeling ele-
ments, and proprietary tools are used for analysis, design and code generation. Model-to-
model and model-to-code transformations are in many cases hard-coded and not made ex-
plicit.

Thus, the main goal of this work is the complete application of the MDA pattern to the
Web application domain from the top to the bottom, i.e. from analysis to the generated im-
plementation. Transformations play an important role at every stage of the development
process. An explicit metamodel and a corresponding notation based on the UML standard
is defined for the platform independent analysis and design of dynamic Web applications.
On the other hand, metamodels representing technologies are defined for the platform spe-
cific implementation. Transformations support the systematic construction of platform in-
dependent models and allow the automatic generation of executable code for a broad range
of technologies, based on a generic platform for dynamic Web applications.

1.2 Approach

An overview of the model driven development process of this approach is depicted in
Figure 1. The main phases of the process are analysis, design and model-driven implemen-

 14

Model Driven Software Engineering for Web Applications

tation. This corresponds to the computation independent models (CIM), the platform inde-
pendent models (PIM) and the platform specific models (PSM) of the MDA approach. The
aim of the analysis phase is to gather a stable set of requirements. The functional require-
ments are captured by means of specialized use cases and the content requirements are cap-
tured by a class model. The design phase consists of constructing a series of models for the
content, navigation, process and presentation concerns at a platform independent level.
Transformations implement the systematic construction of dependent models by generating
default models which then can be manually refined by the designer. Information that is not
available at a higher abstraction level has to be added by the developer, e.g. by introducing
inheritance or adding additional features to modeling elements. The stereotypes «transfor-
mation» combined with «refinement» indicate that the transition from the requirements
model to the design models consists of automatic transformations and manual refinement
by the designer, whereas the transformation to the platform specific implementation model
is carried out fully automatically, with exception of fine grained behavior as detailed be-
low. Finally, the platform specific implementation model is serialized to code by model-to-
code transformations.

Design Models

Requirements Model

Implementation Model

<<transformation>>
+ <<refinement>>
CIM2PIM+PIM2PIM

<<transformation>>
PIM2PSM

Computation Independent
Models (CIM) =
Analysis Models

Platform
Specif ic
Models (PSM)

Platform
Independent
Models (PIM)

Design Models

Requirements Model

Implementation Model

<<transformation>>
+ <<refinement>>
CIM2PIM+PIM2PIM

<<transformation>>
PIM2PSM

Computation Independent
Models (CIM) =
Analysis Models

Platform
Specif ic
Models (PSM)

Platform
Independent
Models (PIM)

Figure 1. Development process overview

A major contribution is the definition of an explicit metamodel for the analysis and design
of Web applications. A metamodel is a precise definition of the modeling elements and
their relationships for a specific domain. The well-formedness of models is defined by con-
straints, specified in the Object Constraint Language (OCL), which are attached to the
metamodel. Each transformation checks first the validity of the constraints for the respec-

 15

Model Driven Software Engineering for Web Applications

tive input models. A first version of this metamodel was presented in [Kraus03a] and
[Kraus03b] as a conservative extension of the UML 1.4 metamodel. Conservative means
that the modeling elements of the UML metamodel are not modified. The metamodel for
the platform independent analysis and design presented in this work is a refinement of this
first version. It is adapted to the changes of UML 2 [OMG05a] and enhanced with con-
structs allowing the application of model transformations to support on the one hand the
systematic design and on the other hand the transformation to platform specific models.
The metamodel is structured along the concerns of Web applications which are addressed
in this work: requirements, content, navigation, process and presentation. Actually, the
metamodel is limited to modeling elements which are supported by the transformations
presented in this approach. However, the metamodel and the transformations are designed
to be easily extensible for adding further modeling constructs or whole new modeling as-
pects in the future. An additional trace model is used for handling incremental updates of
the analysis and design models. A UML profile provides a notation for the metamodel,
making use of all benefits and tools that support UML.

The complex workflow of a Web application is represented by a process model. This ap-
proach focuses on the modeling and transformation of “coarse grained” behavior. Thus, a
process model expresses the composition of “fine grained” behavior by means of UML
activities. The semantics of activities is based on control and data token flows, similar to
Petri nets [Priese03]. Fine grained behavior is represented by UML operations which cor-
respond to services. Thus, an operation call corresponds to a service call. This concept for
the representation of the behavior of Web applications fits in the Service Oriented Archi-
tecture (SOA) approach [Dostal05] because the basic idea of the SOA approach is to see
the realization of a business process as a composition of services. The service itself is as-
sumed to be already predefined and implemented, thus the modeling and implementation
of services themselves is not part of this approach.

Following the vision of MDA, the implementation platform is represented by a corre-
sponding metamodel, and the platform independent design models are mapped by a trans-
formation to the platform specific implementation model. A generic platform for Web ap-
plications is proposed which is built on the open-source Spring framework and includes a
generic runtime environment that allows the execution of complex workflows. The Spring
framework offers a high degree of flexibility for the combination of different technologies.
It relies on the Model/View/Controller (MVC) pattern, where the concerns of a Web appli-
cation correspond to the model (content), view (presentation) and controller (navigation
and process) roles in the MVC pattern. This allows for a corresponding decomposition of
the transformation to the platform specific models as depicted in Figure 2. For a concrete
model technology (e.g. JavaBeans) or view technology (e.g. Java Server Pages) corre-

 16

Model Driven Software Engineering for Web Applications

sponding metamodels and transformations have to be defined. A generic runtime environ-
ment plugged into the Spring framework takes the controller part of a Web application im-
plementation. This controller has to be configured for a specific Web application by con-
figuration data generated from the navigation and the process models. An abstraction tech-
nique for the communication between the model, view and controller parts allows to de-
couple the corresponding technologies and transformations. This is represented as inheri-
tance relationships for the model and view technologies in Figure 2. In a final step, the
platform specific implementation models are serialized to code.

Generic Platform

Controller

Spring Conf

Model View

<<transformation>>
Content2PSM

<<transformation>>
Navigation2Conf

<<transformation>>
Presentation2PSM

<<transformation>>
Process2Conf

<<transformation>>
PIM2PSM

PSM.PresentationPSM.Content

PIM

...RMIJavaBeans XML ...JSP

Generic Platform

Controller

Spring Conf

Model View

<<transformation>>
Content2PSM

<<transformation>>
Navigation2Conf

<<transformation>>
Presentation2PSM

<<transformation>>
Process2Conf

<<transformation>>
PIM2PSM

PSM.PresentationPSM.Content

PIM

...RMIJavaBeans XML ...JSP

Figure 2. Platform specific implementation using a generic platform

 17

Model Driven Software Engineering for Web Applications

As transformations are vital for the success of an MDA approach, this work comprises an
evaluation of currently available transformation languages. The favored choices within the
MDA meta architecture are the Atlas Transformation Language (ATL) [ATL06a] and
QVT [OMG05b] which both originate from the Request For Proposal (RFP) for MOF 2.0
Query/Views/Transformations by the Object Management Group (OMG) [OMG02]. Both
are hybrid transformation languages which combine declarative expressiveness and im-
perative constructs for those parts of a transformation which would be too cumbersome or
even impossible to express with declarative constructs. The QVT standard is still in the
finalization phase and sufficient tool support is not yet available. On the other hand, the
tool support for ATL has already reached a stable state that is satisfactory for application to
real world model driven engineering challenges, therefore ATL is used in this work for all
kinds of transformations.

The context of this work is the UML-based Web Engineering approach (UWE), which is
continuously evolved by the Web Engineering group of the Munich University LMU
[UWE]. The contribution of this work to the further evolution of UWE is essentially the
realization and elaboration of a transformational approach for the model driven develop-
ment of dynamic Web applications supporting the fundamental principles of UWE. This
comprises the:

• Addition of a process concern for supporting complex workflows

• Definition of a metamodel and a corresponding UML profile for the platform inde-
pendent analysis and design

• Definition of transformations that implement the systematic evolution of the plat-
form independent models

• Decomposition of the transformation to the platform specific models

• Development of a generic Web platform that supports the combination of a broad
range of technologies, including a runtime environment that allows the execution of
complex workflows

• Definition of platform specific metamodels and the corresponding transformations
to generate the implementation of Web applications

An important guideline for this work is that no proprietary tools are used. Thus, there are
no restrictions on the employed modeling tool as long as it supports UML 2 profiles and
stores models in the standardized model interchange format. Further, the platform specific

 18

Model Driven Software Engineering for Web Applications

part of this approach can be reused by other Web design approaches if their corresponding
metamodels are made explicit and the transformations to the platform specific models are
adapted accordingly. The metamodel for the platform independent part of this approach
can be understood as a common metamodel for Web application analysis and design,
which can be extended by the special features of other Web design approaches.

1.3 Introduction to the DANUBIA Case Study

The author is involved in the project GLOWA-Danube [GLOWA-Danube], and the Web
user interface to be developed for the environmental simulation system with the name
DANUBIA is used as a running example in this work. The GLOWA-Danube project is
part of the GLOWA initiative, which has been established by the German Ministry of Edu-
cation and Research, to address the various consequences of global change on regional wa-
ter resources in a variety of catchments with different natural and cultural characteristics.

This work is not about DANUBIA, thus only the parts relevant for the Web user interface
are used in the examples. The inner structure of DANUBIA, called “core system”, is de-
scribed in [Ludwig07]. The user interface can be structured into:

• Project management, which serves to organize environmental simulations. A pro-
ject represents a set of simulation runs for a common objective. Simulation runs
may be additionally grouped into scenarios for representing specific assumptions.

• Component management, which serves to administrate simulation components and
their metadata.

• Global data management, which is used for the management of data that is shared
by all simulation projects, such as for example geographical data about the simula-
tion area.

• Result data management, for the administration and processing of the results of
simulation runs.

The project manager part serves as the case study in this work. For more detailed informa-
tion on GLOWA-Danube and DANUBIA the reader is referred to [Ludwig02].

 19

Model Driven Software Engineering for Web Applications

1.4 Organization of the Work

This work is organized as follows: Chapter 2 gives an introduction to model driven soft-
ware engineering (MDSE) in general with focus on the Model Driven Architecture (MDA)
and the meta architecture of the Object Management Group (OMG). Most important, ap-
proaches for model transformations are discussed and classified. In Chapter 3 the basic
constituent parts of the approach of this work are presented. This comprises the application
of the separation of concerns principle for metamodel and transformation decomposition
and a presentation of the transformation environment. Further, an overview of the state of
the art for model driven Web engineering is given. Chapter 4 comprises the platform inde-
pendent part of the approach. For every concern of Web applications the corresponding
part of the metamodel is presented together with transformation rules for the derivation of
the corresponding models from other models. Chapter 5 addresses the platform specific
part of the approach for a proposed generic platform. Thus the specific metamodels for the
target platform are presented together with the corresponding transformation rules from the
platform independent models. In Chapter 6 the results of the previous chapters are applied
to the DANUBIA case study. Finally, Chapter 7 concludes this work with a discussion of
the results, the limitations of the approach and remarks about proposed future research top-
ics.

 20

2 MODEL DRIVEN SOFTWARE
ENGINEERING

Recently, model driven engineering (MDE) has attained considerable attention and it is on
its way to be one of the most promising paradigms in software engineering. A good intro-
duction to the general background of MDE is given in [Bézivin05]. MDE refers to the sys-
tematic use of models as primary engineering artifacts throughout the engineering lifecy-
cle. Models are considered as first class entities, even replacing code as primary artifacts.
Developers are forced to focus on the problem space (models) and not on the (platform
specific) solution space. The complexity of platforms is handled better by model driven
approaches than by third-generation programming languages [Schmidt06]. Also the tool
support for model driven engineering has continually improved over the last years, from
UML CASE tools with a hard coded metamodel and hard coded code generation facilities
to tools with flexible and/or extendible metamodels and model transformation facilities.

The most promising approach to model driven engineering is the Model Driven Architec-
ture (MDA) defined by the Object Management Group (OMG) [Miller03]. Applications
are modeled at a platform independent level and are transformed by means of model trans-
formations to (possibly several) platform specific implementations.

Other approaches are based on domain specific languages (DSL) [Fowler04b]. A domain
specific language is targeted to a particular kind of problems in contrast to general purpose
languages that are supposed to be applicable to a broad range of problems. A DSL can be
either external or internal. External DSLs are written in a different language than the main
programming language of the application and are processed using some form of compiler
or interpreter. Configuration files or Unix mini languages such as awk are examples for
external DSLs. Internal (or embedded) DSLs are embedded in the main programming lan-
guage of the application. Dynamic programming languages such as Lisp, Smalltalk or
Ruby are particularly suited for internal DSLs. There are some analogies between domain
specific languages and the MDA approach. A DSL corresponds to a metamodel and the
counterpart of the meta-metamodel is the grammar for specifying a DSL. In most cases a
DSL can be represented as a MOF metamodel or even as a UML profile (cf. 2.2), thus DSL

Model Driven Software Engineering for Web Applications

approaches can be integrated or combined with MDA approaches. This is particularly use-
ful because some Web frameworks use small domain specific languages, e.g. for configu-
ration purposes. The most prominent example for an approach based on domains specific
languages, also called language workbenches [Fowler05a], is the Software Factories ap-
proach propagated by Microsoft.

A Software Factory is defined as a configuration of languages (i.e. DSLs), patterns,
frameworks and tools that can be used to rapidly produce a set of unique variants of an ar-
chetypical product [Greenfield04]. For a so-called software product line first a common
software architecture is designed and a framework developed that supports this architec-
ture. The construction of a new system then consists of assembling and configuring soft-
ware components provided by the framework. Domain specific languages are used to spec-
ify the particular properties of this new system and they are used for the automatic genera-
tion of glue code and configuration data.

Each of the two approaches, MDA and Software Factories, has its advantages and disad-
vantages. Debates about which approach is better suited for model driven engineering are
still going on, see for example [Bast04]. The important result is that neither of the two ap-
proaches is a clear winner. One misunderstanding often encountered by people defending
Software Factories is that an MDA approach has to exclusively use the general purpose
modeling language UML. This is not true, as arbitrary (MOF) metamodels can be used in-
cluding small and problem tailored metamodels corresponding to small domain specific
languages. One important difference between these approaches relevant for this work is the
higher abstraction level of MDA which consists of a clear differentiation between the plat-
form independent problem space and the platform specific solution space, whereas DSLs
in the Software Factories approach often intermingle the platform specific and the platform
independent aspect. Additionally, MDA focuses on using standards such as UML, MOF
and XMI which results in better tool interoperability. The fact that mature MDA tools are
already available in contrast to tools for Software Factories is an important argument for
MDA, although this may change in the future as Software Factories are strongly promoted
by Microsoft. On the other hand an important ingredient of the Software Factories ap-
proach is the development of frameworks for a product line while the MDA approach does
not give a direction about how to actually generate code from the platform independent
models. For a deeper comparison of these two approaches see [Muñoz05].

Although the approach of this work is mainly based on the MDA approach, some impor-
tant features of the Software Factories approach are adopted for the platform specific part
of this approach. It is assumed that the platform for a Web application generated by this
approach comprises a Web framework tailored for the transformation of the platform spe-

 22

Model Driven Software Engineering for Web Applications

cific models to code. Such a Web framework itself is assembled from different stable Web
and non-Web frameworks such as for example the Apache Tomcat Web framework and
the Spring framework. These frameworks are customized by a particular configuration and
by adding additional elements for the specific approach. The configuration for the resulting
Web framework is generated from platform specific models representing the configuration.
More details are presented in Chapter 5.

The following sections start with an introduction to the Model Driven Architecture. Then
the meta architecture of the OMG and some relevant standards, such as the Unified Model-
ing Language (UML) are discussed. Subsequently, transformation approaches, which are
vital for the success of the MDA, are presented and classified.

2.1 Model Driven Architecture (MDA)

The Model Driven Architecture (MDA) is a specialized approach for model driven engi-
neering. It evolved from the former Object Management Architecture (OMA), which pro-
vided a framework for distributed systems [Soley97]. The three primary goals of MDA are
portability, interoperability and reusability through architectural separation of concerns
[Miller03]. Therefore, a system should be specified independently from the platform that
supports it. Based on platform specifications and the choice of a specific platform the sys-
tem specification should be transformed into the specific platform. The so called MDA pat-
tern is depicted in Figure 3: a platform independent model (PIM) is transformed to a plat-
form specific model (PSM) by means of a transformation that may get some additional in-
put as illustrated by the empty box on the upper right of the figure. In general, transforma-
tions can be between any type of models, e.g. PIM to PIM, and also from models to code.
When PIMs are based on a virtual machine, a so called abstract platform [Almeida04], not
only the PIMs have to be transformed to the specific platform but also the virtual machine.

The MDA approach is further based on a set of other OMG standards such as the Meta Ob-
ject Facility (MOF) and the Unified Modeling Language (UML) which are presented in
2.2. Even though the MDA approach is general in respect to metamodels the OMG propa-
gates the use of UML as modeling language and UML profiles, see 2.2.3 and 2.2.4.

Although transformations are a key factor for the success of MDA, the approach is not
based on a specific transformation language. Transformation approaches for MDA are pre-
sented and discussed in 2.3, with particular emphasis on transformation approaches that
resulted from the Request for Proposal (RFP) for MOF 2.0 Query/Views/Transformations
[OMG02] which was issued because of the need for a future standardized transformation

 23

Model Driven Software Engineering for Web Applications

language. The transformation language QVT is currently in the finalization phase of be-
coming the future standard for transformations in the scope of MDA, but stable tool sup-
port is not yet available, see 2.3.2. For this work the Atlas Transformation Language
(ATL) is used, see 2.3.3. Although the ATL proposal did not succeed in getting accepted
as future QVT standard it fulfills large parts of the requirements from the RFP and has a
technological lead over QVT implementations as the first running implementation was al-
ready available in mid 2005. Further, ATL transformations could be mapped to QVT trans-
formation, thus the result of this work could be migrated to QVT when a stable tool sup-
port is available, see also 2.3.5.

In the following sections some general concepts of the MDA such as model types and
transformation types are presented.

Figure 3. MDA Pattern, from [Miller03]

2.1.1 Model Types

In the context of the MDA the following model types are distinguished: computation inde-
pendent model (CIM), platform independent model (PIM), platform specific model (PSM)
and platform model (PM). The former three models represent views of the system from
different viewpoints and abstraction levels corresponding to the analysis, design and im-
plementation views in conventional (non-MDA) software engineering.

 24

Model Driven Software Engineering for Web Applications

2.1.1.1 Computation Independent Models (CIM)

The MDA Guide states that a computation independent model is a view of a system from
the “computation independent viewpoint” [Miller03]. The intended meaning is less on ab-
stracting from computation but on details about the structure of a system. Other synonyms
for computation independent model are analysis model, domain model or business model,
depending on the context of the adapted MDA approach. The CIM plays an important role
in bridging the gap between those that are experts about the domain and its requirements
on the one hand, and those that are experts of the design and construction of the artifacts
that together satisfy the domain requirements, on the other [Miller03].

2.1.1.2 Platform Independent Models (PIM)

A platform-independent model is a model that is independent of the features of a platform
of any particular type. Platform independence is a matter of degree, so that even a model
for a very general type of platform may be considered platform independent. PIMs can be
targeted for a technology-neutral virtual machine, a general kind of platform or abstract
platform, cf. [Almeida04].

2.1.1.3 Platform Specific Models (PSM)

A platform specific model is targeted for a specific platform. It is derived from a platform
independent model by a transformation, thereby combining the platform independent
specification with platform specific details. Depending on its purpose, a PSM can provide
more or less detail. If it comprises all the details needed for automatically generating an
implementation from the model then it represents a platform specific model of the imple-
mentation. The resulting code is then obtained by serializing the model. On the other hand,
a PSM may require further automatic or manual refinement before obtaining a platform
specific implementation model. In this work, PSMs represent implementation models. In
Figure 4 (left) the platform specific implementation model for a Java class Project with a
field title of type String is depicted using the notation of UML object diagrams. This model
corresponds directly to Java code depicted in Figure 4 (right) which is derived by serializ-
ing the Java model.

 25

Model Driven Software Engineering for Web Applications

Project : JavaClass

String : JavaClass

title : Fie ld

public c lass P rojec t
{
 String t itle ;
}

Figure 4. Example for a platform specific model and the corresponding code

2.1.1.4 Platform Models (PM)

The concept of a platform model in the MDA guide [Miller03] is ambiguous. On the one
hand a platform model provides a set of technical concepts, representing the different kinds
of parts that make up a platform and the services provided by that platform, i.e. a platform
model represents a model of a platform in a general platform metamodel. On the other
hand it also provides, for use in a platform specific model, concepts representing the dif-
ferent kinds of elements available for a platform, i.e. a platform model provides a meta-
model for the platform specific model. In [Wagelaar05] the concept of a platform model
based on description logics is presented. It can be used to automatically select and config-
ure a number of reusable model transformations for a concrete platform.

2.1.2 Transformation Types

The MDA guide [Miller03] distinguished two different types of transformations, model
type transformations and model instance transformations.

2.1.2.1 Model Type Transformations

Model type transformations map instances from a source metamodel (defining the source
types) to instances of a target metamodel (defining the target types). Figure 5 illustrates the
relationships between models, metamodels and transformations. An important aspect is
that transformations themselves are models, i.e. instances of a transformation metamodel.
This allows for higher order transformations, i.e. transformations that generate transforma-
tions, c.f. 2.2.4. All metamodels share the same meta-metamodel (MOF), see 2.2.1. Note
that transformations can also be multi directional, but nevertheless most implementations
will only support unidirectional transformations.

 26

Model Driven Software Engineering for Web Applications

Source
Metamodel

Target Model

Target
Metamodel

Source Model

Transformation

Transformation
Metamodel

Meta-metamodel

<<conformsTo>> <<conformsTo>>

<<source model>> <<target model>>

<<target metamodel>><<source metamodel>>
<<conformsTo>><<conformsTo>>

<<conformsTo>>

Figure 5. Pattern for model type transformations

2.1.2.2 Model Instance Transformations

A model instance transformation is a special kind of model type transformation where ad-
ditional marks are used for selecting model elements from the source model. Thus, these
marks drive the transformation. Marking can be done directly in the source model if the
source metamodel supports an appropriate concept for marking, e.g. UML stereotypes and
tagged values can be used as marks. Alternatively, a separate marking model can be used
that assigns marks to model elements from the source model. Another more abstract kind
of mark is the selection of patterns in the source model. Often, a set of marks is specific for
a particular platform (often defined as UML profile) and marking the platform independent
source model corresponds to the selection of the mapping to a specific platform dependent
concept, e.g. the stereotype «EJB» triggers a transformation to create platform specific EJB
modeling elements.

2.2 Object Management Group Meta Architecture

MDA is not a standalone standard but rather built on a set of different OMG standards. The
first subsection explains the underlying metamodel hierarchy for the MDA approach. Then
follows a description of the meta-metamodel which is the root of the metamodel hierarchy.
Afterwards a short introduction to the Unified Modeling Language (UML) is given to-
gether with its extension facilities because the metamodel used in this work for platform
independent modeling will be an extended UML metamodel.

 27

Model Driven Software Engineering for Web Applications

2.2.1 Metamodel Layering

When dealing with models one has to distinguish between the concepts metamodel, model
and model instance. A metamodel defines a language for specifying models and a model is
an instance of a metamodel. Thus the “instance of” relationship spans a metamodeling hi-
erarchy and because a metamodel is a model itself this hierarchy may be of infinite depth.
The term “model” is used mostly in context of a specific layer Mi in the metamodeling hi-
erarchy with its metamodel residing at layer Mi+1.

The OMG defines a four-layer metamodel hierarchy as foundation of its standards
[OMG05a]. The root of the metamodeling hierarchy at layer M3 is the meta-metamodel.
This meta-metamodel is called Meta Object Facility (MOF) and defines the language for
specifying metamodels (see 2.2.2. and [OMG06a]). MOF is reflective, i.e. it can be used to
define itself, thus there is no need for additional meta-layers above MOF. UML and the
OMG common Warehouse Metamodel (CWM) are examples for metamodels at layer M2,
i.e. languages for specifying models at layer M1. The metamodel hierarchy bottoms out at
M0, containing the run-time instances of model elements defined at M1.

Summarized, the four layers of the OMG metamodeling hierarchy are:

M3: meta-metamodel = metamodel language specification = MOF

M2: metamodel = model language specification

M1: model

M0: model instance

An example of how these metamodel layers are related to each other is given in Figure 6
for UML “Class” and “Instance” model elements. A peculiarity of the UML is that at M1
constrained versions of “runtime” instances at M0 can be modeled, so called snapshots, by
using instances of the metaclass InstanceSpecification. The implications of this so called
“loose metamodeling problem”, which is still present in UML 2, are discussed in [Atkin-
son01].

 28

Model Driven Software Engineering for Web Applications

: Video
title = t it le = "2001 : A Space Odyssey"

InstanceSpecification

Class

 Class Property

aVideo

Video
+title : Str ing

M1 (Run-time instances)

M1 (User model)

M3 (MOF)

M2 (UML)

<<snapshot>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

+classifier

Figure 6. Metamodeling hierarchy example (adapted from [OMG05a])

2.2.2 Meta Object Facility (MOF)

The Meta Object Facility (MOF) serves as the metadata management foundation for MDA
[OMG06a]. It emerged from the need for a standard for data exchange between applica-
tions, especially tools. Metadata, i.e. data about data, is essential for the specification of
structure and meaning of data. MOF provides a standard for specifying metamodels, i.e. a
meta-metamodel, which is the root of a metamodeling hierarchy, as presented in the previ-
ous section. MOF is reflective meaning that MOF itself is defined with MOF.

MOF mappings are important for metadata-driven interchange and metadata manipulation
and therefore vital for the success of the MDA approach. For tool interoperability, espe-
cially UML tools, the mapping to the XML Metadata Interchange (XMI) format is of es-
sential importance. The details about the mapping to XML Document Type Definitions
(DTD) as well as to XML Schema definitions are described in [OMG05c]. Other mappings
are available, for example to the Java Metadata Interface (JMI) [JMI], which allows for
direct manipulation of models from within the Java programming language, see also
2.3.1.3.

The common modeling concepts of MOF Version 2 as well as UML Version 2 have been
refactored to the common UML Version 2 Infrastructure library, which is reused in both

 29

Model Driven Software Engineering for Web Applications

specifications [OMG05a], thus MOF modeling corresponds to a subset of UML class mod-
eling and even its graphical notation can be reused for MOF modeling.

The MOF specification is split up into two packages, Essential MOF (EMOF) and Com-
plete MOF (CMOF), corresponding to different conformance levels of tool interoperabil-
ity. EMOF comprises the kernel metamodeling capabilities of MOF and closely corre-
sponds to the facilities found in object oriented programming languages. The primary goal
of EMOF is to allow simple metamodels to be defined with simple concepts while CMOF
metamodels can be expressed as EMOF metamodels using EMOF extension mechanisms
(similar to using UML profiles).

2.2.3 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a widely recognized general purpose language
for modeling software systems as well as non-software systems. It is extendable through its
profile mechanism for customization of the modeling language, see also the next section.
The abstract syntax of the UML is specified as a MOF metamodel and for the concrete
syntax a graphical notation is defined [OMG05a]. UML is suitable for modeling the static
as well the dynamic aspects of a system. A UML model is usually edited with a UML tool
by creating UML diagrams, which in turn are views of a UML model.

The first major version of the UML standard was developed in the late 90ties by the “three
amigos” Grady Booch, Ivar Jacobson and James Rumbaugh, who joined efforts to unify
earlier approaches for object-oriented modeling languages. The second major version
UML 2 is the result of an initiative of the OMG, which issued three Requests for Proposals
(RFP) for the three parts of the specification of the actual version of the UML. The final
specifications were published in 2006. The biggest changes between UML 1 and UML 2
relevant for this work are the improved extension mechanisms by UML profiles (see also
the next section) and the improved support for activity modeling. The former is needed for
mapping the platform independent metamodel for Web applications to a UML profile, and
the latter is needed for modeling Web processes.

The specification of UML 2 is structured in three parts. The infrastructure specification
[OMG05a] defines the core static concepts of the UML, such as classes and associations. It
is reused for the specification of the meta-metamodel MOF (cf. 2.2.2) as well as for the
superstructure specification [OMG05a], which adds concepts for enhanced features of the
UML, such as use cases or activities. Another part of the specification deals with the Ob-
ject Constraint Language (OCL) [OMG06b]. The superstructure specification is organized
in language units, such as for example actions, activities or classes. Additionally, each lan-
guage unit is divided into different compliance levels for supporting different levels of

 30

Model Driven Software Engineering for Web Applications

complexity of a language unit. A complete description of the UML is out of the scope of
this work, for more details see [OMG05a] or [Hitz05].

2.2.4 UML Extensions

Extensions of the UML can be either heavyweight or lightweight. Heavyweight extensions
are based an a modified UML metamodel with the implication that the original semantics
of modeling elements is changed and that the externalized form is no longer compatible
with UML tools. Lightweight extensions are called UML profiles and are based on the ex-
tension mechanisms of the UML1. A profile consists of a number of stereotypes, which in
turn represent extensions of UML metaclasses. Although stereotypes themselves are spe-
cializations of classes and thus may contain attributes (formerly known as tagged values),
it is not possible to have an association between two stereotypes or between a stereotype
and a metaclass. The effect of new (meta)associations within profiles can be achieved in
limited ways either by adding new constraints within a profile that specialize the usage of
some associations of the reference metamodel, or by extending the Dependency metaclass
with a stereotype and defining specific constraints on this stereotype [OMG05a]. Unfortu-
nately, the capabilities of UML modeling tools have to be taken into account when defin-
ing a UML profile. For instance, it is not possible to define dependency relationships be-
tween arbitrary kinds of model elements, as for example between properties that are mem-
bers of an association. Therefore, another more pragmatic solution is to use the full quali-
fied names of model elements for referencing meta association ends.

A special case of heavyweight extensions are “profileable” extensions [Baresi02], which
means that it is possible to map the metamodel to a UML profile. Then standard UML
CASE-tools with support for UML profiles, i.e. stereotypes, tagged values and OCL con-
straints can be used to create the models for the extended metamodel. In addition, it is pos-
sible to define meta transformations, which transform back and forth from the profile defi-
nition to the heavyweight metamodel definition, see Figure 7. Also a higher order trans-
formation can be defined that transforms from a profile to transformations (!) that trans-
form back and forth between heavyweight metamodel instances and UML models with the
corresponding profile applied. In [Abouzahra05] these transformations are realized using
ATL, cf. 2.3.3.

1 In general profiles are not restricted to UML but can be defined for any MOF metamodel

 31

Model Driven Software Engineering for Web Applications

This work uses “profileable” heavyweight extensions of the UML and a UML profile as
notation. This allows the definition of the particular modeling elements and transforma-
tions for Web application development at the right level of abstraction.

NavigationClass

Class

<<stereotype>>
NavigationClass

[Class]

<<metaclass>>
Class

metamodel UML profile

transformation

NavigationClass

Class

<<stereotype>>
NavigationClass

[Class]

<<metaclass>>
Class

metamodel UML profile

transformation

Figure 7. Transformation between metamodel and UML profile

2.3 Transformation Approaches

Transformations are vital for the success of the MDA approach. Expressed exaggeratedly,
transformations lift the purpose of models from documentation to first class artifacts of the
development process. In this section different transformation approaches are presented and
classified. The two approaches QVT and ATL are explained in more detail in separate sec-
tions. Finally, transformation modularization and the reasons for choosing ATL as trans-
formation language are discussed.

2.3.1 Classification

Czarnecki et al. propose a possible taxonomy for model transformation approaches
[Czarnecki03]. The taxonomy is described with a feature model [Czarnecki98] for making
design choices for model transformations explicit. The following sections represent a clas-
sification to fit current (and future) model transformation approaches. A specific approach
may fit in several classes. Although the same classes as presented in [Czarnecki03] are
used in the following, an updated selection of transformation approaches is discussed with
the focus more on the overall impact of a specific transformation approach within the con-
text of this work than on its detailed features.

 32

Model Driven Software Engineering for Web Applications

2.3.1.1 Hard-Coded Transformations

In contrast to generic transformation approaches, in hard-coded transformations the meta-
models and the transformations rules are implemented in a specific programming language.
Thus they do not allow an easy adaptation to changes in the metamodels or transformation
rules. An example for this class of transformation approaches is UWEXML, which is pre-
sented in 3.4.1.2.

2.3.1.2 Model-To-Code Approaches

Model-to-code transformations can be seen as specialized model-to-(platform specific)
model transformations, i.e. a model-to-code transformation is equivalent to a transforma-
tion to the platform specific metamodel with subsequent serialization to code. Pure model-
to-code approaches are therefore restricted in their application to simple PIM-to-PSM
transformations.

Visitor-based approaches are based on the Visitor design pattern [Gamma95]. A visitor
mechanism is provided to traverse the internal representation of a model and write code to
a text stream. An example for this approach is Jamda [Jamda], an object-oriented Java
framework providing a set of classes to represent UML models, an API for manipulating
models, and a visitor mechanism to generate code. It does not support the MOF standard to
define new metamodels, but new model element types can be introduced by subclassing
predefined Java classes.

The majority of currently available MDA tools are template-based model-to-code ap-
proaches, e.g. AndroMDA [AndroMDA], OptimalJ [OptimalJ], XDE [XDE] and ArcStyler
[ArcStyler]. AndroMDA is based on the template engines Velocity and XDoclet. A tem-
plate is a piece of target code that contains meta tags to access the content of the source
model and for iterative code expansion, see [Cleaveland01] for an introduction to template
based approaches. In comparison to visitor-based approaches templates are more similar to
the generated code.

The openArchitectureWare (oAW) tool platform [OAW] describes itself as “a suite of
tools and components assisting with model driven software development built upon a
modular MDA/MDD generator framework implemented in Java supporting arbitrary im-
port (design) formats, meta models, and output (code) formats”. In fact the oAW platform
is a powerful tool suite for straightforward transforming models (or arbitrary input data) to
code. The main differences, e.g. to the more general QVT approach, are: the concept of
models and metamodels only holds on the input side of a transformation. The output of a
transformation is plain and unstructured text, i.e. code. Although the output can represent a

 33

Model Driven Software Engineering for Web Applications

model at low level, such as XMI, and from this a model instance could be instantiated, this
approach is considered more a hack than a reasonable use of the oAW framework. Trans-
formations are expressed as transformation templates in a template language called XPand.
A transformation template is defined for a specific metaclass and executed on all instances
of it. Transformations can be composed and inherited. The output of a transformation tem-
plate is a concatenation of literal code and properties of the model element (i.e. instance of
the metaclass). One of the main practical benefits of using the oAW platform is the large
number of UML tools that is supported for constructing the input model. By customizing
the so called instantiators, new dialects or metamodel extensions can easily be adopted. A
basic UML metamodel represented with Java classes can be used as is or be extended by
custom metamodel classes either manually or by means of a metamodel generator. Also
handling the UML extension mechanisms such as stereotypes and tagged values is easily
accomplished. Additionally, aspects are supported as well in the metamodel as in the trans-
formation templates. The framework integrates into the Ant deployment tool and into the
Eclipse development platform.

2.3.1.3 Direct-Manipulation Approaches

Direct-manipulation approaches can access an internal model representation via an Appli-
cation Programming Interface (API) for a particular programming language, such as Java.
Thus, direct-manipulation approaches use hard-coded transformation rules, but they rely on
standardized interfaces or frameworks for manipulating models.

The Java Metadata Interface (JMI) Specification [JMI] is the result of a Java Community
Process for the implementation of a dynamic, platform-neutral infrastructure that enables
the creation, storage, access, discovery, and exchange of metadata within the Java envi-
ronment. JMI is based on the Meta Object Facility (MOF) specification [OMG06a], which
defines a generic programming mechanism (using IDL) that allows for the discovery,
query, access, and manipulation of metamodel instances, either at design time or at run-
time. The semantics of any modeled system can be completely discovered and manipulated
with standard Java interfaces through the modeling components defined by JMI, i.e. plat-
form-independent discovery and access of metadata is possible. These interfaces are gener-
ated automatically from MOF models, for any kind of metamodel. Additionally, meta-
model and metadata interchange via XML is enabled by JMI’s use of the XML Metadata
Interchange (XMI) [OMG05c] specification. Applications using JMI can use the metadata
to dynamically interpret the meaning of information, take action on that information and
automate transactions across disparate systems and data sources. [Jamda] for example is
based on JMI.

 34

Model Driven Software Engineering for Web Applications

The Novosoft Metadata Framework (NSMDF) [NSMDF] is based on the JMI specifica-
tion. Generated classes conform to the JMI specification and also additional services like
event notification, undo/redo support are provided. The metadata repository is an in-
memory implementation. The framework API itself is generated from the MOF specifica-
tion, where the shipped (binary) distribution was generated for MOF version 1.3. Libraries
for handling UML 1.3 und 1.4 models in the version 1.1 of the XMI interchange format are
available in binary form for the direct usage to process UML models. Unfortunately, this
version of NSMDF is not integrated in the actual version of the open source CASE tool
ArgoUML [ArgoUML]. Instead, it uses the former version of the framework called
NSUML with support for UML 1.3 and the version 1.0 of the XMI interchange format.
Due to huge discrepancies between the UML 1.3 and 1.4 metamodel an easy transforma-
tion between the different interchange formats is not trivial. The tool ArgoUWE
[Knapp03] for development of Web application for the methodology UWE is based on Ar-
goUML, hence it is an example for a direct-manipulation approach using NSMDF, see also
3.4.1.1.

NetBeans [NetBeans] is another open source project sponsored by Sun Microsystems. It
hosts the NetBeans integrated development environment (IDE) and the NetBeans platform,
a software development framework. NetBeans is based on a modular architecture and one
such module is the Metadata Repository (MDR). It can be used either within the develop-
ment environment or separately. The MDR subproject is another JMI implementation.
Metamodels have to be defined using the version 1.4 of MOF, although a transformation
from MOF 1.3 models is done transparently. The metadata repository is a file based im-
plementation. The automatization of metadata tasks is encouraged by the definition of Ant
tasks. Furthermore, with the UML2MOF tool it is possible to transform UML models us-
ing the UML Profile for MOF [OMG06a] to MOF models, i.e. a regular UML CASE tool
can be used to define MOF models.

2.3.1.4 Relational Approaches

Relational approaches are declarative approaches based on mathematical relations. Basi-
cally, a relation is specified by defining constraints over the source and target elements of a
transformation. Without special constructs relations cannot be executed and have no direc-
tion. Relational approaches with executable semantics can be implemented with logic pro-
gramming using unification-based matching, search, and backtracking, see [Gerber02].
QVT (see 2.3.2) and ATL (see 2.3.3) support the relational approach and additionally pro-
vide imperative constructs, i.e. they are hybrid approaches.

 35

Model Driven Software Engineering for Web Applications

2.3.1.5 Graph-Transformation-Based Approaches

Graph-transformation-based approaches are declarative approaches based on the theoreti-
cal work on graph transformations. Typed, attributed, labeled graphs [Andries96] are par-
ticularly suitable to represent UML-like models.

When applying a graph transformation rule a left-hand-side graph pattern is matched and
replaced by a right-hand-side graph pattern. In addition to the left-hand-side graph pattern
matching conditions can be defined, e.g. negative conditions. Additional logic is needed to
compute target attribute values. In most approaches, rule scheduling is done externally in-
cluding non-deterministic selection, explicit condition, and iteration (including fixpoint
iterations). Fixpoint iterations can be used for computing transitive closures. An introduc-
tion to the concept of graph transformations is given in [Heckel05].

The Attributed Graph Grammar System (AGG) is a rule based visual language supporting
an algebraic approach to graph transformation [AGG]. It aims at specifying and rapid pro-
totyping applications with complex, graph structured data. AGG may be (re)used (without
GUI) as a general purpose graph transformation engine in high level Java applications us-
ing graph transformation methods. The special characteristics of AGG are [AGG]: com-
plex data structures are modeled as graphs which may be typed by a type graph. Graphs
may be attributed by Java objects and types. Basic data types as well as object classes al-
ready available in Java class libraries may be used and in addition, user-defined Java
classes can be used. Graph rules may be attributed by Java expressions, which are evalu-
ated during rule applications. Additionally, rules may have attribute conditions being boo-
lean Java expressions. The formal semantics of rule application is given in terms of cate-
gory theory, by a single categorical construction known as a pushout in an appropriate
category of attributed graphs with partial morphisms. This approach is also named single-
pushout approach (SPO). For more details about the formal background of AGG see
[Ehrig06]. The AGG tool environment provides graphical editors for graphs and supports
visual interpretation and validation. The Tiger project [Ehrig05] extends AGG by a con-
crete visual syntax definition for flexible means for visual model representation, including
the generation of visual editors as plug-ins for the Eclipse framework.

Another promising approach based on graph transformations is VIATRA which currently
serves as the underlying model transformation technology of several ongoing European
projects mainly in the field of dependable systems [VIATRA]. The main objective of
VIATRA is the specification of model transformations in a mathematically precise way. In
addition to graph transformations, a rule-based specification formalism for abstract state
machines [Börger03] is provided, which allows the use of imperative constructs in addition
to the declarative constructs provided by graph transformations. Graph transformation

 36

Model Driven Software Engineering for Web Applications

rules are assembled to complex model transformations by abstract state machine rules,
which provide a set of common control structures with precise semantics frequently used
in imperative or functional languages.

Other graph-transformation approaches for model transformation include MOFLON [Ame-
lunxen06], UMLX [Willink03], GreAT [Agrawal03], ATOM [Lara02], PROGRES
[Schürr89] and BOTL [Marschall03].

2.3.1.6 Structure-Driven Approaches

The idea behind structure driven approaches is that a transformation first creates a hierar-
chical structure of the target model. Then attributes and references are set in the target
model. OptimalJ is an example for this approach [OptimalJ]. So called incremental copiers
that have to be specialized by the user copy elements from the source to the target model.
Then the target model can be changed by the transformation implementation. The mapping
of specific source types is implemented by defining a corresponding Java method with the
source type matching the input parameter type of the method.

2.3.1.7 Hybrid Approaches

Hybrid approaches combine declarative and imperative constructs. QVT (see 2.3.2), ATL
(see 2.3.3) and VIATRA (see 2.3.1.5) are hybrid approaches. Another approach is XDE
[XDE], which is based on The-Gang-Of-Four design pattern [Gamma95]. Thus, the basic
concepts are parameterized collaborations or UML collaboration diagrams to model design
patterns. Patterns can be associated to so called Scriptlets, which are similar to JSPs and
responsible for model-to-code transformations.

2.3.1.8 Other Model-To-Model Approaches

Some transformation approaches do not fit into any of the classes presented in the previous
sections, for example XSLT [XSLT], a declarative and functional transformation language
for transforming XML documents. As MOF compliant models can be represented in the
XML Metadata Interchange (XMI) format (cf. 2.2.2), XSLT could in principle be used for
model-to-model transformations. But this approach has severe problems with scalability,
thus XSLT is not suited for more complex transformations

 37

Model Driven Software Engineering for Web Applications

2.3.1.9 Discussion

In the previous sections different classes of transformation approaches have been pre-
sented. This section discusses the advantages and disadvantages of each transformation
class regarding the use of it within an MDA approach.

Hard-coded transformations and direct-manipulation approaches are too low-level because
transformations have to be implemented directly by the user in some programming lan-
guage. Model-to-code approaches could only be used for the last step in an MDA process
when models have to be serialized to code. Structure-driven approaches are too specialized
because they can only be used for certain kinds of correspondences between source and
target elements. Relational approaches are a good compromise between flexibility and de-
clarative expressiveness.

From the academic viewpoint approaches based on graph transformations may seem the
best choice because of their high expressiveness and declarative nature. The theoretical
foundation of graph transformations eases solving formal questions regarding properties of
transformations. But also the complexity stemming from the non-determinism in the rule
scheduling and application strategy hinders the practical applicability of this approach. For
example the termination of the transformation process has to be studied carefully.

Hybrid approaches combine declarative expressiveness and imperative constructs for those
parts of a transformation which would be too cumbersome or even impossible to express
with declarative constructs.

2.3.2 Query/Views/Transformations (QVT)

QVT originates from the OMG Request for Proposals (RFP) for MOF 2.0
Query/Views/Transformations [OMG02]. There have been eight submissions with the two
most promising being QVT-P [QVTP03] and ATL (see 2.3.3). Some of the submitters (in-
cluding those of QVT-P and ATL) joined to form the QVT-Merge group. The first version
of the future QVT standard is currently in the finalization phase [OMG05b]. QVT is a hy-
brid transformation language, i.e. it has declarative and imperative constructs. The declara-
tive constructs stem from the original QVT-P proposal. Transformations can be unidirec-
tional or multi-directional, the latter implies the specification of an inverse transformation
for imperative transformations. A special use of transformations is to check models, i.e.
without modification of the participating models. QVT also allows incremental updates.

The declarative part is based on the concept of relations and has a two-level architecture:
Relations at the higher level and Core at the lower level. The Relations language allows the

 38

Model Driven Software Engineering for Web Applications

declarative specification of the relationships between models. It supports complex object
pattern matching and has a visual notation similar to UML object diagrams. A Relations
model can be mapped to Core, the lower level declarative language of QVT for execution
on an engine implementing the Core semantics. The Core language only supports pattern
matching over a flat set of variables by evaluating conditions over those variables against a
set of models. All model elements of source and target are treated symmetrically. Because
of its simplicity it is easier to define semantics for the Core language, see [OMG05b]. As
Relations models can be mapped to Core models, Core is mainly used for implementing
the declarative part of QVT. As in ATL (see 2.3.3) there is an analogy to Java and the Java
Virtual Machine: Relations corresponds to the language Java and Core to the Java Virtual
Machine that actually executes the transformation or program respectively. The transfor-
mation that maps Relations models to Core models plays the role of the Java Compiler.

There are two mechanisms for invoking imperative implementations of transformations
from Relations or Core: one standard language, called Operational Mappings using OCL
with side effects, as well as non-standard black-box implementations of MOF operations.
Further there is a one-to-one mapping between operations of imperative implementations
to relations in Core or Relations, meaning that even if only the imperative part of QVT is
used, there is always an implicit declarative specification that is refined by the imperative
implementation.

The relationship between the different parts of QVT is depicted in Figure 8.

Figure 8. Relationships between QVT parts [OMG05b]

 39

Model Driven Software Engineering for Web Applications

2.3.2.1 Declarative Rules (Relations)

In the Relations language a transformation is specified as a set of relations that must hold
for the participating models. A basic relation definition for an example transformation that
maps UML classes to Java classes looks like this:

relation Class2JavaClass
{
 domain uml c : Class { name = cn }
 domain java jc : JavaClass { name = cn }
}

A relation definition comprises a list of domain pattern definitions. A domain is a distin-
guished typed variable that can be matched in a model of a given type. In the example
there are two domains for UML and Java models, respectively. A domain pattern can be
considered as a template for objects and their properties that must be located, modified, or
created in a candidate model to satisfy the relation, see [OMG05b] for the definition of
syntax and semantics. In the example given above, the property name in both patterns is
bound to the same variable implying that they should have the same value. When execut-
ing the transformation the relation above does not have any direction nor will the partici-
pating models be modified, but inconsistencies are reported. Thus, this represents a mere
model checking transformation.

Domains can be marked as checkonly or enforced. Checkonly domains are merely checked
if there exists a valid match that satisfies the relationship. Enforced domains are first
checked and when the checking fails, the target model is modified so that the relation
holds. For more details about the semantics see [OMG05b]. The direction of the transfor-
mation is from checkonly domains to enforced domains. The example with enforcement of
creating the Java classes (if they don’t exist yet) looks like this:

relation Class2JavaClass
{
 checkonly domain uml c : Class { name = cn }
 enforce domain java jc : JavaClass { name = cn }
}

A very important aspect for modeling transformations is how transformation rules can be
composed. This allows giving a structure to transformation rules and facilitates reuse by
decomposing complex transformations into many small ones. In QVT transformation rules
can be composed by using either the when part or the where part of a rule. The when part

 40

Model Driven Software Engineering for Web Applications

defines the guard condition of a rule. It can be used to express which rules have to be exe-
cuted before executing a rule. The where part on the other hand can be used to trigger other
transformations after a rule is executed. The following example uses the when part to com-
pose two rules for mapping packages and their contained classes to Java:

relation Package2Package
{
 checkonly domain uml p : Package
 {
 name = pn
 }
 enforce domain java jp : Package
 {
 name = pn,
 isImported = false
 }
}

relation Class2JavaClass
{
 checkonly domain uml c : Class
 {
 name = cn,
 package = p : Package {}
 }
 enforce domain java jc : JavaClass
 {
 name = cn,
 package = jp : Package {}
 }
 when
 {
 Package2Package(p, jp);
 }
}

The other variant using the where part (and the first version of Class2JavaClass) looks like
this:

relation Package2Package
{
 checkonly domain uml p : Package
 {
 name = pn,

 41

Model Driven Software Engineering for Web Applications

 ownedType = c : Class {}
 }
 enforce domain java jp : Package
 {
 name = pn,
 isImported = false,
 classes = jc : JavaClass {}
 }
 where
 {
 Class2JavaClass(c, jc);
 }
}

It case of using when the referenced rule is triggered before, in case of where after the ref-
erencing rule, thus it depends on the transformation design, which solution is more appro-
priate.

In addition to the textual notation there is a graphical notation for the Relations language
that is similar to UML object diagrams. The example relation Class2JavaClass in the
graphical notation is depicted in Figure 9. The strength of the graphical notation is the
visualization of domain patterns in a intuitive way, hence facilitating the acceptance of
QVT among users. For more information about the graphical notation see [OMG05b].

c : Class

name = cn

jc : JavaClass

name=cn

Class2JavaClass

«domain» «domain»

uml : UML java : JAVA

C E

c : Class

name = cn

jc : JavaClass

name=cn

Class2JavaClass

«domain» «domain»

uml : UML java : JAVA

C E

Figure 9. Graphical notation of QVT Relations

2.3.2.2 Imperative Rules (Operational Mappings)

The Operational Mappings language can either be used for a complete imperative approach
or for complementing declarative relations with an imperative implementation (hybrid ap-
proach). A transformation in the Operational Mappings language comprises an entry opera-
tion called main and a set of mapping operations. A mapping operation is syntactically de-
scribed by a signature of a source element type, a guard (a when clause), a mapping body

 42

Model Driven Software Engineering for Web Applications

and a postcondition (a where clause). Even if it is not explicitly notated in the concrete
syntax, a mapping operation is always a refinement of a relation, which is the owner of the
when and where clauses. The method body of a mapping operation comprises imperative
expressions and object expressions. Imperative expressions are a marriage between OCL
expressions and typical imperative expressions as found for example in Java. Object ex-
pressions provide a high-level construct for creating and/or updating model elements. For
more details about syntax and semantics of Operational Mappings see [OMG05b].

The following example shows the imperative realization of the transformation rules in the
previous section. Operations are always called explicitly by using the map operator. The
entry point of the transformation is the entry operation main.

main()
{
 uml.objectsOfType(Package)->map package2Package();
}

mapping Package::package2Package() : Package
{
 name := self.name;
 classes := self.ownedType->map class2JavaClass();
}

mapping Class::class2JavaClass() : JavaClass
{
 name := self.name;
}

2.3.2.3 Tools

As already stated in the introduction, the specification of QVT is currently in the finaliza-
tions phase, and therefore fully compliant tool support is not yet available, although initial
efforts have been made. For example, the current version of the modeling tool Together
Architect 2006 for Eclipse2 provides a partial implementation of the imperative part of
QVT, i.e. an implementation for operational mappings. An alternative could be the (possi-
bly bi-directional) mapping from the relational part of QVT to a graph-based transforma-
tion approach such as AGG or VIATRA but, as already stated in 2.3.1.9, this would be in-

2 Together Architect product homepage http://www.borland.com/de/products/together/index.html

 43

Model Driven Software Engineering for Web Applications

sufficient without a mapping of the imperative part of QVT. The lack of tool support at the
time of writing was one of the major reasons for choosing ATL over QVT, but this deci-
sion was not made without interoperability between the approaches in mind, see also 2.3.5.

2.3.3 Atlas Transformation Language (ATL)

The Atlas Transformation Language (ATL) [ATL06a] originated as proposal from the
ATLAS INRIA & LINA research group3 to the Request For Proposal (RFP) document for
MOF 2.0 Query/Views/Transformations by the Object Management Group (OMG)
[OMG02]. Although the ATL proposal did not succeed in getting accepted as future QVT
standard the ATLAS INRIA & LINA research group joined the QVT-Merge group, which
is actually finalizing the first version of the future QVT standard, see 2.3.2. Nonetheless,
ATL fulfills large parts of the requirements from the RFP and has a technological lead over
QVT implementations as the first running implementation was already available in mid
2005. A large and growing user community together with the active members of the re-
search group ensures that ATL keeps evolving. Right now, it has already reached a stable
state that is satisfactory for application to real world model driven engineering challenges.
Some of the shortcomings of the early versions of ATL in comparison to QVT, such as
missing M:N transformations and deficiencies for composing transformations, are elimi-
nated with the version ATL 2006, see [Jouault06b].

The model transformation language of ATL is specified as a metamodel (abstract syntax)
and as a concrete textual syntax. ATL transformations are unidirectional, operating on a
number of read-only source models and producing a number of write-only target models.
During the execution of a transformation source models may be navigated, but changes are
not allowed. Target models cannot be navigated. ATL is a hybrid model transformation
language containing a mixture of declarative and imperative constructs. The preferred de-
clarative style allows to simply express mappings between the source and target model
elements. However, when coping with problems of higher complexity, imperative con-
structs ease the specification of mappings that can hardly be expressed declaratively. A
transformation program is composed of rules that specify how source model elements are
matched and navigated to create and initialize the elements of the target models. OCL is
used for matching model elements and for specifying properties of target elements. Besides
basic model transformations (called modules), ATL defines an additional model querying

3 Homepage of the ATLAS INRIA & LINA research group: http://www.sciences.univ-nantes.fr/
lina/atl/atlProject/atlas/

 44

Model Driven Software Engineering for Web Applications

facility that enables to specify requests onto models. ATL also allows code factorization
through the definition of ATL libraries.

ATL provides both implicit and explicit scheduling. The implicit scheduling algorithm
starts with calling a rule that is designated as an entry point and may call further rules. Af-
ter completing this first phase, the transformation engine automatically checks for matches
on the source patterns and executes the corresponding rules. Finally, it executes a desig-
nated exit point. Explicit scheduling is supported by the ability to call a rule from within
the imperative block of another rule. ATL transformation descriptions are transformed to
instructions for the ATL Virtual Machine, which executes the transformations. This is
analogous to Java and the Java Virtual Machine. The semantics of ATL has been formal-
ized by using abstract state machines [Ruscio06].

The current implementation of ATL still has some limitations. For example, rule organiza-
tion is flat making it hard to organize large numbers of rules.

2.3.3.1 Modules

An ATL module corresponds to a model to model transformation. The structure of an ATL
module comprises a header section, an optional import section, a set of helpers and a set of
transformation rules. In the header section source and target models of the transformation
are defined. External libraries may be included in the import section. Then a set of helpers
may be defined. Helpers may be global variables or functions defined with OCL. Functions
can be global or bound to the context of a metaclass. The different types of rules are de-
scribed in the following subsections.

2.3.3.1.1 Matched Rules

A matched rule is the default construct for the declarative part of transformations in ATL.
The definition comprises the source pattern, the target pattern, an optional imperative block
and the optional definition of local variables. The source pattern consists of source pattern
elements. Each source pattern element defines a local model element variable with a given
type (i.e. metaclass) from a given metamodel. The set of potential matches of the rule is the
cartesian product of the sets matching each source pattern element. A source pattern ele-
ment matches all model elements that conform to the type of the model element variable.
This set can optionally be constrained by a guard condition expressed in OCL. Each match
of the rule generates a target element for each target pattern element. Again each target pat-
tern element defines a local model element variable with a given type (i.e. metaclass) from
a given metamodel. In addition, a target pattern element comprises a set of bindings that
assign values expressed in OCL to meta properties of the generated target elements. Fi-

 45

Model Driven Software Engineering for Web Applications

nally, imperative code in the optional imperative section is executed. For details about syn-
tax and semantics see [ATL06a]. The syntax of a matched rule definition has the following
form:

rule Name
{
 using -- optional
 {
 variable : type = OCL-expression;
 ...
 }
 from s : Source-Metamodel!Source-Metaclass [(OCL-expression)] -- optional guard
 [, ...]
 to t : Target-Metamodel!Target-Metaclass
 (
 target-meta-property <- OCL-expression [, ...]
)
 [, ...]
 do -- optional
 {
 imperative part of the rule
 }
}

It is important to know that (currently) each tuple of source model elements must not be
matched by more than one (matched) rule. Thus, source patterns have to be designed care-
fully and in case of equal types matched by different rules, it must be ensured that the
guards of these rules partition the source elements into disjunctive sets. This restriction en-
sures that the rule matching algorithm terminates, because each source model element can
be matched at most once.

The following example demonstrates the use of matched rules to transform a UML model
to a Java model, i.e. a model representing a Java program, which can be transformed to
Java code. One rule is responsible for mapping UML classes to Java classes, while another
rule is responsible for mapping UML packages to Java packages. Bindings for the name
attributes of Java classes and packages are defined. In addition, these two rules are implic-
itly related by the binding expression for the package attribute of the matched rule
Class2JavaClass, which references the UML package in the source model to which the
UML class belongs. The resolution algorithm of ATL resolves this to the target model
element generated by the matched rule Package2Package.

 46

Model Driven Software Engineering for Web Applications

rule Package2Package
{
 from p : UML!Package
 to jp : JAVA!Package
 (
 name <- p.name
)
}

rule Class2JavaClass
{
 from c : UML!Class
 to jc : JAVA!JavaClass
 (
 name <- c.name,
 package <- c.package
)
}

2.3.3.1.2 Lazy Rules

A lazy rule is a declarative rule, which is explicitly called. It is used for the application
from within a matched rule. Lazy rules are extensions of matched rules but are not trig-
gered automatically on elements of the source model, but called explicitly every time when
referenced in a binding. Additionally, unique lazy rules are only executed once, thus when
called multiple times they always return the same result.

2.3.3.1.3 Called Rules

A called rule is an imperative rule which is explicitly called. It is similar to a procedure
with parameters in traditional programming. Called rules are typically used for dealing
with global variables or generating output elements independent from a matching source
pattern. Instead of a source pattern a parameter list has to be defined. They can only be
called from imperative blocks of other rules.

2.3.3.1.4 Entrypoint and Endpoint Rules

Entrypoint rules and endpoint rules are called rules without parameters. Entrypoint rules
are called before application of the declarative (i.e. matched) rules to the input model and
endpoint rules are called after the output model has been generated.

 47

Model Driven Software Engineering for Web Applications

2.3.3.1.5 Rule Inheritance

Inheritance is an important concept in object-oriented approaches [Gall95]. A class may
inherit fields and methods from its superclass. Inherited methods can be overwritten and
new fields and methods can be added to a subclass. One of the proclaimed benefits of us-
ing inheritance is that it eases code reuse. Also many design patterns are based on the in-
heritance concept [Gamma95].

In ATL the general concept for inheritance is transferred to matched transformation rules.
When several rules share a common part, this part can be moved upwards in the rule in-
heritance hierarchy to the parent rule. To specify polymorphic rules the parent rule speci-
fies source and target element names and types which are inherited to its children. Rules
may be abstract, i.e. they cannot be applied directly.

A child rule matches a subset of what its parent rule matches. The source pattern must have
the same number of elements. Each child source element must correspond to a unique par-
ent source element and each child element type must conform to a type of the correspond-
ing parent element, i.e. be of the same type or a subtype. The guards of the source elements
are anded. Further, a child rule specializes target elements of its parent rule. Target ele-
ments can be added in child rules. Child target elements with corresponding parent ele-
ments, i.e. with the same variable name, can have different types (but must be a subtype of
the parent type), and have more bindings or redefine bindings. Only one child rule can
match. There may be at most one default subrule including the parent rule if it is not ab-
stract. A default rule is a rule without guard that is matched by default.

The informal semantics for rule inheritance is:

1. root rules (i.e. without parent) are matched,

2. for each potential match, every subrule with a guard is tested,

3. the one that matches, if any, is selected,

4. if none matches, the default rule, if any, is selected,

5. if selected rule is not a leaf (i.e. if it has subrules), then go to 2

6. target elements are created by using the most specific types.

The most specific bindings are used to initialize target elements, i.e. redefined bindings in
the parent rule are not executed.

 48

Model Driven Software Engineering for Web Applications

2.3.3.2 Queries

An ATL query corresponds to a model to primitive data type transformation. A query
comprises an OCL query expression. In this work queries are used for checking constraints
and for the serialization of platform specific models to code. For the latter the query ex-
pression iterates over all elements of a specific type in the source model using ATL helpers
to recursively construct a string that corresponds to the code. Examples are given in Chap-
ter 5. For checking constraints with queries see 4.1.1.

2.3.3.3 Refining Mode

Two different execution modes are available for ATL modules, the normal execution mode
and the refining execution mode. In the normal execution mode an initially empty target
model is created from the source model. The refining execution mode is used for inplace
transformations, i.e. transformations that modify a given source model resulting in a target
model. Technically, in the refining mode of ATL, transformation rules are executed for
source elements that should be modified. All other source elements are then implicitly cop-
ied to the target model by the transformation engine. Within this work, the normal execu-
tion mode is used for the transformation from the platform independent design models to
platform specific models as presented in Chapter 5. The refining execution mode is used
for the transformation within the platform independent design models as presented in
Chapter 4.

2.3.3.4 Tools

The ATL Integrated Development Environment (IDE)4 is developed as a plug-in for the
Eclipse platform5. The plug-in comprises an editor with syntax highlighting and code out-
line, code wizards, the administration of transformation runtime configurations and a de-
bugger. For further details see [ATL05a]. The Kernel MetaMetaModel (KM3) [ATL05d]
allows the definition of metamodels in an easy Java-like textual notation, and a number of
standard bridges allow the transformation between different textual syntaxes and their cor-
responding model representations. The definition of a metaclass with KM3 has the follow-
ing form (cf. 5.2.1):

4 Homepage for ATL tools: http://www.eclipse.org/m2m/atl/

5 Homepage for the Eclipse platform: http://www.eclipse.org

 49

Model Driven Software Engineering for Web Applications

class Method extends ClassMember
{
 reference parameters[*] ordered container : MethodParameter oppositeOf method;
 attribute body : String;
}

In addition to the use of the ATL IDE with Eclipse ATL transformations can also be exe-
cuted as standalone programs or integrated amongst others into the Java-based build tool
Ant6.

2.3.4 Transformation Modularization

In the same manner as in traditional software engineering software artifacts such as classes
and libraries are composed, reused and adapted, it is important that in model driven engi-
neering transformations can also easily be composed, reused and adapted. Transformation
modularization into smaller units is an important prerequisite for reuse and helps reducing
the complexity of transformations. Based on [Kurtev06a] the basic concepts for transfor-
mation modularization are presented. Additionally, a simple transformation metamodel is
presented.

Modularization of the metamodel often affects the modularization of the transformation
definitions. In general, transformations should be modularized in a way so that tangling
and scattering of transformation functionality is minimized. This is not always possible in
the case of crosscutting concerns, thus the application of aspect-oriented techniques to the
model transformation domain would be interesting. As a general rule transformations
should be decomposed along the dimensions of concern by means of the modularization
features of a transformation language.

Figure 10 depicts the metamodel for modeling transformation modularization as a profile-
able extension of the UML metamodel, cf. 2.2.4. Thus, a UML model with a default profile
mapping can be used for modeling transformation modularization. All derived properties in
the metamodel are derived from their corresponding “intuitive” properties in the UML
metamodel. A further formalization is not given here. The upper part comprises the generic
concepts that are independent of the specific transformation language. A transformation is
a package that contains a set of rules. The basic concepts for transformation modularization
are (1) inheritance, i.e. a rule can inherit functionality from its super rule; and rule calls

6 Homepage for Ant: http://ant.apache.org/

 50

Model Driven Software Engineering for Web Applications

which are specialized to (2) implicit rule calls, i.e. rule calls without explicit references to
rule names in declarative approaches; and (3) explicit rule calls in imperative approaches.
In hybrid approaches such as QVT and ATL both rule call types are possible. The figure
also comprises a specialization for the rule types of ATL as presented in 2.3.3.1. The spe-
cialized rules of ATL imply constraints on the possible rule calls: a matched rule is always
called implicitly from another matched rule and a called rule is always called explicitly
from any rule. Because of these constraints the dependency stereotype may be omitted in a
transformation modularization diagram.

ATL

MatchedRule

LazyRule

CalledRule

EntrypointRule ExitpointRule

Transformation

ImplicitRuleCall ExplicitRuleCall

Dependency

RuleCall

Package

Rule

Class

*+/caller1

*+/called1
+/rules

*

+/superRule
0..1

Figure 10. Transformation metamodel

2.3.5 Discussion

From the experiences gained during this work a purely declarative transformation approach
such as purely relational or purely graph-based transformations is not practical for real-life
transformations. A hybrid approach allows to use imperative constructs for transformation
tasks which would be too cumbersome or even impossible to express with declarative con-
structs. Nevertheless, the declarative constructs of a hybrid approach should be used as far
as possible. Thus, the hybrid approaches QVT and ATL and the hybrid graph-
transformation based approach VIATRA are best suited for real-life transformation appli-

 51

Model Driven Software Engineering for Web Applications

cations. The former two approaches fit better in the OMG meta architecture as presented in
2.2 with only ATL providing appropriate tool support at the time of writing. VIATRA on
the other hand would be best suited for more formal applications due to being based on
graph transformations, but unfortunately appropriate tool support was not available at the
time of writing. Now, with the latest version from October 2006 increased interoperability
between MOF and the internal model representation of VIATRA is available, but still the
practical applicability would have to be investigated.

Another important aspect when deciding between transformation languages are the inter-
operability options between them. Interoperability between ATL and QVT is discussed in
[Jouault06a]: QVT transformations can be mapped (by a transformation) to the ATL Vir-
tual Machine, thus QVT transformations can be run in the ATL runtime environment. In-
versely, ATL transformations can be mapped (again by a transformation) to QVT opera-
tional mappings transformations. On the other hand the research group behind VIATRA
proclaims that QVT transformations can be transformed to Abstract State Machine (ASM)
and Graph Transformation (GT) rules [VIATRA].

The conclusion is visualized in Figure 11: ATL has the highest interoperability, transfor-
mations can be mapped to QVT operational mapping and transitively to VIATRA. QVT
transformations can be mapped to VIATRA, but only to the low level ATL Virtual Ma-
chine, meaning that QVT transformations can be run on the ATL Virtual Machine, but the
transformation specification itself gets lost. VIATRA transformations in general cannot be
mapped to QVT or ATL.

Thus, when specific features of QVT are not needed, such as that QVT is a OMG standard
or that QVT provides relations together with a visual notation, ATL can as well be used.
Additionally, at the time of writing, ATL has the benefit of a stable implementation. Both
QVT and ATL can take advantage of the interoperability with VIATRA, which is based on
the long established theories on graph transformations, and thus provides a better formal
foundation, e.g. for proving the correctness of transformations.

A recent development is the foundation of the Eclipse Model-to-Model Transformations
(M2M) project [M2M]. The objective of this project is to provide a framework for model-
to-model transformation languages. The core part will provide an infrastructure for plug-
ging in transformation engines. The first transformation engine available under the M2M
project is the ATL transformation engine. An implementation of a transformation engine
supporting QVT will follow shortly. Another main objective of the M2M project is to pro-
vide bridges between transformation languages, i.e. a transformation written in one trans-
formation language could be transformed into a transformation in another language. Thus,

 52

Model Driven Software Engineering for Web Applications

the ATL transformations presented in this work could easily be migrated to QVT transfor-
mations, as soon as the corresponding bridging tools are available.

QVT

ATL

VIATRA/GT

full interoperabilityruntime interoperability

QVT

ATL

VIATRA/GT

full interoperabilityruntime interoperability

Figure 11. Interoperability between transformation approaches

 53

Model Driven Software Engineering for Web Applications

 54

3 MODEL DRIVEN WEB
ENGINEERING

This chapter presents the fundamental ideas of our approach. First, the differences between
an elaborationist and a translationist approach and the implications on this work are dis-
cussed. Following, the application of the well-known principle of separation of concerns
for modeling and for transformation decomposition are presented. After giving an over-
view over the technical environment that was used to actually run the transformations de-
fined in this work the related work for model driven Web engineering is discussed.

3.1 Elaborationist versus Translationist Approach

There are two interpretations of the MDA vision termed elaborationist and translationist
approaches [McNeile03]. Following the elaborationist approach, the specification of the
application is built up step by step by alternating automatic generation and manual elabora-
tion steps on the way from PIM to PSM to code [Kleppe03]. For instance, a tool automati-
cally transforms the PIM to a skeleton PSM, which then has to be elaborated by the devel-
oper by customizing the generated models and by adding missing details. The apparent
problem of this approach is that the lower level models can get out of step with the higher
level models by the elaboration activity. Some tools support the regeneration of the higher
level models from the lower level models, also called reengineering. The process of full
synchronization of the higher level models with the lower level models in both directions is
called round-trip engineering. Today, most approaches based on MDA are elaborationist
approaches, which have to deal with the problem of model and/or code synchronization.
The elaborationist approach could also be seen as a semi-automatization of the familiar
object-oriented development approach following analysis, design and implementation
steps.

In the translationist approach, the transformations from PIM to PSM and then further to
code are fully automatic, i.e. PSMs and code do not have to and must not be elaborated by

Model Driven Software Engineering for Web Applications

the developer. This avoids synchronization problems between higher level models and
lower level models. When the PIMs are modified then the PSMs are just regenerated from
the PIMs and the code is regenerated from the PSMs. On the other hand, usually the infor-
mation captured by the PIMs is not sufficient for executing the transformations to the
lower level models fully automatically. Thus, additional information, i.e. additional mod-
els, is needed as input for the transformations. The translationist approach originates from
works on real-time and embedded systems with special emphasis on modeling executable
behavior by UML state machines and activities. For more information see [Mellor02].

On the one hand, the approach presented in this work follows the elaborationist approach
for the stepwise construction of the platform independent design models of a Web applica-
tion (see Chapter 4). On the other hand, it follows “primarily” (see next paragraph) the
translationist approach because the platform independent design models are automatically
transformed to platform specific models, which are then automatically serialized to code
(see Chapter 5). These platform specific models and the generated code must not be modi-
fied by the developer because roundtrip-engineering is neither necessary nor allowed.
Thus, this approach is in line with the objective of the MDA to decouple the technology
that an application runs on from the definition of the application.

For traditional non-Web applications a translationist approach would comprise computa-
tionally complete models of behavior and the transformation of these models to executable
code. Web applications on the other hand are not monolithic applications and they mostly
build on software components, for instance a software component providing services for a
banking application. Some of these components may already exist and they just have to be
integrated in the Web application, thus they do not have to be implemented by the devel-
oper. The appropriate term for behavior in this context is service with Web Services being
a technology for the implementation of services [W3C02]. This approach focuses on the
modeling and transformation of “coarse grained” behavior with so-called process models,
see 4.5. Such a process model comprises the composition of “fine grained” behavior by
means of UML activities. Fine grained behavior is represented by UML operations which
correspond to services. Thus, an operation call corresponds to a service call, for instance
the invocation of a Web Service. Process models are transformed to fully executable code,
which comprises the invocation and composition of services. Services themselves are not
generated by this approach, but implementation skeletons can be generated. Therefore, this
approach may be considered as being only “primarily” translationist. This concept for be-
havior of Web applications fits in the Service Oriented Architecture (SOA) approach [Dos-
tal05] because the basic idea of the SOA approach is to see the realization of a business
process as a composition of services. Hence, the application logic of a system is distributed
over several independent and loosely coupled services. These services are provided by ser-

 56

Model Driven Software Engineering for Web Applications

vice providers and used by service consumers and to find a service some kind of directory
service is necessary. An extension of this approach to additionally include the modeling
and transformation of fine grained behavior is an interesting future research topic, see also
the conclusions chapter.

On the other hand the automatic transformation to the platform specific implementation
models is preceded by the construction of the platform independent design models. The
iterative, systematic and stepwise construction of the design models is a key feature of the
UWE methodology. The core modeling activities are the requirements analysis, content,
navigation, process and presentation design. One contribution of this work to the UWE ap-
proach is the automatization of these construction steps with transformations as presented
in Chapter 4. These transformations are executed only on the platform independent level
and after each transformation follows a manual refinement (i.e. elaboration) step by the
developer. As a result of each transformation step a default model is generated, for instance
from the content model a default navigation model is generated. These default models are
already complete in the sense that the next transformation step could be applied. The only
exception is the transition from the analysis model to the design models. All features of
classes in the content model and the process model have to be completed manually as the
analysis model lacks the necessary details.

Theoretically, it would be possible, following the MDA pattern, to replace a transformation
step within the platform independent models followed by a manual refinement step, with a
single transformation step that injects the additional information from the manual refine-
ment step from an additional model. Practically, the complexity to define the correspond-
ing metamodels for such additional models that reflect changes to extended UML models
and for enabling the developer to maintain these models would be too high. Instead, the
approach of this work faces the maintenance and change management challenges imposed
by the semi-automatic construction of the design models by two measures. First, incre-
mental updates are taken into consideration in the transformation design allowing the reap-
plication of transformations without loss of manually added information by the developer,
see 4.1.2. Explicit trace models are used to capture the transformation history. Second,
OCL constraints for each design model ensure the consistency of modifications carried out
manually by the developer.

 57

Model Driven Software Engineering for Web Applications

3.2 Separation of Concerns

Separation of concerns is a well-established general technique in software engineering to
reduce the complexity of a system [Dijkstra76]. It is also widely applied for Web applica-
tion analysis and design. In this work the content, navigation, process and presentation
concerns of Web applications are distinguished. At analysis level the content, navigation
and process concerns are captured together in the requirements model which is based on
using specialized use cases and regular classes. At design level all concerns are addressed
separately. Each concern is represented by a corresponding model, i.e. the content model,
the navigation model, the process model and the presentation model. More details about
the separation of concerns at the analysis and design level are presented in Chapter 4.

On the other hand the vision of the MDA is the automatic transformation of the platform
independent design models to models for a specific Web platform, such as for instance the
J2EE Web platform or the ASP.NET Web platform as illustrated in Figure 12.

<<transformation>>
PIM2J2EE

<<transformation>>
PIM2 ...

<<transformation>>
PIM2ASP.NET

ASP.NET models

PIM

J2EE models Other models

{xor}{xor}

Figure 12. PIM2PSM transformations

A strong argument of the MDA is that nowadays technologies are changing rapidly and
that for a new platform “just” another transformation has to be constructed together with
the corresponding metamodel for the target platform. Unfortunately, this simple idea is in
reality too coarse for practical applications. Even in the literature about MDA for Web ap-
plications the pattern from Figure 12 is often cited wrongly by mentioning component
technologies such as .NET or CORBA as possible target Web platforms (which may only
serve for handling the content concern). Also, the proclaimed rapid changes of technology
mostly do not happen on the big scale (such as totally new Web platforms every year as for
instance J2EE or ASP.NET), but more on the small scale by evolving versions of tech-

 58

Model Driven Software Engineering for Web Applications

nologies or caused by the modular architecture of a Web platform, which allows to plug in
different technologies. Thus, it is not sufficient to just consider the target platform as a
whole. The focus has to be on the decomposition of the parts of a platform and on the de-
composition of the corresponding transformations.

As a result of this discussion, the transformation from the platform independent models to
the platform specific models should be decomposed into four different transformations for
the content, navigation, process and presentation concerns of a Web application, see Figure
13. Each partial transformation is targeted at a specific part of the Web platform that is re-
sponsible for handling the corresponding concern. Of course, one part of the platform
could handle several concerns. The Web platform should be designed in a way that one
part could be exchanged without influencing the other parts and the corresponding trans-
formations, for example using CORBA instead of RMI as component technology for the
content model. Therefore, in this approach the vision of the MDA of platform specific
transformations is refined so that parts of a platform can be exchanged separately. Then,
only a new transformation and a corresponding metamodel would have to be defined for
the exchanged part. More details about the Web platform and the corresponding transfor-
mation are presented in Chapter 5.

PSM

<<transformation>>
Navigation2PSM

<<transformation>>
Presentation2PSM

<<transformation>>
Process2PSM

<<transformation>>
Content2PSM

<<transformation>>
PIM2PSM

PSM.ProcessPSM.Content PSM.Navigation PSM.Presentation

PIM

Figure 13. Decomposed PIM2PSM transformation

 59

Model Driven Software Engineering for Web Applications

3.3 Transformation Environment

An implementation of the MDA approach is also a technical challenge. In this section
technical details of this approach for handling metamodels and transformations are pre-
sented.

One of the advantages of MDA as claimed by the OMG is tool interoperability, but often
problems arise when dealing with models constructed using a specific tool. For example
for UML models not only the version of the UML implemented by a specific tool is rele-
vant, but also the version and type of the meta-metamodel and the version of the model
interchange format XMI. Tool interoperability for tools supporting UML 2 and XMI 2, al-
though better than earlier tools supporting the first version of the standards, is still not per-
fect [Lundell06]. Additionally, not all tools fully comply with the standards or they do not
implement all features of a standard such as UML. Further, XMI allows for proprietary ex-
tensions, which complicates tool interoperability. A striking example for the misuse of
XMI extensions is the version 9.5 of the UML tool MagicDraw, which claims to support
UML 2, but saves its models as UML 1.4 models with some added features of UML 2 im-
plemented as proprietary XMI extensions.

This approach does not rely on a specific modeling tool for platform independent analysis
and design because it uses the abstraction layer of ATL for handling the external represen-
tation of models and metamodels, so called model handlers. When running an ATL trans-
formation, first a model handler is used to read the external model and metamodel repre-
sentations, then the transformation is run and afterwards the result model is written to an
external representation by another (possibly different) model handler. Model handlers can
be completely customized and therefore handle any possible data format for models and
metamodels. This ensures future tool interoperability. In the worst case a customized
model handler would have to be implemented if for a given tool no appropriate model han-
dler is already available.

Currently, two model handlers are available, MDR and EMF, see Figure 14. Both are
based on the XMI standard for serializing models. The MDR model handler is based on the
NetBeans framework [NetBeans] and allows for the handling of MOF 1.3 and MOF 1.4
metamodel instances, thus it can be used in conjunction with UML tools supporting only
the first version of UML such as ArgoUML [ArgoUML], Poseidon [Poseidon] or earlier
versions of MagicDraw [MagicDraw]. The EMF model handler is based on the Eclipse
Modeling Framework and supports handling of models with an Ecore metamodel [Budin-
sky03]. Ecore corresponds directly to a subset of MOF called Essential MOF or EMOF
[OMG06a], see also 2.2.2.

 60

Model Driven Software Engineering for Web Applications

Magic Draw
Together Architect

Eclipse
...

ArgoUML
Poseidon

...
Other Tools

XMI (Ecore) XMI (MOF 1.3/1.4) Other Formats

EMF MDR Other
Model Handler

ATL Environment

Model Handler

Interchange
Format

Modeling
Tool

Magic Draw
Together Architect

Eclipse
...

ArgoUML
Poseidon

...
Other Tools

XMI (Ecore) XMI (MOF 1.3/1.4) Other Formats

EMF MDR Other
Model Handler

ATL Environment

Model Handler

Interchange
Format

Modeling
Tool

Figure 14. ATL model handlers

For managing the platform independent models and transformations, the transformation
environment is based on the Eclipse Ecore implementation of UML 2, which is supported
by a broad range of UML 2 tools such as for instance MagicDraw 11.6, Borland Together
Architect 2006 for Eclipse or Eclipse itself. For other UML 2 tools it is possible to write
bridge transformations or customized model handlers. Unfortunately, with the inclusion of
process modeling, which is based on UML 2 activities, UML 1 tools are intrinsically in-
compatible with this approach due to massive changes in the UML metamodel concerning
activities. UML 1 tools could only be used for the modeling of static Web applications, i.e.
Web applications without processes.

The platform specific metamodels presented in this work were defined using the Kernel
MetaMetaModel (KM3) [ATL05d], which allows the definition of metamodels in an easy
Java-like textual notation. These KM3 metamodels were converted to Ecore metamodels
by using an ATL built-in bridge for the conversion of different meta-metamodel standards.

For running all transformations the ATL Eclipse plug-in was used, which comprises an
editor with syntax highlighting and code outline, code wizards, the administration of trans-
formation runtime configurations and a debugger. A screenshot of the plug-in is shown in
Figure 15. For further details see [ATL05a]. It is planned to additionally provide a stand-
alone transformation environment, which does not need the Eclipse environment to be run
and is based on the Java deployment tool Ant.

 61

Model Driven Software Engineering for Web Applications

The transformation environment together with the necessary documentation for running the
transformations is available on the UWE homepage [UWE].

Figure 15. The ATL Eclipse plug-in

3.4 Related Work

In this section an overview of the related work for model driven Web engineering is given.

3.4.1 UML-based Web Engineering (UWE)

UWE is an object-oriented, iterative and incremental approach [UWE] based on the Uni-
fied Modeling Language (UML) [OMG05a]. The main focus of UWE is the systematic
design followed by a semi-automatic generation of Web applications. A UML profile (cf.
2.2.4.) is used as notation making use of all benefits and tools that support UML. UWE

 62

Model Driven Software Engineering for Web Applications

evolved from an object-oriented methodology for hypermedia design presented in [Hen-
nicker00]. This methodology provides guidelines for the systematic and stepwise construc-
tion of models. The core modeling activities are the requirements analysis, content, naviga-
tion and presentation design. In [Koch01a] the adaptivity aspect was added to the approach
together with a reference model for adaptive Web applications and a complete description
of the development process, which is based on the Unified Software Development Process
[Jacobson99]. The use of statechart and interaction diagrams for modeling Web scenarios,
activity diagrams for modeling tasks (i.e. processes) and deployment diagrams to docu-
ment the distribution of Web application components was illustrated in [Koch02a].

3.4.1.1 ArgoUWE

The design phase of the UWE development process is supported by the CASE tool Ar-
goUWE as presented in [Knapp03]. It is implemented as a plug-in module of the open
source modeling tool ArgoUML [ArgoUML]. ArgoUWE implements the UWE meta-
model7, and the semi-automatic UWE development steps are realized by directly manipu-
lating the corresponding UWE models, cf. 2.3.1.3. OCL well-formedness rules of the UWE
metamodel that allow the designer to check the consistency of the UWE models during ed-
iting are also directly implemented with Java code. Although ArgoUWE could be extended
to support a major part of the metamodel and transformation rules for analysis and design
of Web applications as presented in Chapter 4 of this work, ArgoUWE underlies some se-
vere restrictions that are caused by being based on ArgoUML. A major restriction is that
ArgoUML and hence ArgoUWE is still based on UML 1.4, thus only metamodels based on
UML 1.4 can be easily integrated, although some features of UML 2 could be simulated
with high efforts. The approach presented in this work is based on UML 2, thus the meta-
model presented in this work cannot be easily implemented with ArgoUWE. For example
the UML metamodel for activities changed drastically from UML 1.4 to UML 2. As the
approach for process modeling presented in this work is based on UML 2 activities the
adoption of ArgoUWE to support processes as presented here8 is not possible without re-
writing ArgoUML to support UML 2 activities.

7 In this case an older version of the UWE metamodel with additionally added modeling elements for editing
purposes

8 The current version of ArgoUWE supports an earlier approach to process modeling based on UML 1.4 ac-
tivity diagrams, see [Knapp05]

 63

Model Driven Software Engineering for Web Applications

One objective of this work is, in contrast to ArgoUWE, to externalize metamodel and
transformations for analysis and design of Web applications. Externalize means that the
metamodel and the transformations are not hard-coded into the tool. There are no restric-
tions on the employed modeling tool as long as it supports UML 2 profiles and stores mod-
els in the standardized model interchange format and transformations are based on a stan-
dardized transformation language in contrast to the direct-manipulation approach of Ar-
goUWE.

3.4.1.2 UWEXML

UWEXML, an extension of UWE, was the first model driven approach for Web engineer-
ing by the author of this work [Kraus02]. The Model Driven Architecture (MDA) was still
in its infancy and so was a standardized transformation language for model driven devel-
opment. Thus UWEXML relied on hard-coded transformations, see 2.3.1.1. UML design
models defined with ArgoUWE or any other modeling tool are automatically mapped to
XML documents with a structure conforming to their respective XML Schema definitions.
Further, XML documents for the content model are automatically mapped to content DOM
objects (Document Object Model). DOM objects corresponding to interactional objects are
automatically derived from content DOM objects and/or other interactional DOM objects.
The XSLT mechanism serves to transform the logical presentation objects representing the
user interface to physical presentation objects, e.g. HTML or WAP pages. The transforma-
tion is based on a production system architecture for Web applications using the XML pub-
lishing framework Cocoon [Cocoon], which provides a very flexible way to generate
documents comprising XSLT and XSP (eXtensible server pages) processors.

Figure 16 shows a UML class diagram that represents the UWEXML process overview in
a generic way including all models that are built when developing Web applications with
UWEXML. The process starts with analysis and design models created by the user in an
editor. The design models are transformed by the UWEXML Preprocessor into XML rep-
resentations which are fed – together with XML documents containing parameters for the
generation process – into the UWEXML Generator. The generator generates on the one
hand artifacts which can directly be deployed to an application server providing a physical
component model and to an XML publishing framework, denoted by the «import» depend-
ency. On the other hand some of the generated artifacts have to be adapted before deploy-
ment, denoted by the «refine» dependency. The generator can be customized to a certain
degree for different technologies (i.e. the target platform) by exchanging the Java imple-
mentation for the web and/or component technology dependent parts. The UWEXML ap-
proach was abandoned because it relied on hard-coded transformations and was not flexi-
ble enough, in favor of a more generic approach as presented in this work.

 64

Model Driven Software Engineering for Web Applications

Analysis/Design Editor

UWEXML Preprocessor

UWEXML Generator

Application Server XML Publishing Framework

 EJBs

 EJB
Templates

 Presentation
Stylesheets

 Presentation

XML
Documents

 Runtime Layer
Classes

 Presentation
Stylesheets

 Presentation

XML
Documents

 Runtime Layer
Classes

 Model
XML

Documents

 Parameter
XML

Documents

 Use Case
Model

 Conceptual
Model

 Navigation
Model

 Presentation
Model

 Task
Model

«trace»

«trace» «trace»

«trace»

«trace»

«refine» «refine» «import » «import »

Figure 16. UWEXML process

 65

Model Driven Software Engineering for Web Applications

3.4.1.3 Transformation Techniques and Model Driven Process

An overview of all model driven activities currently investigated by the UWE research
team is presented in [Koch06b]. The proposed global UWE process is depicted in Figure
17 as a stereotyped UML activity diagram. This work realizes by transformations a subset
of the proposed global UWE process which is essentially the global UWE process minus
adaptation modeling, architecture modeling and big picture modeling. The realization of
the missing points of the global process is part of the future work of the UWE research
group, see also the conclusions chapter.

Models are represented with object nodes and transformations as stereotyped activities
(special circular icon). A chain of transformations then defines the control flow. The proc-
ess starts by defining a requirements model or business model, called computation inde-
pendent model (CIM) in the terms of MDA. Platform independent design models (PIM)
are derived from the requirements model, see [Koch06a]. The set of design models repre-
sents the different concerns of Web applications. It comprises the content, the navigation,
the process, the presentation and the adaptation concern of Web applications. The next step
in the global approach is to integrate the design models mainly for the purpose of verifica-
tion into a so-called big picture model by graph transformations using the AGG tool (cf.
2.3.1.5). The big picture model is based on UML state machines, which can be checked by
the tool Hugo/RT, a UML model translator for model checking and theorem proving
[Knapp06]. In a joined work with the author of the WebSA (Web software architecture)
approach (cf. 3.4.1) the inclusion of a separate architecture model for capturing the archi-
tectural features of Web applications was investigated [Meliá05a]. In the global approach it
is proposed to integrate the architecture model with the big picture model to an integrated
platform independent model covering functional and architectural aspects. Architecture
modeling is further future work of the UWE research group. It is not considered in this
work because the author claims that the architecture of a Web application is tightly coupled
to the target platform and implicitly encoded in the transformations to the platform specific
models, and therefore it is more important to provide a way for transformation and plat-
form modularization to support different architectures (or platforms). The last proposed
step in the global process is the transformation of the integration model to platform specific
models, just like it is realized in this work.

 66

Model Driven Software Engineering for Web Applications

Business Models
(CIM)

Platform
Independent
Models (PIM)

Platform
Specific

Models (PIM)

Business Models
(CIM)

Platform
Independent
Models (PIM)

Platform
Specific

Models (PIM)

Figure 17. Global UWE process overview (from [Koch06b])

3.4.2 WebSA

The Web Software Architecture (WebSA) approach [Meliá06a] is not a stand-alone ap-
proach for model driven Web engineering. It complements other Web design approaches
by providing an additional viewpoint for the architecture of a Web application and a model
driven development process based on the Unified Process [Jacobson99]. The author claims
that the approach can be used in combination with the functional models of every other
approach for Web design that is based on a MOF metamodel such as for example UWE,
see also 3.4.1.3.

The architecture of a Web application is defined by the means of two architecture models,
the subsystem model and the configuration model. The former defines the architectural
layers of a Web application and the latter an architecture of implementation components.

 67

Model Driven Software Engineering for Web Applications

The architectural models are integrated with the functional models to a so called integra-
tion model by means of a transformation at the platform independent level. The integration
model is then transformed to a platform specific model by another transformation.

The metamodels of WebSA are based on MOF and additionally a corresponding UML 2
profile is defined. For the transformation to the integration model a proprietary transforma-
tion language called UPT (UML Profile for Transformations) [Meliá06b] is defined which
allows the specification of transformations by using a UML profile. For the transformation
to the platform specific implementation the transformation language MOFScript is used.

As already stated in 3.4.1.3, the proposal of the integral UWE approach is to integrate the
functional models of UWE with the architecture models provided by WebSA. This stands
in contrast to this work because the author claims that the architecture of a Web application
is tightly coupled to the target platform and implicitly encoded in the transformations to the
platform specific models, and therefore it is more important to provide a way for transfor-
mation and platform modularization to support different architectures (or platforms). Most
important, the resulting integration model in the WebSA approach is enriched with low-
level artifacts for the architecture, which still have to be refined by the developer. This
hinders a translationist approach by having to complement one more model for the trans-
formation to code.

3.4.3 MIDAS

MIDAS [Cáceres04] is another model driven approach for Web application development
based on the MDA approach. For analysis and design it is based on the content, navigation
and presentation models provided by UWE and it uses therefore UML with UML profiles
as notation. For the platform specific implementation it relies on object-relational tech-
niques for the implementation of the content aspect and on XML techniques for the im-
plementation of the navigation and presentation aspects. A process aspect is not supported.
The transformations for mapping the design models to the specific target platform are not
defined formally.

3.4.4 WebML

WebML [Ceri02] is a data-intensive approach based on entity relationship modeling. Until
now WebML does not use an explicit metamodel. The corresponding tool WebRatio inter-
nally uses a Document Type Definition (DTD) for storing content and navigation models,
i.e. a grammar-like definition for the structure of XML documents. DTDs do not have the
same expressiveness as MOF and lack an easily understandable notation. The XML trans-
formation language XSLT (cf. 2.3.1.8) is used for model-to-code transformations support-

 68

Model Driven Software Engineering for Web Applications

ing presently transformations to Java and JSPs. XSLT is not suitable for more complex
transformations and the development of XSLT programs is difficult and error prone.

Currently, efforts are made for enhancing the interoperability of WebML with other model
driven Web engineering approaches. In [Schauerhuber06b] an interesting approach is pre-
sented to semi-automatically transform a DTD to a MOF compatible metamodel. The
transformation uses a set of transformation rules and heuristics, but still requires some user
interaction for improving the semantics of the generated metamodel. This approach is ap-
plied to WebML, thus enabling the use of standardized MDE technologies for WebML.
Additionally, in [Moreno06] a first step towards a UML 2.0 profile for WebML is pre-
sented that would also enable standardized MDE technologies.

3.4.5 OOWS

OOWS [Fons03] is an extension of the object-oriented software development method OO-
Method [Pastor01] for Web application development. Similar to this work a navigation
model represents the navigational aspects of a Web application as views of classes from a
class diagram which is similar to the content model. The presentation aspect is integrated
with the navigation aspect, a dedicated presentation model for further abstraction of the
user interface is not available.

Recently, a model driven extension of OOWS to support business processes has been pro-
posed with emphasis on the integration of external applications, the development of special
dedicated user interfaces that guide through processes and the consideration of automatic
as well as manual tasks [Torres06]. Therefore, the navigation model of OOWS has been
extended by the inclusion of graphical user interface elements to allow for the interaction
between users and business processes using a UML-like notation.

Processes are captured in the business process model using an extended version of the
Business Process Modeling Notation (BPMN) [OMG06c] and a corresponding extended
metamodel for business modeling. BPMN stems from the B2B (business-to-business) field
and is similar (but not identical) to UML activities, which stem from the software engi-
neering field. It provides concepts such as flow objects (corresponding to activity nodes or
events), connecting objects (corresponding to activity edges), swimlanes and artifacts (cor-
responding to object nodes). In contrast to this work also manual tasks are considered in
the process model, i.e. tasks that are manually carried out by humans and not automatically
by the system by invoking operations or Web services.

The business process model is the starting point for model transformations. Operational
Mappings, the imperative part of QVT (see 2.3.2.2), is used as transformation language.

 69

Model Driven Software Engineering for Web Applications

The transformations are implemented with Borland Together Architect 2006 for Eclipse
(see 2.3.2.3). The process model (in BPMN) is transformed to a (platform independent)
default navigation model for the user interaction with the process, which then has to be re-
fined by the designer. The navigation model is then transformed to a concrete Web tech-
nology, i.e. a platform specific model. The proposal will be integrated in the ONME tool9
for automatic code generation.

In contrast to the approach of this work processes are not represented by a dedicated
model, but distributed over the BPMN process model and the navigation model. The latter
contains a lower level view of the process model, where the constructs of the process
model are resolved into navigation constructs. The approach of this work defines a clear
separation of the process and the navigation aspect and specifies how processes are inte-
grated in the navigation model, see also 4.5. Further, the strength of the approach of this
work is also the use of standards for all aspects of Web application development. Finally,
although the use of the imperative part of QVT is comparable to the use of ATL, it is un-
clear how much of the model driven approach is already realized.

3.4.6 HyperDE

In contrast to the heavyweight approach presented in this work there is an increasing inter-
est in the use of small domain specific languages that can be used for agile development
[Cockburn01] and for quick prototyping.

The open source Web framework Ruby on Rails (or short Rails) [Thomas06] is especially
suited for the agile development of Web applications. It is based on the reflective and ob-
ject-oriented programming language Ruby, which provides extensive metaprogramming
possibilities and facilitates the use of internal domain specific languages. The Rails frame-
work allows the development of Web applications following the Model/View/Controller
(MVC) pattern. Following its two guiding principles called “don’t repeat yourself” and
“convention over configuration” much less code and configuration data than with other
Web frameworks is necessary. For example the mapping between classes and database ta-
bles is derived automatically from class and field names. A technique called scaffolding
allows rapid prototyping by quickly providing most of the logics and views for common
operations, such as CRUD (create, read, update and delete database operations).

9 OlivaNova Model Execution System, CARE Technologies, www.care-t.com

 70

Model Driven Software Engineering for Web Applications

A modification of the Ruby on Rails framework called HyperDE is presented in
[Nunes06]. HyperDE is based on SHDM, a method for the design and implementation of
Web applications for the semantic Web [Lima03]. The MVC implementation of Ruby on
Rails is extended by navigation primitives of SHDM and the persistence layer is modified
to operate on a RDF database [Lassila99] where the user defined navigation model and ap-
plication instance data is stored. Additionally, HyperDE provides a domain specific lan-
guage by which model instances can directly be manipulated. HyperDE itself provides a
Web interface, so that Web applications can directly be created or modified.

3.4.7 Moreno et al.

Moreno et al. focus on the integration of Web applications with third party systems, fol-
lowing the MDA approach. In [Moreno05c] a high-level model based integration frame-
work for interoperation with third party systems is presented. They argue that for service-
oriented scenarios a central content model is not appropriate and that for interoperation
with external systems explicit models for required and provided interfaces, processes etc.
are necessary. Although a rich and complex set of modeling constructs is presented, no ex-
plicit semantically rich metamodel is defined. Instead, a set of platform independent mod-
els divided into the layers user interface, business logic and data is introduced. For each
concept of such a model, the mapping to a UML stereotype is described textually. In addi-
tion, no details about transformations are given, but the authors state that they will use
QVT in their future work. In [Moreno05a] this approach is applied to CORBA, EJBs and
RMI and in [Moreno05b] adapted to modeling and integration of cooperative portlets. A
portlet is an individual Web-based component that typically handles requests and generates
only a fragment of the total markup that a user sees from his or her browser [Díaz04].

3.4.8 Muller et al.

Another interesting model driven approach stems from Muller et al. [Muller05]. Like the
approach taken in this work total code generation is an important goal. But, in contrast to
this work, a heavyweight non-profilable metamodel is used for the hypertext model and the
presentation model because the authors argue that an extension of the UML would not be
appropriate for giving a sufficient degree to model designers. Nevertheless UML is used
for the business model. Presentation modeling is based on using templates. A language
called Xion is used to express constraints and actions. Further, it serves as a query lan-
guage for abstraction of data access and it is also a platform independent action language
based on OCL and transferable to different target platforms. The whole approach is sup-
ported by a visual model driven tool called Netsilon.

 71

Model Driven Software Engineering for Web Applications

3.4.9 W2000

W2000 [Baresi06] originates from the HDM methodology (Hypertext Design Model,
[Garzotto93]), a hypermedia and data-centric Web design approach, but it also adopts
some features from the UML to support the concept of business processes. It distinguishes
the information (i.e. content), navigation, service (i.e. process) and presentation concerns.
W2000 follows a similar approach for process modeling as presented here although opera-
tions are defined separately from the content model. It is suggested that either activity dia-
grams or collaboration diagrams are used to define the workflow of processes, but it is left
unclear how these processes can be executed or translated to code.

The metamodel of W2000 is defined as a MOF metamodel with a UML profile as notation.
Like in this work OCL constraints are used to ensure the well-formedness of models. As
presented in [Baresi05], the graph-based transformation language AGG (cf. 2.3.1.5) can be
used for modifying the (platform independent) design models, which is supported by a cor-
responding tool implemented as a Eclipse plug-in. W2000 does not give concrete guide-
lines for the construction of the platform independent models, although they could be im-
plemented by AGG transformations in a similar way as in this work. The mapping of the
platform independent models to a platform specific implementation is part of the future
work of W2000, with the next step being to automatically derive J2ME (Java 2 Micro Edi-
tion) client applications for mobile devices.

 72

Model Driven Software Engineering for Web Applications

4 PLATFORM INDEPENDENT
ANALYSIS AND DESIGN

This chapter presents details about the analysis and design phases of the model driven ap-
proach. The aim of the analysis phase is to gather a stable set of requirements. The func-
tional requirements are captured by means of the requirements model. The design phase
consists of constructing a series of models for the content, navigation, process and presen-
tation aspects at a platform independent level. Transformations implement the systematic
construction of dependent models by generating default models which then have to be re-
fined by the designer.

The Web Engineering field is rich in design methods, supporting the complex task of de-
signing Web applications (see also 3.4). These methods propose the construction of differ-
ent views comprising at least a content model, a navigation model and a presentation
model (although naming them differently). Each model is built out of a set of modeling
elements, such as nodes and links for the navigation model or image and anchor for the
presentation model. In addition, all these methodologies define or choose a concrete nota-
tion for the constructs they define.

Although all methodologies for the development of Web applications use different nota-
tions and propose slightly different development processes, they could be based on a com-
mon metamodel for the Web application domain. A metamodel is a precise definition of
the modeling elements, their relationships and the well-formedness rules needed for creat-
ing well-defined models. A particular methodology based on this common metamodel may
only use a subset of the constructs provided by the metamodel. A common Web applica-
tion metamodel should therefore be the unification of the modeling constructs of current
Web methods allowing for their better comparison and integration. A first proposal for
such a common metamodel for Web application development was presented in [Kraus03a]
and [Kraus03b]. Since then this metamodel has evolved as presented here. In this work the
objective is on the model driven approach and thus the metamodel of this work is restricted
to the core aspects and elements of UWE that are currently fully supported in the model
driven process. These core aspects of Web applications are requirements, content, naviga-

 73

Model Driven Software Engineering for Web Applications

tion, process and presentation. The integration of the remaining aspects for adaptivity and
architecture into a model driven approach is part of future work.

In the following sections each step for the construction of the analysis and design models
of a Web application is presented, comprising the corresponding part of the metamodel to-
gether with a description of the respective transformations written in ATL that implement
the systematic construction of models, and the activities needed for the manual refinement.
These transformations are inspired by the informal rules for the systematic development of
Web applications described in [Hennicker00]. An excerpt from the case study introduced
in 1.3 serves as a running example. The metamodel is defined as a “profileable” extension
of the UML2 metamodel [OMG05a], cf. 2.2.3. It provides a precise description of the con-
cepts used to model Web applications and their semantics and it is structured into different
packages as depicted in Figure 18. The dependencies in the diagram represent the depend-
encies between the corresponding models, hence matching the order for the systematic
construction of models. The profile definition for the metamodel is given in the appendix
A.

UWE

Content Navigation Presentation

Requirements

Process

Figure 18. Metamodel Package Structure

Prior to the definition of the metamodel some clarifying comments about the meaning of
the terms metamodel and model as used in this work are needed. It is important to distin-
guish between global metamodels, global models and views. This chapter defines a global
metamodel for analysis and design of Web applications. This global metamodel is struc-
tured along the concerns of Web applications into several views represented by packages
of the global metamodel as depicted in Figure 18. A concrete Web application is repre-
sented by exactly one global model that conforms to this global metamodel. For each view
of the global metamodel a corresponding view of the global model is defined, comprising

 74

Model Driven Software Engineering for Web Applications

all modeling elements that conform to the corresponding view of the global metamodel. In
the following, a specific view of the global model will be called a model and a specific
view of the global metamodel will be called a metamodel. For example the navigation
model is equal to the navigation view of the global model of a Web application which
comprises all modeling elements that conform to the navigation metamodel. The relation-
ships between models and metamodels are illustrated with an example in Figure 19: a
global model conforms to the global metamodel; it comprises a content model and a navi-
gation model which conform to the corresponding metamodels, i.e. all modeling elements
of a specific model are instances of metaclasses of the corresponding metamodel.

Figure 19. Relationships between models and metamodels

The systematic and stepwise construction of models by means of transformations and man-
ual refinement steps corresponds to the stepwise refinement of the global model. An exam-
ple for the global model after the derivation of the navigation model from the content
model is depicted in Figure 19. Using exactly one global metamodel helps to avoid consis-
tency problems between models because well-formedness rules can then be defined glob-
ally, i.e. across model borders. It is further important to note that the transformations pre-
sented in this chapter always operate on one global model. Before and after running a
transformation all the well-formedness rules for the global metamodel are checked in order
to ensure the correctness of the global model before and after running the transformation.

 75

Model Driven Software Engineering for Web Applications

Concerning the correctness of the transformations, the approach benefits from the design
of the ATL transformation language. ATL transformation rules are intrinsically confluent
due to the fact that source models are read-only and target models are write-only, i.e. it is
ensured that the execution order of the rules does not have an impact on the resulting out-
put model.

When comparing the metamodel of this approach with other Web approaches it has to be
taken into consideration that the metamodel is designed to be self-contained. This means
that every model element is either used for deriving other dependent model elements (as
presented in later sections) or/and is needed for the automatic generation of code. Apart
from the model driven Web approaches discussed in 3.4 also pure Web design approaches
are taken into consideration for a comparison with this approach. Finally, an outline to the
extension possibilities for the metamodel is given in each section.

4.1 General Techniques

In the following sections first some general techniques are presented which are required in
the rest of the chapter.

4.1.1 Checking Well-Formedness of Models

In this work OCL class invariants attached to metamodels are used to define the well-
formedness rules for models. The following example constraint is taken from the meta-
model for modeling requirements of Web applications presented in 4.2.1. The constraint
that a Web use case must have exactly one subject of type Class is written in OCL as:

context WebUseCase inv WebUseCaseContentClass :
 self.subject->one(c | c.oclIsTypeOf(Class))

Note that the property subject is defined in the superclass UseCase of the UML meta-
model, and in the subclass WebUseCase of our metamodel this property is constrained.

Before the execution of a transformation, the well-formedness rules for the source model
are checked by evaluating an ATL query which is composed of OCL expressions (cf.
2.3.3.2). Therefore all class invariants for the source model are translated manually to an
ATL query following the schema presented in the following. A query with the name
CheckConstraints evaluates a model to a boolean value. Running this query corresponds to
checking all constraints for a model, and the value of the query indicates if all constraints

 76

Model Driven Software Engineering for Web Applications

are fulfilled. For each constraint to check, an ATL helper method check_<constraint
name> with a boolean return value is defined for the same context as in the OCL invariant
declaration. All the helper methods defined like this are called from the expression body of
the ATL query CheckConstraints for all elements of the context type. An additional helper
method assert is used to log those model elements which do not fulfill a constraint.

helper context UWE!NamedElement def : assert(checkResult : Boolean, constraintName : String)
 : Boolean = if checkResult then true else
 false.debug(self.oclType().toString() + ' ' + self.fullName() + ' Constraint ' + constraintName)
 endif;

The helper method assert is defined for all named elements and takes the result of the con-
straint checking and the name of the constraint as arguments. All model elements presented
in this work are named elements, i.e. they specialize either directly or indirectly the UML
metaclass NamedElement. If the checking fails for a model element then its type, its name
and the name of the constraint is written to the console by using the predefined helper de-
bug. Only if the checking for all constraints and for each element of the corresponding con-
text type is successful, then the overall query returns true, indicating that all constraints are
fulfilled. The corresponding ATL code for the example above is:

query CheckConstraints =

 UWE!WebUseCase.allInstances()->forAll(x |
 x.assert(x.check_ WebUseCaseContentClass(), ‘WebUseCaseContentClass’)) and

 … check further constraints

helper context UWE!WebUseCase def : check_ WebUseCaseContentClass() : Boolean =
 self.subject->select(c | c.oclIsTypeOf(UWE!Class))->size() = 1;

As the method body of ATL helpers is defined with OCL expressions, the original expres-
sion for the OCL class invariant can be adopted almost unaltered except for the following
necessary modifications:

• Prepending of metamodel names before the names of types, e.g. UWE!Class in-
stead of Class

• Substitution of OCL constructs not yet supported by ATL, e.g. any() or one()

• Quoting of ATL keywords, e.g. “context” instead of context (does not occur in the
example above)

 77

Model Driven Software Engineering for Web Applications

• Usage of if-then-else-endif expressions if parts of an OCL expression are possibly
undefined, e.g. if a.oclIsUndefined() then OclUndefined else a.b endif instead of a.b

Details about the peculiarities concerning the usage of OCL in ATL are presented in
[ATL06a]. For the implementation of the constraint checks for the UWE metamodel as
presented in this chapter see B.2.1.2.

4.1.2 Transformation Traces

In order to capture the transformation history during the semi-automatic construction of the
design models of a Web application a way to track the execution of transformations, i.e.
transformation traces, is needed. These traces are used on the one hand to support incre-
mental updates of the models, allowing the reapplication of transformations without loss of
manually added information by the developer. On the other hand, the trace information is
also needed to resolve relationships between modeling elements transformed by transfor-
mation rules of previous transformations runs.

To capture transformation trace information, a new metaclass TransformationTrace is in-
troduced, which is a specialization of the UML metaclass Abstraction, which in turn is a
specialized dependency, see Figure 20. In this chapter metaclasses from the UML meta-
model are in general presented with a white background. This is conform with the usual
way of defining trace dependencies in UML because the predefined stereotype «trace» is
also an extension of the metaclass Abstraction. The notation for dependencies with a
dashed line and an arrow is inherited from UML dependencies. The name of the transfor-
mation trace denotes the name of the transformation rule that created the trace.

TransformationTrace

NamedElement

Abstraction

Dependency
+client1..* +clientDependency *

+supplier1..* +supplierDependency *

Figure 20. Metamodel for transformation traces

 78

Model Driven Software Engineering for Web Applications

In Figure 21 an example for a transformation trace is given for a Web application model
comprising a content class Project with one attribute name. The (global) model is refined
by the transformation RequirementsAndContent2Navigation presented in 4.4.2.1. The re-
sulting refined (global) model comprises an additional navigation class which was created
by the rule ContentClass2NavigationClass from the content class Project as denoted by the
corresponding transformation trace. Additionally, the attribute name of the content class
was mapped to a corresponding navigation property of the navigation class by the rule
Property2NavigationProperty as denoted by another transformation trace.

Project

Project

na me : String

<<navigation class>>
Project

name : S tring

name : String

Project

name : String

RequirementsAndContent2NavigationRequirementsAndContent2Navigation

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>

Project

na me : String

<<navigation class>>
Project

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>
name : S tring

Figure 21. Example for transformation trace

The following ATL rule CreateTrace is called from the imperative part of a transformation
rule presented in the following sections to create a transformation trace.

rule CreateTrace(sourceEl : UWE!NamedElement, targetEl : UWE!NamedElement,
 ruleName : String)
{
 to t : UWE!TransformationTrace
 (
 name <- ruleName,
 supplier <- Set(UWE!NamedElement) { sourceEl },
 client <- Set(UWE!NamedElement) { targetEl }
)
}

To get the source or target elements of a transformation trace the ATL helpers get-
TraceSource and getTraceTarget are used while hasTraceSource and hasTraceTarget are
used to query if a trace already exists.

 79

Model Driven Software Engineering for Web Applications

helper context UWE!NamedElement def : getTraceSource(ruleName : String)
 : UWE!NamedElement =
 let ts : Set(UWE!NamedElement) = UWE!TransformationTrace.allInstances()->
 select(t | t.name = ruleName and t.client->includes(self))->
 collect(t | t.supplier)->flatten() in
 if ts->size() > 0 then ts->asSequence()->first() else OclUndefined endif;

helper context UWE!NamedElement def : hasTraceSource(ruleName : String) : Boolean =
 not self.getTraceSource(ruleName).oclIsUndefined();

helper context UWE!NamedElement def : getTraceTarget(ruleName : String) :
 UWE!NamedElement =
 let ts : Set(UWE!NamedElement) = UWE!TransformationTrace.allInstances()->
 select(t | t.name = ruleName and t.supplier->includes(self))->
 collect(t | t.client)->flatten() in
 if ts->size() > 0 then ts->asSequence()->first() else OclUndefined endif;

helper context UWE!NamedElement def : hasTraceTarget(ruleName : String) : Boolean =
 not self.getTraceTarget(ruleName).oclIsUndefined();

An example for using transformation traces to support incremental updates is depicted in
Figure 22. The Web application model after the first application of the transformation Re-
quirementsAndContent2Navigation depicted in Figure 21 was extended by adding a new
attribute description to the content class Project. When the transformation Requirement-
sAndContent2Navigation is run again then the transformation traces created in previous
runs are used to determine which new model elements should be created. For the content
class Project a transformation trace for the rule ContentClass2NavigationClass already ex-
ists, hence this class is not matched by this rule. The same holds for the attribute name and
the rule Property2NavigationProperty, but it does not hold for the new attribute descrip-
tion, hence a corresponding new navigation property and a new transformation trace are
created.

 80

Model Driven Software Engineering for Web Applications

Project

name : String
description : Str ing

<<navigation class>>
Project

name : S tring
description : String

<<navigation class>>
Project

name : S tring

Project

name : String
description : Str ing

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>

RequirementsAndContent2Navigation

Project

name : String
description : Str ing

<<navigation class>>
Project

name : S tring
description : String

<<navigation class>>
Project

name : S tring

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>

Project

name : String
description : Str ing

RequirementsAndContent2Navigation

ContentClass2NavigationClass

Property2NavigationProperty

<<transformation trace>>

Figure 22. Example for using transformation traces for incremental update

The general pattern for a transformation rule that matches only model elements for which a
corresponding transformation trace does not yet exist and that creates a new transformation
trace looks as follows:

rule TrafoX
{
 from x : MM!X (not x.hasTraceTarget(‘TrafoX’))
 to y : MM!Y (…)

 -- imperative part of the rule
 do
 {
 CreateTrace(x, y, ‘TrafoX’);
 }
}

If a transformation rule extends another transformation rule, then there is no need to handle
trace information in the subrule, i.e. no additional imperative part is needed for that pur-
pose.

In addition to incremental updates, trace information can also be used to query the results
of previous transformation runs, i.e. to query the source and target elements of a specific
transformation rule of a previous transformation run. In the following example a Web
process element was first mapped to an operation element by the transformation rule Sim-
pleProcess2Operation in a previous transformation run. In another transformation the

 81

Model Driven Software Engineering for Web Applications

transformation rule CreateProcessDataAndFlowForSimpleProcess presented in 4.5.2.2
initializes a local variable o with the target element of the transformation rule SimpleProc-
ess2Operation of the previous transformation run.

rule CreateProcessDataAndFlowForSimpleProcess
{
 from pc : UWE!ProcessClass (…)
 using
 {
 o : UWE!Operation = pc.webProcess.getTraceTarget('SimpleProcess2Operation');
 …
 }
 to …
}

The inclusion of transformation traces sometimes makes transformations rules cumber-
some to read, especially for refinement transformations as those presented in this chapter.
Therefore, those parts of the rules that handle transformation traces are not included in this
chapter. For their detailed code see B.3.

4.1.3 Expression Language

Some of the model elements presented in the following sections require that the Web ap-
plication developer can specify expressions for the Web application model. Expressions
are used for:

• Definition of derived attributes of navigation classes (simple expression)

• Guard expressions for links (simple expression)

• Formatting expressions for user interface elements (formatting expression)

The most natural choice for UML based metamodels would be the use of the expression
part of the Object Constraint Language (OCL). Although a standardized metamodel for
OCL exists, this is not supported by most modeling tools for further use in a model driven
environment. Instead, OCL expressions are exported in a textual representation. Within a
model driven environment these textual expressions would have to be parsed, and the cor-
responding OCL model would have to be instantiated. Additionally, links to the user model
would have to be reestablished.

 82

Model Driven Software Engineering for Web Applications

Any expression language could be used in conjunction with the metamodel presented in
this chapter. However, due to the complexity of OCL expressions as a general language for
the use in model transformations and since the metamodel for OCL expressions is anyway
not supported by tools, the use of a simpler expression language was preferred in this
work, facilitating the transformation of these expressions to code.

Expressions are represented as textual values of type string. The chosen expression lan-
guage used in the following is the unified expression language (unified EL) from the J2EE
environment used for Java Server Pages (JSP) and Java Server Faces (JSF), for details
about the syntax see [J2EE]. Summarized, this expression language allows:

• Accessing of model instance properties at runtime

• Navigation expressions (“dot” notation as in OCL)

• Accessing collections of elements

• Using arithmetic, logical, relational and conditional operators. In addition a special
operator empty is provided

• Invocation of operations of model instances

The unified expression language is used in two different ways for simple expressions and
formatting expressions. For simple expressions the unified EL is used in its pure syntax
while for formatting expressions an additional syntactic construct allows the concatenation
of expressions and string literals represented by a formatting string.

Simple expressions use the pure syntax of the unified EL and they must always access the
implicit context variable self provided by the runtime environment. The simple expression
“not empty self.projects” depicted in Figure 23 is for example used for the guard expres-
sion of a link to a Web process indicating that this link should only be accessible if the
value of the property projects of the implicit context variable self is not empty.

<<menu>>
ProjectManagerMenu

<<process class>>
RemoveProject

<<process link>>

{guard = not empty self.projects}

Figure 23. Use of an expression language

Formatting expressions are represented by a formatting string, such as for example the
formatting string “Validation Project ${name}” which is used for formatting the label of

 83

Model Driven Software Engineering for Web Applications

an anchor to a validation project. Each occurrence within the formatting string using the
simple syntax ${expr} represents an expression expr. The formatting string is evaluated
from left to right. Each expression is coerced to a string and then concatenated with any
intervening text. The resulting string value represents the value of the formatting expres-
sion.

4.2 Requirements

Although requirements analysis is a key factor in the development of software systems,
only few Web approaches pay special attention to requirements. A detailed requirement
analysis can help to reduce costs at later development stages. Different techniques can be
used for requirements specification, from informal textual descriptions to formal specifica-
tions [Kappel03a].

In this approach UML use cases are used to define the functional requirements of a Web
application while UML classes represent the content requirements. Use cases are a well
proven technique for specifying the functional requirements of a software system, not least
because the UML provides a graphical and intuitive notation for use cases. In contrast to
requirements description techniques such as stories or other techniques that rely on the use
of natural languages, use cases provide a sufficient degree of precision required for the use
in a model driven approach because the syntax of use cases is accurately defined by the
UML metamodel.

The requirements specification presented here comprises the construction of an analysis
content model for defining the structure and data of a Web application, and the construc-
tion of a Web use case model for the definition of the functionality of a Web application.
The analysis content model uses UML classes and associations to specify the identified
concepts from the problem domain that should provide the functionality represented by the
Web use cases. Different types of Web use cases are introduced for treating static and dy-
namic functionality, which corresponds to the navigation and the process aspect, respec-
tively.

Following the comparative study given in [Escalona04b], (not necessarily model driven)
Web methodologies that pay special attention to requirements analysis are mainly NDT
[Escalona04a], OOHDM [Schwaabe98] and W2000 [Baresi06]. Other approaches use ei-
ther classical techniques or ignore this phase of the development process. All of the above
mentioned approaches start the modeling process by defining UML use cases to capture
the functional requirements. Similar as in this work, W2000 distinguished two types of use

 84

Model Driven Software Engineering for Web Applications

cases representing navigation and process functionality. NDT has its main focus on re-
quirements, thus it is the most comprehensive approach to requirements modeling. How-
ever, in addition to general use cases formatted templates are used to further detail the re-
quirements specification. A formatted template is a table with specific fields that have to
be completed by the developer. Because the entries of such a table are written in a natural
language the application of model driven techniques is difficult. OOHDM uses a special
technique called user interactions diagrams (UID) to specify user interactions in the re-
quirements phase. These diagrams correspond to activity diagrams in our approach with
the difference that here user interaction is modeled at the design level in a more detailed
way represented by process flow models (see 4.5.2). Generally, only functional and content
requirements are considered in this approach, while for example NDT also considers non-
functional requirements.

While this approach shares the basic ideas for requirements modeling with UWE, some
subtle differences exist. As stated in [Koch06b], UWE uses the WebRE approach for mod-
eling requirements presented in [Escalona06] and [Koch06a]. Although WebRE defines
different use case types for navigation and process functionality, the metamodel presented
in the next section further introduces additional use case types for specialized kinds of
processes. The main difference to this work is that WebRE (and thus UWE) proposes
modeling elements for are more detailed specification of the navigation, process and pres-
entation concerns at the requirements level. These additional modeling elements are used
within activities that describe the behavior of the corresponding Web use cases. The ap-
proach of this work abstains from introducing more details for these concerns at require-
ments level but introduces similar concepts as in WebRE, but with a finer granularity, dur-
ing the construction of the navigation and the process models.

The metamodel for requirements modeling presented here could easily be extended by in-
troducing new Web use case types or by extending existing use case types to support new
modeling aspects of Web applications, such as for example for personalized Web applica-
tions. Further, by defining additional Web process use case types, special kinds of Web
application functionality could be handled in a particular way. For instance, special Web
process use case types could represent database operations of data-intensive Web applica-
tions.

4.2.1 Metamodel

The modeling elements of regular UML class diagrams without operations are used for the
analysis content model to capture the structure and data of a Web application. On the other
hand specializations of UML use cases are used for the Web use case model with the ab-

 85

Model Driven Software Engineering for Web Applications

stract metaclass WebUseCase as super type of Web use case types as depicted in Figure 24.
The context for the functionality of a Web use case is represented by the derived attribute
contentClass. The term context as used here refers to the abstract location where the user
of the Web application is currently located. The context is represented by the content
classes. Within a given context the user can perform certain functionalities represented by
the Web use cases. The optional change of the context when executing a web use case is
represented by the derived attribute target. The target attribute is represented by an asso-
ciation between a Web use case and a content class. Two concrete Web use case types are
distinguished: Navigation and WebProcess.

Navigation use cases represent navigation functionality, i.e. the static functionality of a
Web application, in a very abstract way. Static means that the state of the content objects
does not change when executing a navigation use case. The only navigational detail that
can be expressed relevant at analysis level is the target content class that should be reach-
able by navigation, represented by the derived attribute target. A constraint ensures that
there is an association defined in the analysis content model between the associated content
class of the use case and the target content class. Additional information such as direction
and multiplicities is not relevant for the analysis content model.

Dynamic functionality of Web applications is represented by the WebProcess use case
type. The execution of a Web process typically changes the state of the system by execut-
ing actions on the content model. The WebProcess use case type represents the general
case of a Web process with an arbitrary workflow. Two specialized Web process types are
further defined, edit use cases and simple processes, in order to treat some common func-
tionality of Web applications especially. Edit use cases represent data modification func-
tionality of the associated content class. Simple process use cases represent the atomic in-
vocation of behavior of the associated content class. A Web process, which is neither an
edit use case nor a simple process is also called a complex process. A simple process al-
ways implicitly defines a trivial workflow containing an action that invokes the corre-
sponding behavior. The special treatment of simple processes allows the automatic genera-
tion of a corresponding operation in the content model and the corresponding trivial work-
flow in the process model in the following steps of the methodology. If the execution of a
Web process changes the context, i.e. the context shall change from the content class of the
Web process to another content class resulting from the execution of the Web process, then
this has to be represented by the attribute target.

Note that the create, retrieve, update and delete (CRUD) operations found in data-intensive
Web approaches such as for example WebML [Ceri02] are realized in this work by the
more general Web processes: create and delete operations are realized by simple processes

 86

Model Driven Software Engineering for Web Applications

and update operations are realized by edit processes. The retrieve operation does not have
to be realized explicitly.

SimpleProcess

WebUseCase

Classifier

ClassClass

Navigation WebProcess

Edit

UseCase

*

+/target

0..1 *

+/contentClass

1

+useCase

*

+subject

*

Figure 24. Metamodel for requirements modeling

Derived Attributes

The derived attribute contentClass of a Web use case is defined to be exactly the one ele-
ment from the subject collection of the use case which has the exact type Class, see con-
straint WebUseCaseContentClass.

context WebUseCase def : contentClass : Class =
 self.subject->any(c | c.oclIsTypeOf(Class))

If an association between a Web use case and a content class exists, then the derived at-
tribute target of this Web use case is defined to be this content class, see also constraint
WebUseCaseTarget. If no such association exists then the target is undefined.

context WebUseCase def : target : Class =
 Association.allInstances()->
 select(a | a.endType->size() = 2 and a.endType->includes(self))->
 collect(a | a.endType->excluding(self)->first())->any(t | t.oclIsTypeOf(Class))

Constraints

A Web use case must have exactly one subject of type Class.

 87

Model Driven Software Engineering for Web Applications

context WebUseCase inv WebUseCaseContentClass :
 self.subject->one(c | c.oclIsTypeOf(Class))

At most one association between a Web use case and a content class may exists.

context WebUseCase inv WebUseCaseTarget :
 Association.allInstances()->
 select(a | a.endType->size() = 2 and a.endType->includes(self))->
 collect(a | a.endType->excluding(self)->first())->
 select(t | t.oclIsTypeOf(Class))->size() <= 1

For a navigation use case a target content class has to be defined and a corresponding
owned attribute has to exists for the corresponding content class.

context Navigation inv NavigationTarget :
 self.target->notEmpty() and self.contentClass.ownedAttribute->exists(p | p.type = self.target)

For an edit use case no target content class must be defined.

context Edit inv EditTarget :
 self.target->isEmpty()

Notation

The UML notation proposes that a use case should visually be located inside its subjects,
i.e. its content class, although not all UML modeling tools support the visual nesting of use
cases inside classes. In order to avoid name collisions, it is suggested that a content class
owns its Web use cases. The target of a Web use case is notated as an association between
the use case and the corresponding content class. For the definition of the corresponding
UML profile see A.1.

4.2.2 Analysis Content: Example

The analysis content model is a class model that captures structure and data of a Web ap-
plication. A part of the DANUBIA case study introduced in 1.3 serves as a running exam-
ple for this chapter. For a more detailed presentation of the case study see chapter 6. Its
main objective is the management of environmental projects, in short named projects in the
following. Two different kinds of projects are distinguished, user projects and validation
projects. A user project serves to examine certain questions, e.g. “how will the expected
frequency of the occurrence of extreme discharge at a gage P change within the next 100
years?”. A user project can be associated to a validation project which is used to validate
simulation configurations. For the two different kinds of projects an inheritance relation-
ship has been introduced in the analysis content model. Further, attributes (without type

 88

Model Driven Software Engineering for Web Applications

information) have been added, such as name and description of a project. The analysis con-
tent model resulting from this description is depicted in Figure 25.

ValidationProject

ProjectManager

UserProject

Project

-projects*

-projectManager1

-name
-descrip tion

-validationProject

0..1

Figure 25. Analysis content model

4.2.3 Web Use Cases: Example

Web use cases, i.e. specialized UML use cases, are used for modeling the required func-
tionality of a Web application. For this purpose, for each class from the analysis content
model a use case diagram is constructed that comprises the analysis content class and all of
the corresponding Web use cases which are placed inside the box representing the analysis
content class.

The Web use cases for the project manager are depicted in Figure 26. The Web process
Add Project expresses that the user can add new projects. The Web process Add Project is
not a simple process because it requires a dedicated workflow in which we would like the
user first to decide which kind of project he wants to add. Then he should enter exactly the
information necessary for the selected kind of project. The target content class Project,
which is represented by an association between the Web process use case and the content
class, specifies that after the completion of the process the resulting project is shown to the
user. The simple process Remove Project expresses that the user can remove a project. The
navigation use case View Projects expresses that the user can navigate to the list of pro-
jects, represented by the association to the corresponding content class, i.e. the target of the
navigation use case. For user projects, the user can navigate to the corresponding valida-
tion project target and the user can edit the user project as depicted in Figure 27. All con-
straints for the requirements model are fulfilled because each Web use case has exactly one
analysis content class as subject. Further, no more than one association between a specific

 89

Model Driven Software Engineering for Web Applications

Web use case and a content class exists. For each navigation use case a target is defined
and a corresponding association exists in the analysis content model. Finally, for the edit
use case a target is not defined.

ProjectManager

<<simple process>>
Remove Project

<<web process>>
Add Project

<<navigation>>
View Projects

ProjectManager

DanubiaUser

Project

Project

Figure 26. Use cases for content class ProjectManager

UserProject

<<navigation>>
View Validation Project

<<edit>>
Edit User Project

ValidationProject

ProjectManager

DanubiaUser

Figure 27. Use cases for content class UserProject

4.3 Content

The objective of content modeling is to define the structural and behavioral aspects of the
problem domain of a Web application. The structural aspects correspond to the information
space of a Web application while the behavioral aspects correspond to the atomic units of

 90

Model Driven Software Engineering for Web Applications

behavior, see below. Navigation and presentation aspects are not taken into account when
constructing the content model.

Well-known object-oriented modeling activities, which are as well applied to traditional
non-Web application development, are the foundation for content modeling, thus regular
UML classes represent the problem domain of a Web application. In addition to static
structural features (attributes and associations) which are referenced in the navigation
model, the content model also comprises dynamic behavioral features (operations) which
are referenced in the process model.

Content modeling is normally based on either entity relationship (ER) diagrams [Chen76]
or object-oriented techniques using UML class diagrams. Data-intensive approaches such
as WebML [Ceri02] or W2000 [Baresi06] originate from the field of database systems and
are hence based on entity relationship diagrams for modeling the information space. How-
ever, ER diagrams cannot be used to represent the behavioral properties of an application.
Therefore, approaches based on ER diagrams have to define additional modeling elements
for expressing the dynamic aspects of the problem domain. WebML for example intro-
duces the concept of operations at the hypertext, i.e. navigation, level, thereby breaking up
the separation of the content and the navigation concerns. Other approaches, including
UWE, are based on object-oriented methods, and thus most of them use UML classes for
content modeling in a very similar way as the approach presented in this work.

One limitation of this work is that behavior is modeled at the granularity of operation sig-
natures. Thus, the implementation of operations themselves cannot be generated automati-
cally but has to be either predefined by e.g. a Web service, or only implementation skele-
tons can be generated, which then have to be completed by the developer. Possible ways of
extending this approach by modeling executable behavior of operations are discussed in
the conclusions chapter.

The content model is automatically derived from the requirements model by applying the
transformation Requirements2Content presented in 4.3.2. The resulting default content
model has to be refined by the developer by adding additional classes, attributes, opera-
tions, associations etc.

4.3.1 Metamodel

Content modeling does not require any additional constructs. Regular UML classes are
used for content modeling in order to make content modeling as similar as possible to the
modeling of traditional non-Web applications.

 91

Model Driven Software Engineering for Web Applications

4.3.2 Transformation Requirements2Content

The transformation Requirements2Content depicted in Figure 28 automatically derives a
content model from the requirements model, i.e. the analysis content model and the Web
use case model. It comprises two transformation rules which are outlined below and de-
tailed in B.3.1. The well-formedness of the input model is checked before the transforma-
tion is executed, see 4.1.1. Further, for each rule transformation traces are generated as de-
scribed in 4.1.2.

ContentClass2ContentClassWithOperations
SimpleProcess2Operation

Requirements2ContentAnalysis
Content Model

Content Model

Web Use Case
Model

Requirements Model

ContentClass2ContentClassWithOperations
SimpleProcess2Operation

Requirements2ContentAnalysis
Content Model

Content Model

Web Use Case
Model

Requirements Model

Figure 28. Transformation Requirements2Content

The resulting content model for the analysis content model depicted in Figure 25 and the
Web use case model for the project manager depicted in Figure 26 is shown in Figure 29.
In comparison to the analysis content model the operation removeProject for the simple
process use case Remove Project has been added. The other Web use case types affect only
the automatically derived models at later steps during the semi-automatic construction of
the design models: navigation use cases determine the navigation model, while all Web
process use case types (simple processes, complex processes and edit processes) are re-
quired for the construction of the process model.

 92

Model Driven Software Engineering for Web Applications

ValidationProjectUserProject

ProjectManager

+removeProject()

Project

-projects*

-pro jectManager1

-name
-descrip tion

-validationPro ject

0..1

Figure 29. Content model derived by transformation Requirements2Content

Rule ContentClass2ContentClassWithOperations

The rule ContentClass2ContentClassWithOperations maps each content class to a content
class with added operations created by the second rule SimpleProcess2Operation. Note
that the ATL expression

 thisModule.resolveTemp(sp, ‘op’)

is necessary to reference a specific target element op of the rule SimpleProcess2Operation
that matches the source element sp, see also [ATL06a]. The effect of these rules for a part
of the running example is depicted in Figure 30. In comparison to the rule implementation
in B.3.1 target bindings that are not relevant for understanding the rule have been omitted.

ProjectManager

+removeProject()

ProjectManager

<<simple process>>
Remove Project

ProjectManager

+removeProject()

ProjectManager

<<simple process>>
Remove Project

ProjectManager

<<simple process>>
Remove Project

Figure 30. Illustration of the rules for adding operations

rule ContentClass2ContentClassWithOperations
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))

 93

Model Driven Software Engineering for Web Applications

 to tc : UWE!Class
 (
 ownedOperation <- c.ownedOperation->union(
 c.useCase->select(uc | uc.oclIsKindOf(UWE!SimpleProcess))->
 collect(sp | thisModule.resolveTemp(sp, ‘op’))),
 …
)
}

Rule SimpleProcess2Operation

For each simple process in the requirements model an operation is generated. The name of
the operation is calculated by discarding all spaces from the name of the simple process
and converting the first character to a lower case representation. The functions regexRe-
placeAll (for replacing substrings by using regular expressions) and firstToLower are pro-
vided by ATL [ATL06a]. An auxiliary rule Type2ReturnParameter (detailed in B.3.1) is
used to generate the return parameter of the operation.

rule SimpleProcess2Operation
{
 from sp : UWE!SimpleProcess
 to tsp : UWE!SimpleProcess (…), -- target for copying source element
 op : UWE!Operation
 (
 name <- sp.name.regexReplaceAll(' ', '').firstToLower(),
 type <- sp.target,
 ownedParameter <- if sp.target.oclIsUndefined() then Sequence {} else
 Sequence { thisModule.Type2ReturnParameter(sp.target) } endif
)
}

4.3.3 Manual Refinement

The automatically derived content model has to be manually refined by the developer to
add on the one hand model properties that were not present in the analysis content model.
On the other hand the developer can enrich the content model by model elements which
were not relevant at the requirements level.

The following actions are mandatory for a valid content model for the further steps in the
model driven process if the corresponding information is not yet available in the analysis
content model:

 94

Model Driven Software Engineering for Web Applications

• Specify the types for all attributes, this may require the definition of new types,
such as for example enumeration types

• Specify the multiplicities for all properties

• Specify which ends of an association are navigable

• Specify names for all navigable (in terms of UML properties) association ends

Other actions, which have an influence on the models in the following steps, are optional.
Optional means that the model is valid without any of these actions:

• Add additional classes, attributes, operations and associations

• Specify if a property is ordered for all multi-valued ends of an association

• Add inheritance and abstract classes

• Add parameters and return types to operations. Note that for operations which are
used in simple processes, parameters correspond to the input of an operation call
and the return type to the output of an operation call in the workflow of the process.

The automatically derived design content model for the running example was manually
refined by specifying attribute types and adding additional attributes such as the id attrib-
ute. The association end projects has been declared as ordered. A parameter project has
been added to the operation removeProject to specify that the user first has to enter the pro-
ject he wants to remove. The resulting content model is depicted in Figure 31. The detailed
content model for the case study is presented in 6.1.2.

 95

Model Driven Software Engineering for Web Applications

ProjectManager

+removeProject(project : Project)

Project

{ordered}
-projects

*

-projectManager1

-name : String
-description : S tring
-id : String

ValidationProjectUserProject
-validationPro ject

0..1

Figure 31. Refined design content model

4.4 Navigation

The objective of navigation modeling is to specify the navigability through the content of a
Web application, i.e. to define a static navigation view of the content. Nodes represent in-
formation from the content model and links express the navigation paths between nodes.

In this approach nodes are specialized UML classes and links are specialized UML asso-
ciations. In contrast to other approaches the pure UML notation is used for navigation
modeling in order to provide a uniform notation for the metamodel. The navigation model
is constructed in several steps as presented in the following sections. The first step is called
the navigation space model. It specifies which nodes can be visited by direct navigation
from other nodes. After the construction of the navigation space model access structures
are added to the navigation model. Finally, menus organize the outgoing links of naviga-
tion classes.

This approach shares the central concepts of nodes and links with other Web approaches.
Some approaches merge additional concerns, which are represented in this approach by
separate models, with the navigation concern. OO-H [Cachero02], WebML [Ceri02] and
OOWS [Fons03] use the navigation model for representing the process concern. The latter
additionally merges the presentation concern with the navigation concern. Apart from the

 96

Model Driven Software Engineering for Web Applications

distinct separation of concerns, the main differences between this approach to navigation
modeling and other approaches are the different kind of nodes and links defined.

The special node types for navigation modeling in WebML are pages, content units and
operation units. Pages are containers of content units that are presented together to the user
of the Web application. Content units are views on the entities from the content model.
Operation units model arbitrary actions that can be triggered during navigation. WebML
provides a set of predefined operations for typical database actions. Although in this ap-
proach there is no direct correspondence to the concept of a page, nodes that belong to-
gether can be expressed by composition relationships. Content units correspond to naviga-
tion classes and access primitives from the navigation model and process classes from the
process model. Operation units correspond to call operation actions in the process flow
model. In contrast to WebML data manipulation operations are not predefined (but might
be in a future evolution), thus all kind of operations are treated in the same way and this
approach does not presume the existence of a database. WebML further distinguished con-
textual and non-contextual links. Contextual links carry context information. In WebML
contextual links are required for technical reasons to transport database identifiers. In the
approach of this work the context of a link is always implicitly given by the participating
navigation properties of a link (see next section).

OO-H distinguished the following node types: navigation targets, navigation classes, ser-
vice nodes and collections. Navigation targets serve as containers for other nodes and are
used for structuring the navigation space. Service nodes represent the invocation of an op-
eration from the content model and collections represent the choice of an outgoing link, i.e.
a menu. Navigation targets correspond to nested navigation classes. Navigation classes
correspond to navigation classes and collections to menus. As already mentioned above,
OO-H merges the modeling of processes with navigation modeling. Each service node cor-
responds to a call operation action in the process flow model. Additionally, OO-H defines
different link types which can all be mapped to elements of the navigation metamodel of
this approach.

In addition to the concept of a node as a view of a content class, W2000 [Baresi06] intro-
duces the concept of a navigation cluster that has no direct correspondence in other (in-
cluding this) approaches. Such a navigation cluster represents an interaction context. It is a
essentially a container that groups a set of closely related nodes. The different cluster types
such as structural clusters, association clusters or collection clusters correspond to different
viewpoints of the system. The overall navigation across the application is determined by
shared nodes that belong to different clusters.

 97

Model Driven Software Engineering for Web Applications

OOHDM [Schwaabe98] defines navigation classes which corresponds to navigation
classes of this approach. A specialized form of database query language is used to define
attributes of navigation classes and links. Additionally, the concept of navigation contexts
is introduced which has no direct correspondence in other (including this) approaches, but
is to some degree similar to navigation clusters in W2000. Navigation contexts allow the
definition of an internal navigation structure for a set of instances of related navigation
classes that fulfill a certain condition. Navigation contexts are also used for realizing ac-
cess structures.

This approach is limited by the used expression language for the definition of navigation
properties and guards of links, cf. 4.1.3 and the next section. The metamodel can easily be
extended by new node types and new link types. For a further evolution it would be desir-
able to incorporate some of the complex navigation constructs from W2000 (navigation
clusters) and OOHDM (navigation contexts), although these concepts take advantage of
the corresponding proprietary notation and it is unclear if a satisfactory corresponding
UML notation can be defined.

The navigation metamodel and the stepwise construction of the navigation model is pre-
sented in the following sections.

4.4.1 Metamodel

The basic elements in navigation models are nodes and links. The corresponding modeling
elements in the metamodel are Node and Link, which are derived from the UML elements
Class and Association, respectively. The backbone of the metamodel for navigation model-
ing is shown in Figure 32. The node metaclass is abstract, which means that only further
specialized classes may be instantiated. Furthermore a node can be designated to be an en-
try point of the application with the isHome attribute. If a node should be reachable from
everywhere within the navigation model without explicit links, then the isLandmark attrib-
ute has to be set. The Link class is also an abstract class. Links connect a source node with
a target node as expressed by the two associations between link and node. With the
isAutomatic attribute a link is automatically followed. Additionally, a guard expression can
be defined, to specify when a link can be followed, see below. The element Node is further
specialized to the concrete node type NavigationClass. Further specialized classes are used
for modeling access structures (see below) and for the integration of processes (see 4.5.1).
A navigation class is a navigational view of a content class, represented by the association
to a content class. Navigation classes comprise a list of navigation properties which repre-
sent properties from the content model, expressed by the attribute contentProperties. An
optional derivationExpression can be used to specify how the navigation property is de-

 98

Model Driven Software Engineering for Web Applications

rived from the content properties. A navigation link is used for modeling the navigation
between nodes with the usual semantics for hypermedia applications. Navigation links are
always uni-directional. In case of bi-directional navigation links two uni-directional navi-
gation links have to be used. Inheritance between navigation classes has the usual object-
oriented semantics. In addition, navigation links to a super navigation class represent dy-
namic navigation, i.e. depending on the actual type of the target navigation class at run-
time, the corresponding navigation class is presented to the user.

NavigationProperty
derivationExpression[0..1] : Str ing

Link
guard : String = true
isAutomatic : Boolean = false

Node
isHome : Boolean = false
isLandmark : Boolean = false

NavigationClass NavigationLink

Association

Property

{ordered, subsets ownedAttribute}

{subsets class}

Class

+/target

1

+/inLinks

*

+/source

1

+/outLinks

*

+contentClass

1

+navigationClass1

+navigationProperties
*

+contentProperties*

Figure 32. Metamodel for navigation modeling (backbone)

For further structuring the navigation model, two additional specialized node types are in-
troduced: access primitives and menus, see Figure 33. Access primitives are used to define
how collections of nodes should be accessed. Access primitives are further specialized to
indices, guided tours and queries. An index represents the direct access to all instances of
the target node type by providing the user with a list of all elements to choose from for
continuing the navigation. A guided tour represents the sequential access to all elements. A
sort expression can be defined with the attribute sortExpression. The query element repre-
sents the possibility to search for instances of the target node type where a filtering expres-

 99

Model Driven Software Engineering for Web Applications

sion can be defined by the attribute filterExpression. Menus are specialized navigation
classes that are used to structure the outgoing links from a navigation class. They have to
be associated to a navigation class by a composition.

Index Query
filterExpression : String

GuidedTour
sor tExpression : Str ing

AccessPrimitive

Node

Menu

NavigationClass

Figure 33. Metamodel for navigation modeling (access structures)

Derived Attributes

The attributes source and target of a link are derived from the members of the association
super class.

context Link def : source : Node = self.ownedEnd->first().type
context Link def : target : Node = self.ownedEnd->first().opposite.type

The derived attributes outLinks and inLinks of a node are derived from the derived attrib-
utes source and target of the corresponding links.

context Node def : outLinks : Set(Link) = Link.allInstances()->select(l | l.source = self)
context Node def : inLinks : Set(Link) = Link.allInstances()->select(l | l.target = self)

Constraints

In a specific namespace at most one home node may be defined.

context Namespace inv NamespaceUniqueHomeNode :
 self.member->select(e | e.oclIsKindOf(Node))->
 select(n | n.isHome)->size() <= 1

Only navigation classes (and subclasses) can be home or landmark nodes.

context Node inv NodeHomeOrLandmark :
 self.isHome or self.isLandmark implies self.oclIsKindOf(NavigationClass)

 100

Model Driven Software Engineering for Web Applications

Each node must be reachable. Therefore it has to be either a home or landmark node or the
node (or a super node) must be navigable from some other node. Here, navigable means
that some other node owns a corresponding attribute.

context Node inv NodeReachability :
 not (self.isHome or self.isLandmark) implies
 let allNodes : Set(Node) = self.allParents()->including(self) in
 Node.allInstances()->exists(n | n.ownedAttribute->exists(p | allNodes->includes(p.type)))

Node inheritance is restricted to navigation classes. The content class associated to a navi-
gation class has to conform to the corresponding content class of a super navigation class.
Inheritance among different types of navigation classes is not permitted.

context Node inv NodeInheritance :
 if self.oclIsKindOf(NavigationClass) then
 self.parents()->forAll(sn | sn.oclType = self.oclType and
 self.contentClass.conformsTo(sn.contentClass))
 else self.parents()->isEmpty() endif

A navigation class contains only navigation properties.

context NavigationClass inv NavigationClassOwnedAttributeType :
 self.ownedAttribute->forAll(p | p.oclIsKindOf(NavigationProperty))

The type of a navigation property has to be either a data type or a (navigation) node type.

context NavigationProperty inv NavigationPropertyType :
 self.type.oclIsKindOf(DataType) or self.type.oclIsKindOf(Node)

Links only connect (navigation) nodes, must be binary and unidirectional.

context Link inv LinkMembers :
 self.memberEnd->size() = 2 and self.ownedEnd->size() = 1 and
 self.memberEnd->forAll(p | p.type.oclIsKindOf(Node))

All navigable properties of a node corresponding to the incoming links of an access primi-
tive must have multiplicity one.

context AccessPrimitive inv AccessPrimitiveIncoming :
 let ps : Set(Property) = Node.allInstances()->collect(n | n.ownedAttribute)->flatten()->
 select(p | p.association.oclIsKindOf(Link) and p.type = self) in
 ps->forAll(p | p.lower = 1 and p.upper = 1)

An access primitive has exactly one outgoing link.

context AccessPrimitive inv AccessPrimitiveOutgoing :
 self.outLinks->size() = 1

The one and only outgoing link of an index leads to a navigation class and the correspond-
ing navigable property has multiplicity many.

context Index inv IndexOutgoing :

 101

Model Driven Software Engineering for Web Applications

 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(Link) implies
 p.isMultivalued() and p.type.oclIsKindOf(NavigationClass))

The one and only outgoing link of a guided tour leads to a navigation class and the corre-
sponding navigable property has multiplicity many.

context GuidedTour inv GuidedTourOutgoing :
 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(Link) implies
 p.isMultivalued() and p.type.oclIsKindOf(NavigationClass))

The one and only outgoing link of a query leads to an index and the corresponding naviga-
ble property has multiplicity one.

context Query inv QueryOutgoing :
 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(Link) implies
 p.lower = 1 and p.upper = 1 and p.type.oclIsKindOf(Index))

Derivation Expressions

If the derivation of a navigation property from content properties is non trivial, a derivation
expression has to be defined as a simple expression of the expression language, see 4.1.3.
The derivation of a navigation property is trivial, if it is derived directly from exactly one
content property, for example the derivation expression

 self.name

for the derivation of the navigation property name from the content property name of the
content class Project. The derivation expression for a trivial derivation may be omitted. A
non-trivial derivation expression for a navigation property representing the name of the
corresponding validation project would be for example

 empty self.validationProject ? “<none>” : self.validationProject.name

Guard Expressions

If the availability of a link should depend on some condition, a guard expression has to be
defined as a simple expression of the expression language, see 4.1.3. The context of this
expression is the source content class and the expression has to evaluate to a boolean value.
The following guard expression for the link from a user project to the corresponding vali-
dation project

 not empty self.validationProject

ensures that the link is only available if the validation project exists. Note that this guard
condition could be omitted because a link is only shown when the target object exists. The

 102

Model Driven Software Engineering for Web Applications

following guard expression shows the link only if the validation project exists and if it has
a name:

 empty self.validationProject ? false : not empty self.validationProject.name

Notation

Stereotyped UML class diagrams are used for navigation modeling. For a definition of the
corresponding UML profile see A.4.

4.4.2 Navigation Space

The first step in the stepwise construction of the navigation model is called the navigation
space model. The navigation space model specifies which nodes can be visited by direct
navigation from other nodes. It is not yet specified how these nodes are accessed, which is
done in the following steps by adding access structure elements. The navigation space
model comprises navigation views of those content classes which can be visited by naviga-
tion through the Web application and navigation links (special kind of associations) that
specify which navigation views can be reached through navigation. A navigation view of a
content class may contain only a subset of the attributes of a content class or define addi-
tional attributes which are derived from the content class. In the following two sub sec-
tions, first the automatic derivation of the navigation space model from the requirements
model and the content model is presented, followed by a description of the manual refine-
ment activities.

4.4.2.1 Transformation RequirementsAndContent2Navigation

The transformation RequirementsAndContent2Navigation automatically generates an ini-
tial navigation model from the requirements and the content model. It comprises three
transformation rules which are outlined below and detailed in B.3.4.

 103

Model Driven Software Engineering for Web Applications

ContentClass2NavigationClass
Property2NavigationProperty
AssociationProperty2NavigationLink

RequirementsAndContent2Navigation

Navigation Space
Model

Manually Refined
Content Model

Requirements
Model

ContentClass2NavigationClass
Property2NavigationProperty
AssociationProperty2NavigationLink

RequirementsAndContent2Navigation

Navigation Space
Model

Manually Refined
Content Model

Requirements
Model

Figure 34. Transformation RequirementsAndContent2Navigation

The resulting navigation space model for the running example is depicted in Figure 35. For
each class in the content model a corresponding navigation class was generated by the rule
ContentClass2NavigationClass. The abstract content class Project was mapped to a corre-
sponding abstract navigation class. Therefore, at runtime only instances of the sub naviga-
tion classes UserProject or ValidationProject may exist. The attributes of a project have
been mapped to corresponding navigation properties by the rule Prop-
erty2NavigationProperty. Finally, for each navigation use case in the requirements model
and a corresponding association end in the content model a navigation link has been gener-
ated by the rule AssociationProperty2NavigationLink, such as for example the navigation
link from the project manager to a project. This navigation link represents dynamic naviga-
tion, i.e. depending on the actual type of the project at runtime, either a user project or a
validation project is presented to the user.

 104

Model Driven Software Engineering for Web Applications

<<navigation class>>
ValidationProject

<<navigation class>>
UserProject

<<navigation class>>
ProjectManager

<<navigation class>>
Project

<<navigation link>>

-projects*

-id : String
-name : String
-description : S tring

<<navigation link>>

-validationProject

0 ..1

Figure 35. Navigation space model derived by transformation
RequirementsAndContent2Navigation

Rule ContentClass2NavigationClass

Each content class that is either subject of a Web use case or target of a Web use case, as
returned by the helper isRelevantForNavigation, is mapped to a navigation class with the
same name. Additionally, a reference to the corresponding content class is assigned. In
comparison to the rule implementation in B.3.4 the following details have been omitted
below: target bindings that are not relevant for understanding the rule, and targets for map-
ping inheritance between content classes to inheritance between navigation classes.

rule ContentClass2NavigationClass
{
 from c : UWE!Class (c.isRelevantForNavigation())
 to tc : UWE!Class (…), -- target for copying source element
 nc : UWE!NavigationClass
 (
 name <- c.name,
 contentClass <- tc,
 ownedAttribute <- c.ownedAttribute->collect(p | thisModule.resolveTemp(p, 'np')),
 …
),
 …

 105

Model Driven Software Engineering for Web Applications

}

Rule Property2NavigationProperty

Each content property that is owned by a content class and not part of an association is
mapped to a navigation property. In comparison to the rule implementation in B.3.4 target
bindings that are not relevant for understanding the rule have been omitted.

rule Property2NavigationProperty
{
 from p : UWE!Property (p.oclIsTypeOf(UWE!Property) and
 p.class_.isRelevantForNavigation() and p.association.oclIsUndefined())
 to tp : UWE!Property (…), -- target for copying source element
 np : UWE!NavigationProperty
 (
 name <- p.name,
 class_ <- p.class_,
 type <- p.type,
 contentProperties <- Sequence { p },
 …
)
}

Rule AssociationProperty2NavigationLink

Each property of an association that is owned by a content class (i.e. each navigable asso-
ciation end) is mapped to a navigation link and two corresponding navigation properties.
An additional condition is that a corresponding navigation use case exists in the require-
ments model. Unidirectional associations are mapped to one navigation link and bi-
directional associations to two navigation links. In comparison to the rule implementation
in B.3.4 target bindings that are not relevant for understanding the rule have been omitted.

rule AssociationProperty2NavigationLink
{
 from p : UWE!Property (
 if p.class_.oclIsTypeOf(UWE!Class) then
 p.oclIsTypeOf(UWE!Property) and
 not p.association.oclIsUndefined() and
 p.class_.useCase->exists(uc |
 uc.oclIsKindOf(UWE!Navigation) and uc.target() = p.type)
 else false endif)
 to tp : UWE!Property (…), -- target for copying source element

 106

Model Driven Software Engineering for Web Applications

 nl : UWE!NavigationLink
 (
 …
),
 nps : UWE!Property
 (
 association <- nl,
 owningAssociation <- nl,
 type <- p.class_,
 …
),
 np : UWE!NavigationProperty
 (
 name <- p.name,
 class_ <- p.class_,
 type <- p.type,
 association <- nl,
 contentProperties <- Set { p },
 …
)
}

4.4.2.2 Manual Refinement

The automatically derived navigation space model has then to be refined manually. The
only required activity is the designation of a home node for the application by setting the
isHome attribute. Other optional activities are:

• Definition of additional navigation classes

• Definition of additional navigation properties

• Definition of additional navigation links

• Renaming of automatically derived model elements

• Deletion of automatically derived model elements

• Designation of landmark nodes

• Designation of automatic links

• Definition of guard expressions for links

 107

Model Driven Software Engineering for Web Applications

The automatically derived navigation space model for the running example was manually
refined, resulting in the navigation model depicted in Figure 36. First, the navigation class
ProjectManager was designated as entry point of the Web application by setting the
isHome attribute. Second, a back navigation link was added to allow the user to navigate
from a project back to the project manager.

<<navigation class>>
ValidationProject

<<navigation class>>
ProjectManager

{is Home}

<<navigation class>>
UserProject

<<navigation class>>
Project

<<navigation link>>

-projectManager1

<<navigation link>>
-projects*

-id : String
-name : String
-description : S tring

<<navigation link>>

-validationProject

0 ..1

Figure 36. Manually refined navigation space model

4.4.3 Addition of Indices

After the construction of the navigation space model in which navigation classes and navi-
gation links were defined that span the navigation space, access structures have to be added
to the navigation model, in order to define how the access to the targets of navigation links
with multi-valued end should be realized. Therefore, indices are automatically added to the
navigation model. The resulting navigation model can then optionally be refined.

4.4.3.1 Transformation AddIndices

The transformation AddIndices depicted in Figure 101 adds indices to the navigation
model, which is outlined in this section. It comprises one transformation rule which is out-
lined below and detailed in B.3.5.

 108

Model Driven Software Engineering for Web Applications

NavigationProperty2Index

AddIndices
Navigation Model

With Added Indices
Manually Refined
Navigation Space

Model
NavigationProperty2Index

AddIndices
Navigation Model

With Added Indices
Manually Refined
Navigation Space

Model

Figure 37. Transformation AddIndices

In Figure 38 the application of this transformation to the running example is depicted. The
multi-valued navigation property belonging to the link from the project manager to projects
was transformed to a link to an index and a corresponding link to the original target of the
link.

<<navigation class>>
Project

<<navigation class>>
ProjectManager

{isHome}

<<index>>
ProjectIndex <<navigation link>>

-projectManager1
<<navigation link>>

-pro jects1

<<navigation link>>

*

Figure 38. Navigation model with added indices derived by transformation AddIndices

Rule NavigationProperty2Index

The rule NavigationProperty2Index adds indices to the navigation model. This is done by
matching all multi-valued navigation properties that are ends of a link where the source is a
navigation class and the target is a navigation class (exact type). Such a navigation prop-
erty is changed to point to a generated index element. Additionally, an outgoing link from
this index to the original target navigation class is generated. Note that apart from the
nodes and links always the corresponding properties have to be created, too. In comparison
to the rule implementation in B.3.5 target bindings that are not relevant for understanding
the rule have been omitted.

rule NavigationProperty2Index
{

 109

Model Driven Software Engineering for Web Applications

 from np : UWE!NavigationProperty (np.isMultivalued() and
 np.association.oclIsKindOf(UWE!Link) and
 np.class_.oclIsKindOf(UWE!NavigationClass) and
 np.type.oclIsKindOf(UWE!NavigationClass))
 to tnp : UWE!NavigationProperty
 (
 name <- np.name,
 class_ <- np.class_,
 type <- index,
 association <- np.association,
 derivationExpression <- np.derivationExpression,
 contentProperties <- np.contentProperties
),
 index : UWE!Index
 (
 name <- if UWE!Property.allInstances()->select(p |
 p.isMultivalued() and p.association.oclIsKindOf(UWE!Link) and p.type = np.type)
 ->size() > 1 then np.class_.name else '' endif + np.type.name + 'Index',
 ownedAttribute <- Sequence { npt }
),
 nl : UWE!NavigationLink
 (
 owner <- np.class_.owner
),
 nps : UWE!Property
 (
 association <- nl,
 owningAssociation <- nl,
 type <- index
),
 npt : UWE!Property
 (
 association <- nl,
 class_ <- index,
 type <- np.type
)
}

4.4.3.2 Manual Refinement

The refinement of the automatically derived navigation model with indices is optional. The
following activities are possible:

• Definition of additional access primitives

 110

Model Driven Software Engineering for Web Applications

• Deletion of automatically derived indices

• Renaming of automatically derived indices

• Replacement of navigation links with composite associations

For the running example it was chosen to replace the navigation link from the project man-
ager to the project index with a composite association, in order to reduce the number of
navigation links.

<<navigation class>>
ProjectManager

{isHome}

<<navigation class>>
Project

<<index>>
ProjectIndex <<navigation link>>

-projectManager1

-projects1

<<navigation link>>

*

Figure 39. Navigation model with refined indices

4.4.4 Addition of Menus

After the addition of indices as described in the last section, menus are added to the navi-
gation model to organize the outgoing links of navigation classes. A transformation auto-
matically adds a menu to each navigation class with outgoing links. The resulting naviga-
tion model can then be manually refined optionally.

4.4.4.1 Transformation AddMenus

The transformation AddMenus depicted in Figure 40 automatically adds menus to the navi-
gation model. It comprises two transformation rules which are outlined below and detailed
in B.3.6.

 111

Model Driven Software Engineering for Web Applications

NavigationClass2NavigationClassWithMenu
NavigationProperty2MenuProperty

AddMenus
Navigation Model

With Added Menus
Manually Refined
Navigation Model

With Added Indices

NavigationClass2NavigationClassWithMenu
NavigationProperty2MenuProperty

AddMenus
Navigation Model

With Added Menus
Manually Refined
Navigation Model

With Added Indices

Figure 40. Transformation AddMenus

The automatically generated menus for the project and the user project navigation classes
are depicted in Figure 41. The inheritance relationship between a user project and a project
was mapped to an inheritance relationship between the corresponding menus. Thus, the
user project menu inherits the navigation link to the project manager from the project
menu.

<<navigation class>>
ValidationProject

<<navigation class>>
ProjectManager

<<navigation class>>
UserProject

<<navigation class>>
Project

<<menu>>
ProjectMenu

<<menu>>
UserProjectMenu

<<navigation link>>

-projectManager

1

<<navigation link>>

-validationProject

0..1

1

1

Figure 41. Navigation model with added menus derived by transformation AddMenus

Rule NavigationClass2NavigationClassWithMenu

The rule NavigationClass2NavigationClassWithMenu creates a menu for each navigation
class with at least one outgoing link, or if for the corresponding content class at least one
Web process use case is defined, because this menu is then required for the integration of
processes as presented in 4.5.1. All outgoing links are moved to the menu node and the
menu node is composed with the original navigation class. In comparison to the rule im-
plementation in B.3.6 the following details have been omitted below: target bindings that
are not relevant for understanding the rule, and targets for mapping inheritance between
navigation classes to inheritance between menus.

rule NavigationClass2NavigationClassWithMenu
{
 from nc : UWE!NavigationClass (nc.oclIsTypeOf(UWE!NavigationClass) and
 (nc.ownedAttribute->select(p |
 not p.isComposite and p.association.oclIsKindOf(UWE!Link)
 and not p.type.oclIsTypeOf(UWE!Menu))->size() > 0

 112

Model Driven Software Engineering for Web Applications

 or nc.contentClass.useCase->exists(uc | uc.oclIsKindOf(UWE!WebProcess)))
 using
 {
 menuNps : Sequence(UWE!Property) = nc.ownedAttribute->select(p | not p.isComposite
 and p.association.oclIsKindOf(UWE!Link) and not p.type.oclIsTypeOf(UWE!Menu));
 otherNps : Sequence(UWE!Property) = nc.ownedAttribute - menuNps;
 }
 to tnc : UWE!NavigationClass
 (
 ownedAttribute <- otherNps->including(apt),
 …
),
 menu : UWE!Menu
 (
 name <- nc.name + 'Menu',
 ownedAttribute <- menuNps,
 contentClass <- nc.contentClass,
 …
),
 a : UWE!Association
 (
 …
),
 aps : UWE!Property
 (
 association <- a,
 owningAssociation <- a,
 type <- nc,
 …
),
 apt : UWE!NavigationProperty
 (
 association <- a,
 class_ <- nc,
 type <- menu,
 aggregation <- #composite,
 isComposite <- true,
 …
),
 …
}

 113

Model Driven Software Engineering for Web Applications

Rule NavigationProperty2MenuProperty

This rule converts all properties of a navigation class (exact type) which are part of a link
to the corresponding properties of the links from the menu generated by the rule Naviga-
tionClass2NavigationClassWithMenu. In comparison to the rule implementation in B.3.6
target bindings that are not relevant for understanding the rule have been omitted.

rule NavigationProperty2MenuProperty
{
 from np : UWE!NavigationProperty (np.class_.oclIsTypeOf(UWE!NavigationClass) and
 np.type.oclIsKindOf(UWE!Node) and not np.type.oclIsTypeOf(UWE!Menu) and
 not np.isComposite and np.association.oclIsKindOf(UWE!Link))
 to tnp : UWE!NavigationProperty
 (
 class_ <- thisModule.resolveTemp(np.class_, 'menu'),
 …
)
}

4.4.4.2 Manual Refinement

The automatically derived navigation model with added menus can optionally be refined
by the following activities:

• Definition of new menus in order to further structure outgoing links

• Renaming of menus

The automatically derived navigation model for the running example has not been manu-
ally refined.

4.5 Process

The navigation model of a Web application represents the static information structure ac-
cessible to a user of the system. Processes on the other hand represent the dynamic aspects
of a Web application.

Process modeling (also called task modeling) stems from the Human Computer Interaction
(HCI) field [Harmelen01]. A process is composed of one or more sub processes and/or ac-

 114

Model Driven Software Engineering for Web Applications

tions that a user may perform to achieve a goal. A goal represents a desired change in the
state of the system and may be realized by formulating a plan composed of processes and
then performing those processes. Here the concept process is considered in a broader sense
by taking into account actions performed by the system and actions performed by the user,
see 4.5.2.

Different UML notations have been proposed for process modeling. Wisdom is a UML
extension that proposes the use of a set of stereotyped classes that make the notation not
very intuitive [Nunes00]. Markopoulos et al. make two different proposals: a UML exten-
sion of use cases [Markopoulos00] and another one based on statecharts and activity dia-
grams [Markopoulos02]. As already sketched in previous works of the author process
modeling as proposed here is based on UML activities [Koch03a], [Koch04a]. Activities in
general can be considered as “roadmaps” of system functional behavior [Lieberman01], or,
especially for Web applications we may speak of “roadmaps” of user interaction with the
system. For the case that the content model is implemented by Web services the process
model represents a choreography of Web services to achieve a desired behavior.

In contrast to other Web methodologies which realize processes with nodes and links as
part of the navigation model, such as for example OO-H [Cachero02] or WebML [Ceri02],
in this work processes are treated as an additional concern and are represented by a full-
fledged model. Processes in OOWS [Fons03] are captured in the business process model
using an extended version of the Business Process Modeling Notation (BPMN) [OMG06c]
and a corresponding extended metamodel for business modeling. BPMN stems from the
B2B (business-to-business) field and is similar (but not identical) to UML activities. In
contrast to this work also manual tasks are considered in the process model, i.e. tasks that
are manually carried out by humans and not automatically by the system by invoking op-
erations or Web services. However, processes in OOWS are not represented by a dedicated
model, but distributed over the BPMN process model and the navigation model. The latter
contains a lower level view of the process model, where the constructs of the process
model are resolved into navigation constructs. W2000 [Baresi06] follows a similar ap-
proach for process modeling as presented here although operations are defined separately
from the content model. It is suggested that either activity diagrams or collaboration dia-
grams are used to define the workflow of processes, but it is left unclear how these proc-
esses can be executed or translated to code. In contrast, the approach of this work allows a
detailed specification of workflows by using UML 2 activities and it is clearly defined how
processes are integrated in the navigation model.

The expressiveness of process modeling presented here is limited by the subset of the
UML modeling elements applicable for activities which are currently supported (see

 115

Model Driven Software Engineering for Web Applications

4.5.2.1). Therefore, this approach can be extended to support all the remaining UML mod-
eling elements such as for example exceptions, events or structured activity nodes. Addi-
tionally, specialized action types could be supported, for example for the direct manipula-
tion of objects, such as reading or writing attributes or associations. Although this type of
actions is considered in the UML metamodel, no notation is given and tool support does
not exist, and therefore these types of actions are not considered in this work.

Process modeling comprises three parts which are presented in the following sections:
process integration for integrating the invocation of processes in the navigation model,
process data representing data accessed by processes and process flow representing the dy-
namic process flow itself which comprises the invocation of operations from the content
model. Process data and process flow are developed concurrently, hence they are presented
together. Model transformations for successively deriving the process model from the un-
derlying models are given in each section.

4.5.1 Process Integration

In order to invoke dynamic behavior an interface between processes and navigation is
needed. This is achieved by integrating the invocation of processes in the navigation model
by means of process classes and process links which are derived from the corresponding
Web process use cases in the requirements model.

4.5.1.1 Metamodel

The modeling elements relevant for process integration are depicted in Figure 42. The two
basic constructs from the navigation metamodel node and link are specialized by introduc-
ing the modeling elements process class and process link, respectively.

Each process is represented by a process activity (see 4.5.2) and a process class that is as-
sociated to the corresponding Web process use case. Only the latter is relevant for process
integration. In general process classes represent data that is used during execution of a
process. For each process one process class is designated for integration in the navigation
model. Process links are special links used for the invocation of a process. Either the
source or the target (but not both) of a process link must be a process class. Following a
process link to a process class starts the execution of the corresponding process activity.
The input parameter of the activity must be compatible with the source content class. A
process link from a process class is automatically followed upon completion of the corre-
sponding process activity. The output parameter of the process activity must be compatible
with the target content class. If a process class has no outgoing process links then the navi-
gation context is not changed on invocation of the process.

 116

Model Driven Software Engineering for Web Applications

Node Link

ProcessLinkProcessClass WebProcess

AssociationClass

1

+/source

*

+/outLinks

1
+/target

*
+/inLinks

+/webProcess

0..1

Figure 42. Metamodel for integration of processes in the navigation model

Derived Attributes

The derived attribute webProcess of a process class is defined as being the associated Web
process use case. This attribute is only defined for the process class representing the proc-
ess.

context ProcessClass def : webProcess : WebProcess =
 if self.inLinks->isEmpty() then OclUndefined else
 self.useCase->any(uc | uc.oclIsKindOf(WebProcess)) endif

Constraints

All ingoing and outgoing links of a process class must be process links.

context ProcessClass inv ProcessClassLinkTypes :
 self.inLinks()->forAll(pl | pl.oclIsTypeOf(ProcessLink)) and
 self.outLinks()->forAll(pl | pl.oclIsTypeOf(ProcessLink))

A process class can have at most one incoming process link and at most one outgoing
process link.

context ProcessClass inv ProcessClassLinkCount :
 self.inLinks->size() <= 1 and self.outLinks->size() <= 1

Every process class that is reachable by following a process link must be associated to ex-
actly one Web process use case.

context ProcessClass inv ProcessClassWebProcess :
 self.inLinks->notEmpty() implies
 self.useCase->one(uc | uc.oclIsKindOf(WebProcess))

 117

Model Driven Software Engineering for Web Applications

One end of process link must be a process class and the other end must be a navigation
class.

context ProcessLink inv ProcessLinkEnds :
 self.source.oclIsKindOf(NavigationClass) and self.target.oclIsTypeOf(ProcessClass) or
 self.source.oclIsTypeOf(ProcessClass) and self.target.oclIsKindOf(NavigationClass)

Notation

The same notation as for navigation models, i.e. stereotyped UML class diagrams, is used
for modeling the process integration. For a definition of the corresponding UML profile
see A.5.

4.5.1.2 Tranformation ProcessIntegration

The transformation ProcessIntegration depicted in Figure 43 enhances the navigation
model by adding process classes and process links for the integration of processes. The
transformation comprises one transformation rule which is outlined below and detailed in
B.3.7.

Menu2IntegratedMenu

ProcessIntegration

Navigation Model
With Added Menus

Navigation Model
With Integrated

Processes

Requirements
Model

Menu2IntegratedMenu

ProcessIntegration

Navigation Model
With Added Menus

Navigation Model
With Integrated

Processes

Requirements
Model

Figure 43. Transformation ProcessIntegration

The automatic integration of the two processes AddProject and RemoveProject of the pro-
ject manager content class is depicted in Figure 44. For the former an additional exit link
was generated, because a target was defined for the corresponding Web process use case
depicted in Figure 26.

 118

Model Driven Software Engineering for Web Applications

<<menu>>
ProjectManagerMenu

<<process class>>
AddProject

<<naviga tion class>>
Project

<<process class>>
RemoveProject

<<process link>> 1

<<process link>> 1 <<process link>> 1

Figure 44. Integrated navigation model for content class ProjectManager derived by trans-
formation ProcessIntegration

Rule Menu2IntegratedMenu

Each Web process use case from the requirements model is mapped to a process class in
the integrated navigation model. A process link connects the menu corresponding to the
content class of the Web process use case to the generated process class. An outgoing
process link is generated for the optional target of the Web process use case. In comparison
to the rule implementation in B.3.7 the following details have been omitted below: target
bindings that are not relevant for understanding the rule, and targets for the ends of the
process links.

rule Menu2IntegratedMenu
{
 from nc : UWE!Menu (
 nc.contentClass.useCase->exists(uc | uc.oclIsKindOf(UWE!WebProcess)))
 using
 {
 wps : Sequence(UWE!WebProcess) = nc.contentClass.useCase->
 select(uc | uc.oclIsKindOf(UWE!WebProcess))->asSequence();
 wpsWithTarget : Sequence(UWE!WebProcess) = wps->select(wp |
 not wp.target.oclIsUndefined());
 wpsWithoutTarget : Sequence(UWE!WebProcess) = wps->select(wp |
 wp.target.oclIsUndefined());
 wpsOrdered : Sequence(UWE!WebProcess) = wpsWithTarget->union(wpsWithoutTarget);
 }
 to tnc : UWE!Menu (…), -- target for copying source element
 pc : distinct UWE!ProcessClass foreach (wp in wpsOrdered)
 (
 name <- let n : String = wp.name.regexReplaceAll(' ', '').firstToUpper() in
 if UWE!WebProcess.allInstances()->select(uc |
 uc.name.regexReplaceAll(' ', '').firstToUpper() = n)->size() > 2 then
 nc.getTraceSource('NavigationClass2Menu').name else '' endif + n,
 …

 119

Model Driven Software Engineering for Web Applications

),
 pl : distinct UWE!ProcessLink foreach (wp in wpsOrdered)
 (
 …
),
 epl : distinct UWE!ProcessLink foreach (wp in wpsWithTarget)
 (
 …
),
 …
}

4.5.1.3 Manual Refinement

The manual refinement of the automatically derived process classes and links comprises
the definition of guards for the entry process link, in order to specify under which condi-
tions a process can be executed. For details about the definition of guards see 4.4.1. As de-
picted in Figure 45 a guard for the process entry link to the process RemoveProject has
been defined to ensure that the collection of projects is not empty.

<<menu>>
ProjectManagerMenu

<<process class>>
AddProject

<<navigation class>>
Project

<<process class>>
RemoveProject

<<process link>>

{guard = not empty self .projects }

1

<<process link>> 1 <<process link>> 1

Figure 45. Manually refined process classes and links for content class ProjectManager

4.5.2 Process Data and Flow

The behavior of a Web process is defined by the process flow model. The process data
model defines the data required for the execution of the process flow model. The process
data and the process flow model are usually developed concurrently and are hence ad-
dressed together in this section.

UML activities are used for process flow modeling, see [OMG05a] for a description of
syntax and semantics of activities. An activity is the specification of parameterized behav-
ior as the coordinated sequencing of subordinate units. The flow of execution is repre-
sented by activity nodes connected by activity edges. Control nodes provide flow-of-

 120

Model Driven Software Engineering for Web Applications

control constructs, such as decisions and synchronization. Object nodes represent data
flowing along object flow edges. An action node represents executable behavior. Special
actions can be used to invoke other activities, thus activities can be composed from reus-
able units. Call operation actions represent the invocation of operations. The semantic of
activities is based on control and data token flows, similar to Petri nets [Priese03].

At runtime an activity has access to the features of its context object and any objects linked
to the context object, transitively. The context object of a Web process activity is the corre-
sponding process class. The parameters of the activity must correspond to the types of the
corresponding content classes of the navigation classes in the navigation model connected
to the Web activity by process links. Only special nodes are allowed here for the process
flow model, as the modeling constructs for activities provided by the UML are too com-
plex to be transformed in a generic way to platform specific constructs.

4.5.2.1 Metamodel

Process classes are used for process data modeling as depicted in Figure 46. Process prop-
erties, i.e. attributes of a process data class, capture the user input. A content class may be
defined for a process class for the definition of a context for the input data represented by
the process properties. If a content class is defined then an edit property may be defined for
a process property with the impact that on the one hand the initial value shown to the user
is determined from the edit property. On the other hand, changes to the process property
are forwarded to the edit property. The attribute rangeExpression can be used to define a
simple expression for the range of values a process property can receive. If a content class
is defined for the corresponding process class, then this expression may reference the
specified content class.

 121

Model Driven Software Engineering for Web Applications

ProcessProperty
rangeExpression[0..1] : String

ProcessClass

{ordered, subsets ownedAttribute}

Property

{subsets class}

Class

0..1

+contentClass

+processClass1

+processProperties
*

+editProperty

0..1

Figure 46. Metamodel for the process data modeling

For process flow modeling only a small extension to UML activity elements has been
made as depicted in Figure 47. A process flow is modeled with a special process activity
which has an association to the Web process use case from the requirements model on the
one hand and to the process class representing the process on the other hand. Further, a
special user action is used for modeling interactions with the user of the Web application.
The effect of this action is to present the corresponding process data class to the user (cf.
4.6). He or she can enter data corresponding to the process properties of the process class,
and when the user has finished entering data, this data is available at the output pins of the
action. Each output pin corresponds to one process property of the process class. If a con-
tent class is specified for a process class corresponding to a user action then the user action
must have an input pin with a type conforming to the type of the content class. Figure 47
also shows the supported modeling elements for activities from the UML metamodel
(model elements with white background). Figure 48 and Figure 49 show the supported
control node and object node types, respectively.

 122

Model Driven Software Engineering for Web Applications

Operation

CallOperationActionCallBehaviorAction

Behavior

UserAction

OutputPin

ControlFlow

ProcessClass

ActivityEdge

ObjectFlow

BehaviorProcessActivity

InputPin

WebProcess

ProcessClass

ControlNode

{redefines ownedBehavior}

Activity

ObjectNode

ActivityNode

Action

{redefines context}

+source1 +outgoing *

+target1 +incoming *

+processClass

1

+processActivity
1

+processClass1

0..1

+node*1 +/webProcess

1

+/input

*
{ordered}

1

+/output

*
{ordered}

Figure 47. Metamodel for the process flow modeling

 123

Model Driven Software Engineering for Web Applications

ActivityFinalNode

ForkNode MergeNode

FlowFinalNode

DecisionNodeJoinNode

ControlNode

FinalNode

Figure 48. UML control nodes

ActivityParameterNode

DataStoreNode

CentralBufferNode

ObjectNode

Pin

InputPin OutputPin

Figure 49. UML object nodes

Derived Attributes

The derived attribute webProcess of a process activity refers to the webProcess attribute of
the corresponding process class representing the process.

context ProcessActivity def : webProcess : WebProcess = self.processClass.webProcess

Constraints

The type of a process property must be either a data type, i.e. a primitive type or an enu-
meration type, or a content class.

 124

Model Driven Software Engineering for Web Applications

context ProcessProperty inv ProcessPropertyType :
 self.type.oclIsKindOf(DataType) or self.type.oclIsTypeOf(Class)

If an edit property is defined for a process property then a content class has to be assigned
to the corresponding process class and the edit property has to be one of the owned proper-
ties of this content class or one of its super classes.

context ProcessProperty inv ProcessPropertyEditProperty :
 self.editProperty->notEmpty() implies
 self.processClass.contentClass.allParents()->including(self.processClass.contentClass)->
 collect(c | c.ownedAttribute)->flatten()->includes(self.editProperty)

The designated process class for a process activity must have an incoming link.

context ProcessActivity inv ProcessActivityProcessClass :
 self.processClass.inLinks->notEmpty()

A process activity must have exactly one input parameter and at most one output parame-
ter. This implies that it must have exactly one input activity parameter node and at most
one output activity parameter node.

context ProcessActivity inv ProcessActivityParameter :
 self.parameter->select(p | p.direction = #in)->size() = 1 and
 self.parameter->select(p | p.direction = #out)->size() <= 1 and
 self.parameter->select(p | p.direction = #inout)->size() = 0 and
 self.parameter->select(p | p.direction = #return)->size() = 0

The content class of the source navigation class of the process link connecting to the proc-
ess class of the process activity has to conform to the type of the input parameter of a proc-
ess activity.

context ProcessActivity inv ProcessActivityInputParameter :
 let source : NavigationClass = self.processClass.inLinks->any().source in
 let inputParameter : Parameter = self.parameter->select(p | p.direction = #in)->first() in
 source.contentClass.conformsTo(inputParameter.type)

If the process class of a process activity has an outgoing link, then the output parameter has
to conform to the content class of the target of this outgoing link. Additionally, the process
activity must not have an activity final node.

context ProcessActivity inv ProcessActivityOutputParameter :
 self.processClass.outLinks->size() = 1 implies
 self.parameter->select(p | p.direction = #out)->size() = 1 and
 not self.node->exists(n | n.oclIsKindOf(ActivityFinalNode)) and
 let target : NavigationClass = self.processClass.outLinks->any().target in
 let outputParameter : Parameter = self.parameter->select(p | p.direction = #out)->first() in
 outputParameter.type.conformsTo(target.contentClass)

If the process class of a process activity does not have an outgoing link, then the process
activity must have an activity final node.

 125

Model Driven Software Engineering for Web Applications

context ProcessActivity inv ProcessActivityFinalNode :
 self.processClass.outLinks->isEmpty() implies
 self.node->exists(n | n.oclIsKindOf(ActivityFinalNode))

A process activity must not have an initial node.

context ProcessActivity inv ProcessActivityInitialNode :
 not self.node->exists(n | n.oclIsKindOf(InitialNode))

If the process class of a user action is associated to a content class then exactly one input
pin has to be defined for the user action and its type has to conform to the content class.
Otherwise, no input pin must be defined and at least one incoming control flow has to enter
the user action.

context UserAction inv UserActionInput :
 if self.processClass.contentClass->isEmpty() then
 self.input->isEmpty() and self.incoming->notEmpty()
 else
 self.input->size() = 1 and self.input->forAll(pin |
 pin.type.conformsTo(self.processClass.contentClass))
 endif

For each output pin of a user action a process property of the associated process class has
to exist with its name matching the name of the output pin and its type conforming to the
type of the output pin.

context UserAction inv UserActionOutput :
 self.output->forAll(pin | self.processClass.processProperties->exists(p |
 p.name = pin.name and p.type.conformsTo(pin.type)))

Notation

Stereotyped UML class diagrams are used for modeling the process data and stereotyped
UML activity diagrams are used for modeling the process flow. For a definition of the cor-
responding UML profile see A.5.

4.5.2.2 Transformation CreateProcessDataAndFlow

The transformation CreateProcessDataAndFlow depicted in Figure 51 automatically gen-
erates the process data and the process flow for all Web process use cases from the re-
quirements model. The data of a process is captured by process data classes which are a
composite part of the designated process class in the navigation model with integrated
processes presented in the last section. The flow of a process is represented by a process
activity which is owned by the designated process class in the navigation model with inte-
grated processes. For simple processes the corresponding operations in the content model

 126

Model Driven Software Engineering for Web Applications

are mapped to call operation actions in the process flow model. The transformation com-
prises three transformation rules which are outlined below and detailed in B.3.8.

CreateProcessDataAndFlowForWebProcess
CreateProcessDataAndFlowForSimpleProcess
CreateProcessDataAndFlowForEdit

CreateProcessDataAndFlow

Requirements
Model

Process Flow
Model

Process Data
Model

Process Model

Navigation Model
With Integrated

Processes

Content
Model

CreateProcessDataAndFlowForWebProcess
CreateProcessDataAndFlowForSimpleProcess
CreateProcessDataAndFlowForEdit

CreateProcessDataAndFlow

Requirements
Model

Process Flow
Model

Process Data
Model

Process Model

Navigation Model
With Integrated

Processes

Content
Model

Figure 50. Transformation CreateProcessDataAndFlow

Rule CreateProcessDataAndFlowForWebProcess

For general Web processes, i.e. neither edit processes nor simple processes, only the pa-
rameters and the activity parameter nodes of the corresponding process activity are gener-
ated by the rule CreateProcessDataAndFlowForWebProcess, as in the case of the Web
process AddProject of the running example, see Figure 51. The resulting process flow is
thus incomplete and has to be refined by the developer as presented in the next section. If
the Web process does not have an exit link then an activity final node is created instead of
the output activity parameter node. The local variables targetSeq and nTargetSeq are de-
fined to simulate the conditional creation of target elements using iterative target pattern
elements, see [ATL06a]. In comparison to the rule implementation in B.3.8 the following
details have been omitted below: target bindings that are not relevant for understanding the
rule, and targets for the parameters of the process activity.

ProjectManager : Projec tManager

Project : Projec t

Figure 51. Incomplete process flow for web process AddProject derived by rule
CreateProcessDataAndFlowForWebProcess

rule CreateProcessDataAndFlowForWebProcess
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess.oclIsTypeOf(UWE!WebProcess))
 using

 127

Model Driven Software Engineering for Web Applications

 {
 source : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.inLinks in
 if ls->isEmpty() then OclUndefined else ls->any().source endif;
 target : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.outLinks in
 if ls->isEmpty() then OclUndefined else ls->any().target endif;
 targetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence {}
 else Sequence { true } endif;
 nTargetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence { true }
 else Sequence {} endif;
 }
 to tpc : UWE!ProcessClass
 (
 ownedBehavior <- Sequence { pa },
 …
),
 pa : UWE!ProcessActivity
 (
 name <- pc.name
 …
),

 -- create input activity parameter node
 entryAPN : UWE!ActivityParameterNode
 (
 name <- source.contentClass.name,
 type <- source.contentClass,
 …
),

 -- conditionally create output activity parameter node
 exitAPN : distinct UWE!ActivityParameterNode foreach(b in targetSeq)
 (
 name <- target.contentClass.name,
 type <- target.contentClass,
 …
),

 -- conditionally create activity final node
 finalNode : distinct UWE!ActivityFinalNode foreach(b in nTargetSeq)
 (
 …
),
 …
}

 128

Model Driven Software Engineering for Web Applications

Rule CreateProcessDataAndFlowForSimpleProcess

For simple processes the complete process flow and data is generated by the rule Create-
ProcessDataAndFlowForSimpleProcess. The foundation for the generation is the associ-
ated operation in the content model. For this operation a call operation action is created.

If the operation has a return type then a corresponding output pin for the call operation ac-
tion is generated and connected by an outgoing object flow to the output activity parameter
node. In the other case, if it has no return type then an activity final node is generated and a
control flow from the call operation action to the activity final node, such as for example
for the process RemoveProject depicted in Figure 52.

If the operation has no parameters (with direction in) then an object flow from the input
activity parameter node to the target input pin of the call operation action is generated. The
target input pin corresponds to the object on which the operation should be invoked. In the
other case, if it has parameters, a process data class and a corresponding user action for
capturing the input are generated. Further, for each parameter (1) an attribute of the process
class, (2) an output pin of the user action, (3) an input pin of the call operation action and
(4) an object flow connecting the output pin of the user action with the input pin of the call
operation action are generated. Additionally, a fork node is generated with an incoming
object flow from the input activity parameter node, an outgoing object flow to the target
input pin of the call operation action and an outgoing control flow to the user action. An
example for the latter case is again the process RemoveProject depicted in Figure 52. For
this process a process data class RemoveProjectInput, a corresponding user action Re-
moveProjectInput and a call operation action removeProject is generated. Further, the pa-
rameter project of the operation removeProject is mapped to a corresponding process
property of the process data class, an output pin of the user action and an input pin of the
call operation action. Additionally, the required activity edges, the target input pin of the
call operation action (for determining on which object the operation should be invoked)
and the activity final node are generated.

In comparison to the rule implementation in B.3.8 the following details have been omitted
below: target bindings that are not relevant for understanding the rule, targets for the activ-
ity parameters, the activity parameters nodes and the optional activity final node, the target
for the composite relationship for the generated process class, and targets for the activity
edges.

 129

Model Driven Software Engineering for Web Applications

<<process class>>
RemoveProjectInput

ProjectManager : ProjectManager

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

<<process class>>
RemoveProject

1

-project : Project

Figure 52. Automatically derived process data and flow for simple process RemoveProject de-
rived by rule CreateProcessDataAndFlowForSimpleProcess

rule CreateProcessDataAndFlowForSimpleProcess
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess.oclIsTypeOf(UWE!SimpleProcess))
 using
 {
 o : UWE!Operation = pc.webProcess().getTraceTarget('SimpleProcess2Operation');
 inputPar : Sequence(UWE!Parameter) = o.ownedParameter->select(p |
 p.direction <> #return);
 parSeq : Sequence(Boolean) = if inputPar->isEmpty() then Sequence {}
 else Sequence { true } endif;
 typeSeq : Sequence(Boolean) = if o.type.oclIsUndefined() then Sequence {}
 else Sequence { true } endif;
 }
 to tpc : UWE!ProcessClass
 (
 ownedBehavior <- Sequence { pa },
 …
),
 pa : UWE!ProcessActivity
 (
 name <- pc.name,

 130

Model Driven Software Engineering for Web Applications

 …
),

 -- create call operation action with target and input pins
 coa : UWE!CallOperationAction
 (
 name <- o.name,
 operation <- o,
 input <- inputPin->including(targetPin),
 output <- resultPin,
 target <- targetPin
),
 targetPin : UWE!InputPin
 (
 name <- 'target',
 type <- o.class_
 …
),
 inputPin : distinct UWE!InputPin foreach (p in inputPar)
 (
 name <- p.name,
 type <- p.type,
 …
),

 -- create user action and process data class if operation has parameters
 userAction : distinct UWE!UserAction foreach (b in parSeq)
 (
 name <- pc.name + 'Input',
 processClass <- inputPC,
 …
),
 inputPC : distinct UWE!ProcessClass foreach (b in parSeq)
 (
 name <- pc.name + 'Input',
 …
),

 -- create process properties and output pins
 pp : distinct UWE!ProcessProperty foreach(p in inputPar)
 (
 name <- p.name,
 type <- p.type,
 …
),
 outputPin : distinct UWE!OutputPin foreach (p in inputPar)

 131

Model Driven Software Engineering for Web Applications

 (
 name <- p.name,
 type <- p.type
),

 -- conditionally create output pin
 resultPin : distinct UWE!OutputPin foreach (b in typeSeq)
 (
 name <- 'result',
 type <- o.type,
 …
),

 -- conditionally create fork node if operation has parameters
 forkNode : distinct UWE!ForkNode foreach (b in parSeq)
 (
 …
),
 …
}

Rule CreateProcessDataAndFlowForEdit

The complete process flow and data is generated for edit processes by the rule CreateProc-
essDataAndFlowForEdit. For each edit process a process data class with a copy of the at-
tributes (per default only those with a primitive type or an enumeration type) of the corre-
sponding content class is generated. Further, a user action that uses this process data class
for receiving input from the user is constructed. An input pin of this user action receives an
object flow from the input activity parameter node to specify which object should be ed-
ited. Finally, an outgoing control flow from the user action is connected to an activity final
node. An example for the edit process EditUserProject is depicted in Figure 53. In com-
parison to the rule implementation in B.3.8 the following details have been omitted below:
target bindings that are not relevant for understanding the rule, targets for the input pa-
rameter, the input activity parameters node and the activity final node, the target for the
composite relationship for the generated process class, and targets for the activity edges.

 132

Model Driven Software Engineering for Web Applications

<<process class>>
EditUserProjectInput

<<process class>>
EditUserProject

1

UserProject : UserProject

<<user action>>
EditUserProjectInput

userProject

-name : String
-descrip tion : String
-id : String

<<process class>>
contentClass = DANUBIA::Content::UserProject

Figure 53. Automatically derived process data and flow for edit process EditUserProject de-
rived by rule CreateProcessDataAndFlowForEdit

rule CreateProcessDataAndFlowForEdit
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess.oclIsTypeOf(UWE!Edit))
 using
 {
 source : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.inLinks in
 if ls->isEmpty() then OclUndefined else ls->any().source endif;
 }
 to tpc : UWE!ProcessClass
 (
 ownedBehavior <- Sequence { pa },
 …
),
 pa : UWE!ProcessActivity
 (
 name <- pc.name,
 …
),

 -- create user action
 userAction : UWE!UserAction
 (
 name <- pc.name + 'Input',
 input <- Sequence { inputPin },
 …
),
 inputPin : UWE!InputPin

 133

Model Driven Software Engineering for Web Applications

 (
 name <- source.contentClass.name.firstToLower(),
 type <- source.contentClass,
 …
),

 -- create process data class
 inputPC : UWE!ProcessClass
 (
 name <- pc.name + 'Input',
 contentClass <- source.contentClass,
 ownedAttribute <- pp
),
 pp : distinct UWE!ProcessProperty foreach(cp in source.contentClass.allOwnedAttribute()->
 select(p | p.type.oclIsKindOf(UWE!DataType) and not p.isMultivalued()))
 (
 name <- cp.name,
 type <- cp.type,
 lower <- cp.lower,
 upper <- cp.upper,
 editProperty <- cp
),
 …
}

4.5.2.3 Manual Refinement

For general Web processes, i.e. neither simple processes nor edit processes, the process
data and flow has to be completely defined by the developer, with exception of the auto-
matically generated parameters and activity parameter nodes. In Figure 54 the manually
defined process flow for the process AddProject of the running example is depicted. It
comprises three user actions and two call operation actions. The first user action Pro-
jectKindInput is used to query the kind of project the user wants to add to the project list.
Depending on the output of the user action, which is represented by an enumeration type
(see below), either the user action AddValidationProjectInput or AddUserProjectInput is
executed to query the parameters for the subsequent call operation action addValidation-
Project or addUserProject, respectively. Note that these two call operation actions require
different parameters, which have to be provided by the corresponding user actions. Further,
the user action AddUserProjectInput requires an input pin for the selection of a validation
project from a collection of validation projects (see below). After the termination of either
call operation action the corresponding project object is passed through a merge node to
the output activity parameter node. Taking advantage of the dynamic navigation feature of

 134

Model Driven Software Engineering for Web Applications

this approach, either the page for a validation project or for a user project is then shown to
the user.

The process data required for the process flow of the process AddProject is depicted in
Figure 55. For each user action a process class was defined. The process class ProjectKind-
Input captures the selection of a project kind. Therefore a special enumeration type Pro-
jectKind was defined. The process class AddValidationProjectInput corresponds to the pa-
rameters of the operation addValidationProject and therefore two attributes of type String
are required. For the operation addUserProject an additional attribute validationProject is
required for the process class AddUserProjectInput. The selection of a validation project is
optional, hence the multiplicity of the attribute is 0..1. Additionally, a rangeExpression has
to be defined for attributes which are neither of primitive type nor enumerations, to express
in terms of an expression in the expression language the collection from which the value of
the attribute should be chosen. In this case the collection is given be the property valida-
tionProjects of the content class given be the specified contentClass for the process class
(see below).

Additionally, the definition of the general Web process AddProject requires an extension
of the content model as depicted in Figure 56. On the one hand the operations addValida-
tionProject and addUserProject, that are invoked by the introduced call operation actions,
have to be added to the content class ProjectManager. On the other hand a derived attrib-
ute validationProjects has to be introduced which is used for the selection of a validation
project. Note that the expression language is not expressive enough to express the value of
this attribute directly. When generating code for the content model a getter operation get-
ValidationProjects is generated that has to be completed by the developer to return the set
of available validation projects.

For simple processes which require the input of a value other than a primitive type or an
enumeration, the automatically derived process data has to be refined by the developer in
order to define the corresponding rangeExpression properties as already explained above.
In the running example this is the case for the process RemoveProject as depicted in Figure
58. Additionally, it was chosen to add a further user action to confirm the remove action,
see Figure 57. The input is represented by a particular process class which uses the special
enumeration type YesNoEnum. Depending on the output of this confirm user action either
the corresponding call operation action is triggered or the process terminates because a to-
ken reaches the activity final node directly.

Edit processes do not require manual refinement, but for the running example it was cho-
sen not to let the user edit all attributes of the corresponding content class. Therefore, the

 135

Model Driven Software Engineering for Web Applications

automatically generated attribute id was removed from the automatically generated process
class EditUserProject as depicted in Figure 59.

ProjectManager : ProjectManager

addUserProject

targe t
result

name description validationProject

<<user action>>
AddUserProjectInput

descriptionname validationProject

projectManager

addValidationProject

targe t

name description

result

<<user action>>
AddValidationProject Input

name description

<<user action>>
ProjectKindInput

projectKind

Project : Project

 [va lidationProject] [userPro ject]

Figure 54. Manually refined process flow for process AddProject

 136

Model Driven Software Engineering for Web Applications

<<process class>>
AddUserProject Input

<<process class>>
contentClass = DANUBIA::Content::Pro jectManager

<<process class>>
AddProject

-name : String
-description : String
-validationProject : Valida tionProject [0..1]

<<process class>>
AddValidationProjectInput

-name : String
-descrip tion : String

-projectKind : ProjectKind

<<process class>>
ProjectKindInput

<<enumeration>>
ProjectKind

validationProject
userProject

<<process property>>
rangeExpression = self.validationPro jects

11 1

Figure 55. Manually specified process data for process AddProject

ProjectManager

-/validationProjects : Val idationProject [*]

+addValidationProject(name : String, description : Str ing) : Va lidationProject
+addUserProject(name : String, description : String, validationProject : ValidationPro ject) : UserProject
+removeProject(project : P roject)

Figure 56. Refined content model for process AddProject

 137

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 57. Manually refined process flow for process RemoveProject

<<process class>>
Conf irmRemoveProjectInput

-decision : YesNoEnum

<<process class>>
RemoveProjectInput

-project : Project

<<process class>>
RemoveProject

<<enumeration>>
YesNoEnum

yes
no

<<process class>>
contentClass = DANUBIA::Content::ProjectManager

<<process property>>
rangeExpression = self.projects

1 1

Figure 58. Manually refined process data for process RemoveProject

 138

Model Driven Software Engineering for Web Applications

<<process class>>
EditUserProjectInput

<<process class>>
EditUserProject

1

-name : String
-descrip tion : String

<<process class>>
contentClass = DANUBIA::Content::UserProject

Figure 59. Manually refined process data for process EditUserProject

4.6 Presentation

The presentation model defines the layout for the underlying navigation and process mod-
els. In the same way as classes describe the structure of objects, specialized classes are
used to define the structure of Web pages. Presentation classes represent Web pages and
are composed of user interface elements and other presentation classes. In addition to a
pure logical layout physical properties of the resulting Web pages can also be defined at
the level of the presentation model. This includes the ordering of model elements and the
definition of CSS properties (Cascading Style Sheets) for the final presentation model.

Only few Web approaches support presentation modeling at a platform independent level.
Presentation modeling in W2000 [Baresi06] and OOHDM [Schwaabe98] is similar to this
approach (except for the proprietary notation), while in OOWS [Fons03] the presentation
aspect is integrated with the navigation aspect, thus a dedicated presentation model for fur-
ther abstraction of the user interface is not available. Approaches such as for example OO-
H [Cachero03] allow the user to graphically design the layout of a Web application by us-
ing a proprietary layout editor. The layout information is then normally saved to XML
files. Other approaches, such as for example WebML [Ceri02] do not provide any kind of
presentation model and directly translate the navigation model to code.

Presentation modeling based on UML modeling elements as presented here is limited to be
an abstraction of the final physical layout due to the inherent limitations of the UML nota-
tion itself. For example, the dimensions of user interface elements in a UML diagram are

 139

Model Driven Software Engineering for Web Applications

not part of a UML model and hence cannot be used to be translated to corresponding di-
mensions in a Web page. This limitations have been overcome to some degree by the in-
troduction of physical layout properties by means of CSS, which can be used (amongst
others) to assign physical dimensions to user interface elements. Also, this approach to
presentation modeling is targeted at modeling the user interface of traditional Web applica-
tions, i.e. Web applications that follow strictly the request-response pattern imposed by the
underlying HTTP communication protocol, in contrast to more responsive Web applica-
tions, so-called Rich Internet Applications (RIA).

The presentation metamodel could easily be extended by the introduction of additional user
interface element types if required. Further, additional behavioral models for handling user
interface events would allow modeling more responsive user interfaces of Rich Internet
Applications.

A default presentation model is derived from the navigation model by the transformation
NavigationAndProcess2Presentation presented in the next section. The default presenta-
tion model then has to be refined by the developer resulting in the final presentation model.

4.6.1 Metamodel

The backbone of the presentation metamodel is depicted in Figure 60. A presentation class
is a specialized class which represents a Web page or a part of it, when presentation classes
are composed. Each presentation class is associated to exactly one node from the naviga-
tion model. For each presentation class the physical layout may be defined by providing
either one or both of the attributes cssClass and cssStyle (see below). A presentation prop-
erty is a specialized property that can be associated to a property of a node. Only compos-
ite presentation properties are allowed and the type of a presentation property is con-
strained to either presentation classes or user interface elements.

User interface elements are specialized classes that represent the user interface elements in
a Web page. Different types of user interface elements are distinguished, see Figure 61.
Anchors represent links in a Web page, and optionally a format expression may be defined
for specification of the label that the anchor should have (see below). Other (abstract) su-
per types of user interface elements are output elements, input elements and static ele-
ments. For each user interface element the physical layout may be defined by providing
either one or both of the attributes cssClass and cssStyle (see below).

Output elements allow the presentation of dynamic data. Two types of output elements are
defined, see Figure 62. Text elements allow the presentation of arbitrary data that can be

 140

Model Driven Software Engineering for Web Applications

represented as text. Image elements allow the output of images which are accessible by a
URL. If the data corresponds to relative URLs then a base URL must be defined.

Static elements present static information on a Web page, see Figure 62. Static information
is not calculated from the content model, but must be defined at design time. Static texts
present text that is defined by the attribute text at design time, and static images present
images, whose URL is defined at design time by the attribute url.

Input elements are user interface elements that are used for capturing input data from the
user, see Figure 63. Textual input is represented by the user interface element text input.
This includes all kind of input that can be parsed from a string, as for example numbers.
Enumeration input is especially used for capturing the choice out of the enumeration liter-
als of an enumeration. Finally, a selection user interface element is used for a selection of
objects out of a collection of objects. An optional format property can be defined to specify
how the objects of the collection should be presented as a string.

PresentationProperty

PresentationClass
cssClass[0..1] : String
cssStyle[0..1] : String
format[0..1] : Str ing

Property

Node

{ordered, subsets ownedAttribute}

{subsets class}

Class

+navigationProperty

0..1

+node

1

+presentationClass1

+presentatioProperties

*

Figure 60. Metamodel for presentation modeling (backbone)

 141

Model Driven Software Engineering for Web Applications

UIElement
cssClass[0..1] : String
cssStyle[0..1] : String

Anchor
format[0..1] : String

OutputElement StaticElementInputElement

Class

Figure 61. Metamodel for presentation modeling (user interface elements)

OutputElement StaticElement

Image
url[0..1] : String

StaticImage
url : String

Text StaticText
text : String

Figure 62. Metamodel for presentation modeling (output and static elements)

EnumerationInput Selection
format[0..1] : String

TextInput

InputElement

Figure 63. Metamodel for presentation modeling (input elements)

Constraints

For each navigation class, access primitive or process data class exactly one presentation
class must be defined.

 142

Model Driven Software Engineering for Web Applications

context Node inv NodePresentationClassDefined :
 not self.isAbstract and (self.oclIsKindOf(ProcessClass) implies self.inLinks->isEmpty())
 implies PresentationClass.allInstances()->one(pc | pc.node = self)

Inheritance is not allowed for presentation classes.

context PresentationClass inv PresentationClassInheritance :
 self.parents()->isEmpty()

The type of a presentation property must be either a user interface element or a presenta-
tion class.

context PresentationProperty inv PresentationPropertyType :
 self.type.oclIsKindOf(UIElement) or self.type.oclIsKindOf(PresentationClass)

If type of a presentation property is a static element then no navigation property must be
defined. The presentation properties of the presentation class for a process class have to be
associated to a process property. On the other hand, the presentation properties of the pres-
entation class for an access primitive must not define a navigation property. For all other
cases the presentation property must be associated to a navigation property.

context PresentationProperty inv PresentationPropertyNavigationProperty :
 if self.type.oclIsKindOf(StaticElement) then
 self.navigationProperty->isEmpty()
 else if self.class.node.oclIsKindOf(ProcessClass) then
 self.navigationProperty.oclIsKindOf(ProcessProperty)
 else if self.class.node.oclIsKindOf(AccessPrimitive) then
 self.navigationProperty->isEmpty()
 else
 self.navigationProperty.oclIsKindOf(NavigationProperty)
 endif endif endif

Inheritance is not allowed for user interface elements.

context UIElement inv UIElementInheritance :
 self.parents()->isEmpty()

A user interface element must be the type of exactly one presentation property of a presen-
tation class with composite aggregation kind.

context UIElement inv UIElementContainment :
 let ps : Set(PresentationProperty) = PresentationProperty.allInstances()->select(p |
 p.type = self) in
 ps->size() = 1 and
 ps->forAll(p | p.isComposite and p.class.oclIsKindOf(PresentationClass))

 143

Model Driven Software Engineering for Web Applications

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is a standard by the World Wide Web Consortium (W3C)
for adding style, or physical layout, to Web documents [CSS]. Style sheets describe how
documents should be presented on screens or on other media. Documents can be arbitrary
XML documents and especially (X)HTML documents. CSS is the default style sheet lan-
guage for the Web.

CSS defines styles in a declarative way. The language elements are selectors and property
definitions. Selectors express when a style definition should be applied. A style definition
consists of a list of property definitions of the format “property-name:property-value”.
Property classes are for example fonts, colors, margins or borders. For detailed information
about CSS see [CSS].

Within this work the use of CSS is supported in two variants which may even be com-
bined. The first variant is the direct assignment of a CSS style definition to a presentation
class or a user interface element by defining the attribute cssStyle. The following style
definition renders all the text within a presentation class with the text color blue:

<<presentation class>>
ProjectManager <<presentation class>>

cssStyle="color:blue"

The second variant is the use of style classes by assigning the name of a style class to the
attribute cssClass. The styles for all elements of a specific class can then be defined glob-
ally by using a class selector. For detailed information where this style definition has to be
made see 6.2.4.2 .

Formatting Expressions

For the anchor and the selection user interface element a formatting expression can be de-
fined in order to provide the labels required by these user interface elements, see 4.1.3. The
context for references to the properties of an object is in the case of an anchor the actual
target object. In the case of a selection it is the actual object of the collection that should be
rendered on the user interface. For example, a possible format expression for the anchor of
the project index could be “#${id} - ${name}”. The text outside the “${}” expressions
represents the static part of the resulting text and the text inside is evaluated at runtime by
querying the id and name properties of the actual item that should be displayed in the in-
dex.

 144

Model Driven Software Engineering for Web Applications

Notation

The appropriate notation for the presentation model is a stereotyped composite structure
diagram for each presentation class with the user interface elements as parts with the corre-
sponding multiplicities. Equally, regular class diagrams can be used. For a definition of the
corresponding UML profile see A.5.

4.6.2 Transformation NavigationAndProcess2Presentation

The transformation NavigationAndProcess2Presentation depicted in Figure 64 automati-
cally derives a presentation model from the navigation model and the process model. The
transformation comprises four transformation rules which are outlined below and detailed
in B.3.9.

NavigationClass2PresentationClass
Menu2PresentationClass
Index2PresentationClass
ProcessClass2PresentationClass

NavigationAndProcess2Presentation

Process Model

Navigation Model
With Integrated

Processes
Presentation

Model

NavigationClass2PresentationClass
Menu2PresentationClass
Index2PresentationClass
ProcessClass2PresentationClass

NavigationAndProcess2Presentation

Process Model

Navigation Model
With Integrated

Processes
Presentation

Model

Figure 64. Transformation NavigationAndProcess2Presentation

For each node in the navigation model and each process data class a presentation class is
constructed and for each attribute a corresponding presentation property with the type of a
user interface element is created.

The automatically derived presentation class for the navigation class ProjectManager of
the running example is depicted in Figure 65. The composite parts of the navigation class,
the ProjectManagerMenu and the ProjectIndex, have been transformed to the correspond-
ing composite parts of the presentation class. The project manager menu contains two an-
chors for the processes add and remove project.

The presentation class for user projects is depicted in Figure 66. Each attribute of the user
project is represented by a text user interface element. The menu comprises an anchor to
the edit user project process and two anchors to the navigation classes ProjectManager and
ValidationProject. The former provides a back link to the project manager while the latter
leads to the associated validation project.

 145

Model Driven Software Engineering for Web Applications

The presentation classes corresponding to the process data classes of the add project proc-
ess are depicted in Figure 67. Text input elements are used for capturing textual data that is
needed by the process for the creation of a new project. An enumeration input element is
required for the user selection of the desired project type. Finally, a selection element is
used for the selection of a validation project out of a collection of validation projects.

<<presentation class>>
 : ProjectManagerMenu

<<anchor>>
 : AddProject

<<anchor>>
 : RemoveProject

<<presentation class>>
 : ProjectIndex

<<anchor>>
 : Project [*]

<<presentation class>>
ProjectManager

Figure 65. Automatically derived presentation classes for the navigation class
ProjectManager, menu ProjectManagerMenu and index ProjectIndex

 146

Model Driven Software Engineering for Web Applications

<<presenta tion class>>
 : UserProjectMenu

<<anchor>>
 : ValidationProject

<<anchor>>
 : EditUserProject

<<anchor>>
 : ProjectManager

<<text>>
 : Description

<<text>>
 : Id

<<text>>
 : Name

<<presentation class>>
UserProject

Figure 66. Automatically derived presentation classes for the navigation class UserProject and
for the menu UserProjectMenu

<<presentation class>>
ProjectKindInput

<<enumeration input>>
 : ProjectKind

<<presentation class>>
AddValidationProjectInput

<<text input>>
 : Name

<<text input>>
 : Description

<<text input>>
 : Name

<<text input>>
 : Description

<<se lection>>
 : ValidationProject

<<presenta tion class>>
AddUserProject Input

Figure 67. Automatically derived presentation classes for the process classes
ProjectKindInput, AddValidationProjectInput and AddUserProjectInput of process AddProject

Rule NavigationClass2PresentationClass

For each navigation class (exact type) a presentation class is generated by this rule. Fur-
ther, for each attribute of the navigation class (including inherited attributes) with a
datatype type, i.e. either a primitive type or an enumeration type, a text user interface ele-
ment is generated. For each outgoing link an anchor user interface element is generated. In
comparison to the rule implementation in B.3.9 the following details have been omitted
below: target bindings that are not relevant for understanding the rule, and targets for the

 147

Model Driven Software Engineering for Web Applications

presentation properties that correspond to the composition relationship between the gener-
ated presentation class and the generated user interface elements.

rule NavigationClass2PresentationClass
{
 from nn : UWE!NavigationClass (
 not nn.isAbstract and nn.oclIsTypeOf(UWE!NavigationClass))
 to tnn : UWE!NavigationClass (…), -- target for copying source element
 pc : UWE!PresentationClass
 (
 …
),
 textUis : distinct UWE!Text foreach (p in nn.allOwnedAttribute()->select(p |
 p.type.oclIsKindOf(UWE!DataType)))
 (
 name <- p.name.firstToUpper(),
 …
),
 anchorUis : distinct UWE!Anchor foreach (p in nn.allOwnedAttribute()->select(p |
 p.association.oclIsKindOf(UWE!Link)))
 (
 name <- p.type.name,
 …
),
 …
}

Rule Menu2PresentationClass

For each menu a presentation class is generated by this rule. For each outgoing link an an-
chor user interface element is generated. In comparison to the rule implementation in B.3.9
the following details have been omitted below: target bindings that are not relevant for un-
derstanding the rule, and targets for the presentation properties that correspond to the com-
position relationship between the generated presentation class and the generated user inter-
face elements.

rule Menu2PresentationClass
{
 from nn : UWE!Menu (not nn.isAbstract)
 to tnn : UWE!Menu (…), -- target for copying source element
 pc : UWE!PresentationClass
 (
 …

 148

Model Driven Software Engineering for Web Applications

),
 anchorUis : distinct UWE!Anchor foreach (p in nn.allOwnedAttribute()->select(p |
 p.association.oclIsKindOf(UWE!Link)))
 (
 name <- p.type.name,
 …
),
 …
}

Rule Index2PresentationClass

For each index a presentation class is generated by this rule. Additionally, an anchor user
interface element is generated for the outgoing link. In comparison to the rule implementa-
tion in B.3.9 the following details have been omitted below: target bindings that are not
relevant for understanding the rule, and the target for the presentation property that corre-
spond to the composition relationship between the generated presentation class and the an-
chor.

rule Index2PresentationClass
{
 from nn : UWE!Index
 to tnn : UWE!Index (…), -- target for copying source element
 pc : UWE!PresentationClass
 (
 …
),
 anchorUi : UWE!Anchor
 (
 name <- nn.outLinks->first().target.name,
 …
),
 …
}

Rule ProcessClass2PresentationClass

For each process class that represents process data a presentation class is generated by this
rule. Further, for all attributes of the process class with a primitive type a text input ele-
ment is generated. Attributes with an enumeration type are mapped to an enumeration in-
put element and all other attributes are mapped to a selection input element. In comparison
to the rule implementation in B.3.9 the following details have been omitted below: target

 149

Model Driven Software Engineering for Web Applications

bindings that are not relevant for understanding the rule, and targets for the presentation
properties that correspond to the composition relationship between the generated presenta-
tion class and the generated user interface elements.

rule ProcessClass2PresentationClass
{
 from nn : UWE!ProcessClass (nn.inLinks->isEmpty())
 to tnn : UWE!ProcessClass (…), -- target for copying source element
 pc : UWE!PresentationClass
 (
 …
),
 textInputUis : distinct UWE!TextInput foreach (p in nn.allOwnedAttribute()->select(p |
 p.type.oclIsKindOf(UWE!PrimitiveType)))
 (
 name <- p.name.firstToUpper(),
 …
),
 enumerationInputUis : distinct UWE!EnumerationInput foreach (
 p in nn.allOwnedAttribute()->select(p | p.type.oclIsKindOf(UWE!Enumeration)))
 (
 name <- p.name.firstToUpper(),
 …
),
 selectionUis : distinct UWE!Selection foreach (p in nn.allOwnedAttribute()->select(p |
 p.type.oclIsTypeOf(UWE!Class)))
 (
 name <- p.name.firstToUpper(),
 format <- p.type.name,
 …
),
 …
}

4.6.3 Manual Refinement

The automatically derived presentation model can optionally be refined by the developer.
Possible optional activities are:

• Reordering of presentation properties

• Addition of static elements

• Definition of CSS (Cascading Style Sheets) styles

 150

Model Driven Software Engineering for Web Applications

• Definition of format expressions for anchors and selection elements

For the running example, a static text element has been added manually to the presentation
class for the project manager, to provide the project manager page with a caption as de-
picted in Figure 68. Additionally, the anchor of the project index has been provided with a
format expression, in order to render the index elements with a meaningful label. Further,
for the anchor of the user project menu, a format expression has been defined to include
the name of the validation project in the label of the anchor, see Figure 69.

<<presentation class>>
 : ProjectManagerMenu

<<anchor>>
 : AddProject

<<anchor>>
 : RemoveProject

<<static text>>
 : Caption

<<presentation class>>
 : ProjectIndex

<<anchor>>
 : Project [*]

<<presentation class>>
ProjectManager

<<static text>>
text = "Welcome to the DANUBIA project manager!"

<<anchor>>
format = "Project #${id} - $ {name}"

Figure 68. Manually refined presentation classes for the navigation class
ProjectManager, menu ProjectManagerMenu and index ProjectIndex

 151

Model Driven Software Engineering for Web Applications

<<presenta tion class>>
 : UserProjectMenu

<<anchor>>
 : ValidationProject

<<anchor>>
 : EditUserProject

<<anchor>>
 : ProjectManager

<<text>>
 : Description

<<text>>
 : Id

<<text>>
 : Name

<<presentation class>>
UserProject

<<anchor>>
format="Validation Project ${name}"

Figure 69. Manually refined presentation classes for the navigation class UserProject and for
the menu UserProjectMenu

4.7 Transition to the Platform Specific Implementation

For the transition to the platform specific implementation all platform independent design
models must be complete, i.e. the content, navigation, process and presentation models
must have been constructed as presented in the previous sections and all of the well-
formedness rules must be fulfilled. The requirements model is not required for this transi-
tion, it only serves as starting point for the construction of the design models.

 152

Model Driven Software Engineering for Web Applications

5 PLATFORM SPECIFIC
IMPLEMENTATION

In this chapter a model driven implementation approach for Web applications is presented.
Following the vision of MDA, the implementation platform is represented by a corre-
sponding metamodel, and a transformation PIM2PSM transforms the platform independent
design models presented in the last chapter to the platform specific implementation mod-
els. In a final step, the platform specific implementation models are serialized to code.

As discussed in 3.2, the transformation from the platform independent models to the plat-
form specific models should be decomposed into four different transformations for the
content, navigation, process and presentation concerns of a Web application, see Figure 70.
Each partial transformation is targeted at a specific part of the Web platform (or technol-
ogy) that is responsible for handling the corresponding concern. Depending on the concrete
Web platform, one part could be exchanged without influencing the other parts and the
corresponding transformations. When a part of the Web platform (or technology) is ex-
changed, only a new transformation and a corresponding metamodel would have to be de-
fined for the exchanged part. In practice, independence of the parts and the corresponding
partial transformations among each other is only achieved if the platform provides some
kind of abstraction technique for the communication between the parts.

In the following sections, first a generic platform for Web applications that allows such a
decomposition of the transformation to the platform specific models is presented. It is built
on an open-source Web framework and a generic runtime environment, representing a
family of platforms for supporting the combination of a broad range of technologies. The
parts of the platform are designed to be independent from each other by the introduction of
corresponding abstraction techniques for the communication among each other. Then the
transformations for the content, navigation, process and presentation concerns are pre-
sented. The use of two different technologies for the content concern, JavaBeans and RMI,
demonstrates the flexibility of the approach..

 153

Model Driven Software Engineering for Web Applications

In comparison to other model driven Web engineering approaches presented in 3.4, tech-
nologies are represented by metamodels and code generation is achieved exclusively by
using transformations: ATL transformations map the platform independent design models
to the platform specific implementation models, and ATL queries serve to serialize these
models to code; further, a decomposition of the transformation to the platform specific
models is proposed together with a generic platform that can be used for supporting a
broad range of technologies.

PSM

<<transformation>>
Navigation2PSM

<<transformation>>
Presentation2PSM

<<transformation>>
Process2PSM

<<transformation>>
Content2PSM

<<transformation>>
PIM2PSM

PSM.ProcessPSM.Content PSM.Navigation PSM.Presentation

PIM

Figure 70. Decomposed PIM2PSM transformation

5.1 Generic Platform

A platform is an environment that allows software targeted for this platform to be run. Ex-
amples for platforms are hardware platforms, operating systems or virtual machines. A
software system itself is a platform if it provides an environment for other software to be
run. Other terms for a platform are framework or architecture, depending on the context.
Usually a platform is not monolithic, but consists of a kernel and pluggable platform com-
ponents, which form part of the configuration of a platform. Further, a platform often
builds on top of other platforms or it depends on other platforms. Most platforms provide

 154

Model Driven Software Engineering for Web Applications

lightweight extension mechanisms to be extended by the developer for a specific applica-
tion.

Web platforms which are also called Web containers provide an environment for running
Web applications. In the beginning of the Web, Web applications were often developed
“from scratch” by directly implementing the HTTP protocol. Nowadays, Web application
development is always targeted at a particular kind of Web platform.

Today, a zoo of Web platforms is available for the developer to choose from. In Figure 71
some of the most common current Web platforms are depicted. Most of them are built on
the platform for a specific programming language or virtual machine, for instance J2EE
builds on the Java platform, ASP.NET builds on the .NET platform and Ruby on Rails
builds on the language Ruby. Some of these platforms require a specific Web server, for
instance the Internet Information Server (IIS) from Microsoft is needed for ASP.NET,
while others are more flexible and can be configured to be plugged into a variety of Web
servers. Some platforms even depend on a specific operating system such as ASP.NET,
which needs the Microsoft Windows platform10.

The currently available Web platforms can be partitioned into three categories. The first
category is the heavyweight ASP.NET platform, which is strongly dependent on the Mi-
crosoft .NET technology and the Windows operating system. The second category com-
prises the lightweight open-source Tomcat Java Servlet/JSP Container and platforms that
build on it such as Struts, Cocoon or the Spring framework. The Java 2 Enterprise Edition
(J2EE) is a heavyweight extension of the Java Servlet/JSP Container and corresponds to
ASP.NET from Microsoft. Agile and/or lightweight Web platforms such as Ruby on Rails
(cf. 3.4.6) that allow for fast development of Web applications fit in the last category.

In addition to being a Web platform the heavyweight platforms ASP.NET and J2EE also
provide a complex component model, i.e. .NET components and Enterprise JavaBeans
(EJB) components, respectively. As already stated, the approach of this work does not aim
at the model driven implementation of components. The objective is to compose the invo-
cation of services provided by theses components by means of processes, see 4.5.2. There-
fore a lightweight Web platform is favored, which facilitates the use of components (or
services). These components could be implemented by using a complex component model
such as EJB or Web Services.

10 Although platform independent implementations for .NET such as Mono or dotGNU exist, still the com-
mon runtime libraries needed by ASP.NET applications are available for Windows only

 155

Model Driven Software Engineering for Web Applications

Internet Information
Server (IIS)

Tomcat Servlet/JSP
Container

Generic Platform

Spring Framework

Ruby on Rails

Ruby

Windows

ASP.NET

.NET JavaBeans

StrutsJ2EE Cocoon

Figure 71. Common Web platforms and the proposed generic platform

The proposed generic platform is based on the Spring framework, which is presented in the
next section. Spring provides a Web framework that offers a high degree of flexibility for
the combination of different technologies and therefore qualifies as a generic Web plat-
form. The Spring Web framework relies on the Model/View/Controller (MVC) pattern
[Reenskaug79], where the concerns of a Web application correspond to the model (con-
tent), view (presentation) and controller (navigation and process) roles in the MVC pattern.
This allows for a corresponding decomposition of the transformation to the platform spe-
cific models as depicted in Figure 72. For a concrete model technology (e.g. JavaBeans) or
view technology (e.g. Java Server Pages) corresponding metamodels and transformations
have to be defined. An abstraction technique (see next section) for accessing the model and
view objects from the controller allows to decouple the concrete model and view technolo-
gies from the controller implementation. This is represented as inheritance relationships for
the model and view technologies in Figure 72. In the same way does the view technology
not depend from the model technology by using another abstraction technique. A generic
runtime environment plugged into the Spring framework takes the controller part of a Web

 156

Model Driven Software Engineering for Web Applications

application implementation, see 5.1.2. This controller has to be configured for a specific
Web application by configuration data generated from the navigation and the process mod-
els. Therefore, a transformation based approach for using the configuration facilities of
Spring to configure the runtime environment is presented.

Generic Platform

Controller

Spring Conf

Model View

<<transformation>>
Content2PSM

<<transformation>>
Navigation2Conf

<<transformation>>
Presentation2PSM

<<transformation>>
Process2Conf

<<transformation>>
PIM2PSM

PSM.PresentationPSM.Content

PIM

...RMIJavaBeans XML ...JSP

Generic Platform

Controller

Spring Conf

Model View

<<transformation>>
Content2PSM

<<transformation>>
Navigation2Conf

<<transformation>>
Presentation2PSM

<<transformation>>
Process2Conf

<<transformation>>
PIM2PSM

PSM.PresentationPSM.Content

PIM

...RMIJavaBeans XML ...JSP

Figure 72. Decomposition of the PIM2PSM transformation for the generic platform

It has to be stressed that the results presented in the following depend on the choice of the
underlying platform, i.e. the Spring Web framework. While the transformations for the
content and presentation concerns could as well be used with other Web frameworks, the
transformations for the navigation and process concerns and the runtime environment
would have to be adapted accordingly. Additionally, most other Web frameworks are more
restricted in the choice of technologies for the content and presentation concern.

 157

Model Driven Software Engineering for Web Applications

5.1.1 Spring Framework

The Spring framework [Spring] is a multi-purpose framework based on the Java platform.
Although the important part for this work is the Spring Web framework, it can also be used
independently of the Web application context. Integration facilities for different technolo-
gies for several domains, such as persistence or transaction management, are provided. A
modular architecture facilitates extensibility and reuse. The following modules are com-
prised:

• Web framework

• Beans (factory, naming services, events, …)

• Support of common middleware technologies like CORBA, SOAP or Web services

• Direct Access Objects (DAO, database abstraction layer)

• Object Relational Mappings (ORM, integration layer for object relational map-
pings, e.g. JDO, Hibernate, iBatis)

• Transaction management

• Aspect Oriented Programming (AOP, support for aspect oriented programming
conform with AOP alliance and AspectJ)

The Spring Web framework is based on the Model/View/Controller (MVC) pattern [Reen-
skaug79]: the model encapsulates the core application data and functionality, the view pre-
sents data from the model to the user and the controller receives requests from the user,
modifies the model and updates the view. For Web application development a slightly
modified version of the pattern named MVC 2, MVC Version 2 or MVC Model 2 [Sun02]
is used resembling the strict HTTP request/response protocol. The view is updated only on
each user request and there is no mechanism so that the model can trigger an update in the
view actively, for instance by using the Observer pattern [Gamma95]. An example for the
MVC 2 control flow is given at the end of this section. As already mentioned in the last
section, by using the MVC pattern, the Spring Web framework allows for a high degree of
decoupling between the model, view and controller parts.

The Tomcat Web container is configured for using the Spring Web framework by the fol-
lowing code lines in the configuration file web.xml of a Web application.

<web-app>

 158

Model Driven Software Engineering for Web Applications

 <servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>*.uwe</url-pattern>
 </servlet-mapping>
</web-app>

The meaning of the entries in the configuration file is that for each request with a URL
which ends with .uwe the request is dispatched to an instance of the DispatcherServlet
from the Spring framework as illustrated in Figure 73. When the user of a Web application
enters a URL in the Web browser then a HTTP request is sent to the Web server, i.e. the
Tomcat Web container. This request is decoded and a corresponding HttpServletRequest
object request is instantiated which can be used to query the decoded parts of the HTTP
request, such as for example the parameters of the request. Additionally, a HttpServletRe-
sponse object response is instantiated that has to be used for returning the code of a Web
page that should be displayed to the user. See [J2EE] for details about the request and re-
sponse classes. If the Web server encounters a URL with the ending .uwe then the request
is dispatched to the corresponding DispatcherServlet from the Spring framework by calling
the doService method. After handling the request within the Spring Web framework (see
below) the resulting Web page is displayed to the user.

Figure 73. Dispatching of a Web request to the DispatcherServlet

 159

Model Driven Software Engineering for Web Applications

In the following, the roles of the model, view and controller parts within the generic plat-
form are presented. Additionally, the employed abstraction technique for the communica-
tion between the parts is discussed, which allows to decouple the parts (including the trans-
formations) for the corresponding concerns from each other. While the generic platform is
flexible with respect to the concrete technology for the model and the view parts, the con-
troller part is predefined as presented in the next section.

Model: Minimal requirements are imposed on the target technology for transforming the
content model to a platform specific implementation. It is not required that any specific
superclasses or superinterfaces are extended or implemented, just any kind of Java objects
can be used for the model, i.e. Plain Old Java Objects (POJO) [Spring]. The access to the
model from the view or the controller parts should only rely on calling the get- and set-
methods corresponding to the properties in the content model. These requirements are ful-
filled by most technologies and therefore the model technology is exchangeable to a high
degree. In the worst case appropriate proxy classes would have to be generated. Those
principles also apply if a database should be used for the persistence of the content objects,
i.e. a mapping would have to be defined between POJOs and the database. The easiest way
to achieve this is to use the database mapping of Enterprise Java Beans (EJB) [J2EE] or
any other database mapping technology.

The Tomcat Web container allows the passing of named variables of arbitrary type be-
tween the controller and the view. The main controller from the runtime environment (pre-
sented in the next section) provides the content object (i.e. the model) of the current Web
page (i.e. the view) to be displayed in a variable with the name self. As stated above, a con-
tent object can be of arbitrary type, it only has to provide get- and set- methods for access-
ing its properties. The most convenient way for implementing the access to content objects
from the view is to use the unified expression language, as for example available for Java
Server Pages, see [J2EE]. For example, the expression self.projects within the Web page
for the project manager is resolved to the list of projects by calling the getProjects method
on the project manager content object. For more detailed examples see 5.6 and 6.2.4.1.

View: The Spring Web framework provides a mechanism for decoupling the concrete view
technology, i.e. the target technology for transforming the presentation model to a platform
specific implementation, from the controller part (the model part does not depend from the
view technology anyway). This allows for example the use of the following view tech-
nologies:

o Java Server Pages (JSP)

o Tiles (based on Struts)

 160

Model Driven Software Engineering for Web Applications

o Velocity and Freemarker (template languages)

o XML + XSLT

o Document views (e.g. PDF or excel)

o Jasper reports (report engine)

o Portlets

o JavaServer Faces

Different view technologies can even be combined. Additionally, the Spring framework
allows the integration in other Web frameworks such as Struts or JavaServer faces. The
following code lines in the configuration file for the dispatcher servlet demonstrate how
the framework is configured to use Java Server Pages (JSP) and the Java Standard Tag Li-
brary (JSTL) view technology. Within the controller part a concrete view is referenced
only by a name. This view name is resolved to a Web page by the Spring framework, using
the configuration information. For example, the concrete view name ProjectManager
would be resolved to the JSP page /WEB-INF/jsp/ProjectManager.jsp.

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass">
 <value>org.springframework.web.servlet.view.JstlView</value>
 </property>
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
</bean>

The other way round, URLs embedded in Web pages are used for the communication be-
tween the view and the controller. The URL must have the suffix .uwe preceded by the
name of a node from the navigation model for navigation purposes, such as for example
ProjectManager.uwe.

Controller: A controller in the Spring Web framework is a Java class that implements the
interface Controller. An outline to the general control flow for handling a Web request
within the Spring framework, including the model, view and controller parts, is illustrated
by the sequence diagram depicted in Figure 74. As explained above and illustrated in
Figure 73, a Web request is handled within the doService method of the dispatcher servlet
from the Spring framework. This request is then further delegated to a controller imple-

 161

Model Driven Software Engineering for Web Applications

mentation by calling the method handleRequest. Here, the class MainController presented
in the next section serves to illustrate the basic control flow within a controller. The
method handleRequest has to return an object of type ModelAndView, which is a utility
class used to return both the model and the view instances in a single return value. Note
that the term model as used here refers to the data required for the presentation of a single
Web page, i.e. a single content object. The model is implemented by a map, which contains
exactly one entry self that holds a reference to the current content object. In the example
the content object rootObject, which represents the entry point of the application as ex-
plained in the next section is put in the map. Then a ModelAndView object is constructed
with the name of the view to be displayed, in the example the view ProjectManager, and a
reference to the model map. After the method call has returned, the dispatcher servlet calls
its method render to render the resulting Web page. Within this method the call is further
delegated to the concrete view implementation which receives a reference to the model
map. The view implementation, in the example a JstlView for rendering Java Server Pages,
retrieves the content object to be displayed from the model map and renders the Web page.

 162

Model Driven Software Engineering for Web Applications

Figure 74. Handling of a Web request within the Spring Web framework

5.1.2 Runtime Environment

The Spring framework is configured to use a specific generic controller implementation
named MainController. The corresponding configuration technique is described in the next
section. Generic means that the same controller can be used for all applications generated
by following this approach. The runtime environment developed for the generic platform
comprises this controller and all associated classes. It is kept as simple as possible as can
be seen in Figure 75. For a specific application the controller is configured to use the arti-
facts generated for the navigation and the process models as described in the next section.

The main controller has access to one designated root content object that represents the en-
try point of a Web application. The use of the type Object, which is the root type in the
Java class hierarchy, indicates that this approach is generic in reference to the concrete

 163

Model Driven Software Engineering for Web Applications

types. Model objects are accessed by calling their get- and set- methods and the operations
defined in the content model. Additionally, the controller manages a set of Navigation-
ClassInfo objects which contain information about the navigation structure regarding in-
heritance between navigation classes, which is required for resolving dynamic navigation.
The corresponding configuration data that is used to instantiate these objects is generated
from the navigation model as presented in 5.4. A set of ProcessActivity objects represents
the available Web processes. Similarly, the corresponding configuration data that is used to
instantiate these objects is generated from the process model as presented in 5.5.

Controller

+handleRequest(request : HttpServletRequest, response : HttpServletResponse) : ModelAndView

MainController

+handleRequest(request : HttpServletRequest, response : HttpServletResponse) : ModelAndView
+getTargetName(request : HttpServletRequest) : S tring
+getTargetObject(request : HttpServletRequest) : Object
+findProcess(processName : String) : ProcessActivity
+resolveInheritance(mv : ModelAndView)

...

ProcessActivity

-processClass : String

+ini t(inputParameter : Object)
+next()
+getViewName() : String
+getContextObject() : Object
+isFinished() : boolean

...

NavigationClassInfo

-contentClass : String
-name : String

Object

-processActivities
*

-activeProcess
0..1

-rootObject
1

-navigationClassInfos
*

-specific

*

Figure 75. Runtime environment

An outline to the general control flow for handling a Web request within the Spring
framework was already given in the last section. The basic control flow within the method
handleRequest of a controller as depicted in Figure 74 is further refined by the main con-
troller of the runtime environment as illustrated in Figure 76. First, a local variable target-
Name is initialized with the navigation target represented by the Web request which equals
to the name of a node from the navigation model, for example Project. Another local vari-
able targetObj is initialized with the corresponding target content object.

 164

Model Driven Software Engineering for Web Applications

Then, if no process is currently active, it is checked if the navigation target equals to the
name of a process class associated to one of the available process activities by calling the
method findProcess. If a corresponding process exists, then this process is started by call-
ing the method init (further details are presented in 5.5.1).

Afterwards, if a process is currently active, which includes the case that it has just been
started, then the next step of the process is executed by calling the method next on the cor-
responding process activity (again, further details are presented in 5.5.1). Following, the
view name to be displayed and the corresponding context object is queried from the proc-
ess activity. In the case that the process is finished after execution of the next step, then the
association to the currently active process is removed.

Otherwise, if no process is currently active, then the view name to be displayed is deter-
mined by the navigation target derived from the Web request. The same holds for the target
content object. Finally, in the same way as described in the last section a ModelAndView
object is constructed. Before this object is returned to the dispatcher servlet, inheritance
between navigation classes is resolved by calling the method resolveViewInheritance.
Within this method the set of NavigationClassInfo objects is searched for the most special-
ized navigation subclass which is compatible with the actual content object type. Compati-
ble means that the content class type associated to the navigation class is type compatible
with the content object.

 165

Model Driven Software Engineering for Web Applications

Figure 76. Control flow within the runtime environment

 166

Model Driven Software Engineering for Web Applications

5.1.3 Configuration

The Spring framework provides a simple but powerful configuration mechanism based on
the Inversion of Control (IoC) or Dependency Injection (DI) principle [Fowler04a]. The
Spring IoC container provides the functionality to instantiate, assemble and manage the
objects of a Spring application, i.e. an application that uses the Spring framework. Those
objects which are managed by the IoC container can be of arbitrary type and are called
beans or Plain Old Java Objects (POJOs). The IoC container, also called bean factory, is
initialized by reading an XML bean definition document which comprises the definition of
the beans of the application and the dependencies between them. The XML format for
bean definitions is well defined by a corresponding DTD11. As already stated, the type of a
bean can be arbitrary as for example data access objects (DAO) or other infrastructure ob-
jects to access databases. Most important, the Spring framework itself uses the bean fac-
tory mechanism for the configuration of its modules, for instance for enabling the use of
aspect oriented techniques using AspectJ.

In this approach beans will be used for the configuration of the runtime environment, in-
cluding data about the navigation and the process concerns. The following XML bean
definition document demonstrates how a Web application using the proposed generic plat-
form is configured. This document with the name dispatcher-servlet.xml is read by the dis-
patcher servlet of the Spring framework, which is responsible for handling Web requests
delegated by the Tomcat Web container as described in 5.1.1.

<beans>
 <import resource="content-conf.xml" />
 <import resource="navigation-conf.xml" />
 <import resource="process-conf.xml" />

 <bean id="urlMapping"
 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/*.uwe">mainController</prop>
 </props>
 </property>
 </bean>

11 The Spring bean definition DTD can be found at http://www.springframework.org/dtd/spring-beans.dtd

 167

Model Driven Software Engineering for Web Applications

 <bean id="viewResolver"
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass">
 <value>org.springframework.web.servlet.view.JstlView</value>
 </property>
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
 </bean>

 <bean id="mainController" class="uwe.runtime.MainController">
 <property name="rootObject">
 <ref bean="rootObject"/>
 </property>
 <property name="processActivities">
 <bean id="processActivities.list"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
 </property>
 <property name="navigationClassInfos">
 <bean id="navigationClassInfos.list"
 class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
 </property>
 </bean>
</beans>

All bean definitions have to be enclosed by a beans tag. A bean definition starts with the
bean tag followed by a list of property tags for the properties of a bean. The ref tag is used
to reference a bean from another bean by means of an identifier defined by the id attribute
of the bean tag. The class attribute indicates which class should be instantiated. Note that
the Spring framework provides much more possibilities for working with beans, see
[Spring].

The global bean definition for the configuration of a Web application is spread over several
bean definition files which are imported by using the import tag within the main bean defi-
nition file read by the dispatcher servlet of the Spring framework. The main bean definition
file comprises the application independent part of the configuration, including the configu-
ration of the view technology. The imported bean definition files comprise the application
dependent parts of the configuration. The bean definition file content-conf.xml has to be
provided manually and it comprises the configuration of the content part of the Web appli-
cation. The only requirement is that a bean with the id rootObject is defined within this file
that serves as the entry point of the application. The other two imported bean definition
files navigation-conf.xml and process-conf.xml represent the navigation and process parts

 168

Model Driven Software Engineering for Web Applications

of a Web application. These files are generated automatically as presented in 5.4 and 5.5
and should not be modified manually.

The dispatcher servlet from the Spring framework uses two specific beans with the ids
urlMapping and viewResolver for its configuration. The bean with the id urlMapping is
used to map URLs that the user has entered in the browser to controller implementations.
Exactly one URL mapping is defined for mapping each URL with the ending .uwe to a
controller bean with the id mainController (see below). On the other hand, and as already
described in 5.1.1, the bean with the id viewResolver defines which concrete view technol-
ogy should be used for the application. In the example configuration Java Server Pages
(JSP) and the Java Standard Tag Library (JSTL) should be used as view technology.

Finally, the main bean definition file also comprises the configuration of the main control-
ler from the runtime environment presented in the last section. The property rootObject is
set to the bean with the id rootObject which should be defined in the file content-conf.xml
and which represents the entry point content object of the application. The property navi-
gationClassInfos is set to the list of navigation class info objects defined in the file naviga-
tion-conf.xml by using the PropertyPathFactoryBean (for the technical details see
[Spring]). In the same way the property processActivities is set to the list of process activi-
ties defined in the file process-conf.xml.

The instantiated objects for the example bean definition file listed above are illustrated in
Figure 77. The dispatcher servlet from the Spring framework is linked with an object for
the URL mapping and with another object for the concrete view technology. For further
technical details about the dispatcher servlet and its configuration see [Spring]. Most im-
portant, the dispatcher servlet is also linked with an instance of the main controller which
receives all Web requests determined by the URL mapping. The main controller object has
a link to the root object, i.e. the entry point content object of the application. It is further
linked with the set of the application specific navigation class info objects and with the set
of the application specific process activity objects.

 169

Model Driven Software Engineering for Web Applications

 : MainController

 : InternalResourceViewResolver

 : SimpleUrlHandlerMapping

navigationClassInfos : Set processAct ivities : Set

 : NavigationClassInfo

 : NavigationClassInfo

 : DispatcherServlet

rootObject : Object

 : ProcessActiv ity

 : ProcessActivity

.

Figure 77. Example configuration of the runtime environment

In the following subsections the general technique for generating configuration data for the
runtime environment is presented, which is used for generating the bean definition files
navigation-conf.xml and process-conf.xml from the platform independent models. There-
fore, first a metamodel for XML is defined. This is followed by the definition of a set of
rules that are used in the transformations Navigation2Conf and Process2Conf presented in
5.4 and 5.5, respectively. Finally, an ATL query for the serialization of an XML model to
an XML document, i.e. code, is presented.

5.1.3.1 XML Metamodel

A metamodel for simple XML documents is depicted in Figure 78. Some details of XML
not required in this work, such as for example processing instructions, have been omitted.
The root element in the inheritance hierarchy for all elements is the abstract class Node.
Each node has a name and a value. The concrete class Element represents an XML tag
which can contain other nodes, thus it is used for nesting nodes. The special element Root
is the root node of a node hierarchy. Each root node represents an XML document, thus an
XML model represents a set of XML documents. The attribute documentName is used for
writing a node hierarchy to a file as explained in 5.1.3.3. An attribute node represents at-
tributes of an XML tag and a text node arbitrary text (XML CDATA) nested within a tag.

 170

Model Driven Software Engineering for Web Applications

Root
documentName : String

 Node
name : String
value : Str ing

TextNodeAttribute Element

*

+children
0..1
+parent

Figure 78. XML metamodel

Constraints

Only root nodes have no parent node and root nodes may not be nested within other ele-
ments

context Node inv RootParent :
 self.parent->isEmpty() implies self.oclIsTypeOf(Root) and
 self.oclIsKindOf(Root) implies self.parent->isEmpty()

5.1.3.2 Transformation Rules

The transformation rules presented in this section comprise an abstract matched rule
NamedElement2Conf which is specialized by sub rules in 5.4 and 5.5 in order to generate
an XML node that represents a bean entry in a configuration file. Further, a set of called
rules is used to generate subordinated property entries. For the detailed description of the
rules see B.4.1. Note that the rules of this section cannot be used stand-alone because nei-
ther abstract matched rules nor called rules are triggered automatically. An example of us-
ing these rules is given in 5.4.2 and 5.5.3.

Rule NamedElement2Conf

This abstract rule maps a named element from the metamodel for platform independent
analysis and design to a bean XML node. The id attribute of the bean derived by the getId
helper is either automatically derived from the qualified name of the element or, if a quali-
fied name is not available, automatically generated by using a global id counter. The result-
ing id is stored in a global map that is used for resolving references between elements to
references between beans when calling the rule CreateConfPropertyRefValue.

 171

Model Driven Software Engineering for Web Applications

abstract rule NamedElement2Conf
{
 from el : UWE!NamedElement
 to beanEl : XML!Element
 (
 name <- 'bean'
),
 idAttr : XML!Attribute
 (
 name <- 'id',
 value <- el.getId(),
 parent <- beanEl
)
}

Rule CreateConfProperty

This rule is called to create a configuration property XML node for a given name and value
to be represented. The call is further delegated to the called rule CreateConfPropertyValue
to generate the contained value XML node.

rule CreateConfProperty(parent : XML!Element, name : String, value : OclAny)
{
 to propertyEl : XML!Element
 (
 name <- 'property',
 parent <- parent
),
 nameAttr : XML!Attribute
 (
 name <- 'name',
 value <- name,
 parent <- propertyEl
)
 do
 {
 thisModule.CreateConfPropertyValue(propertyEl, value);
 }
}

 172

Model Driven Software Engineering for Web Applications

Rule CreateConfPropertyValue

This rule is called to create a value XML node for a given value to be represented. The call
is further delegated to different called rules presented in the following depending on the
type of the value allowing thereby even the handling of nested values, such as lists of lists
of values.

rule CreateConfPropertyValue(parent : XML!Element, value : OclAny)
{
 do
 {
 if(value.isPrimitive())
 {
 thisModule.CreateConfPropertyPrimitiveValue(parent, value);
 }
 else
 {
 if(value.oclIsKindOf(UWE!NamedElement))
 {
 thisModule.CreateConfPropertyRefValue(parent, value);
 }
 else
 {
 if(value.oclIsKindOf(Set(OclAny)))
 {
 thisModule.CreateConfPropertySetValue(parent, value);
 }
 else
 {
 if(value.oclIsKindOf(Sequence(OclAny)))
 {
 thisModule.CreateConfPropertySequenceValue(parent, value);
 }
 else
 {
 value.debug('Property value cannot be converted to conf');
 }
 }
 }
 }
 }
}

 173

Model Driven Software Engineering for Web Applications

Rule CreateConfPropertyPrimitiveValue

This rule is called for creating the XML representation of primitive values such as numbers
or strings.

rule CreateConfPropertyPrimitiveValue(parent : XML!Element, value : OclAny)
{
 to valueEl : XML!Element
 (
 name <- 'value',
 parent <- parent
),
 stringValue : XML!TextNode
 (
 value <- value.toString(),
 parent <- valueEl
)
}

Rule CreateConfPropertyRefValue

This rule is called for creating the XML representation of reference values to other model
elements. Therefore the reference ids are used that were put in the global map by the helper
getId.

rule CreateConfPropertyRefValue(parent : XML!Element, value : UWE!NamedElement)
{
 to refEl : XML!Element
 (
 name <- 'ref',
 parent <- parent
),
 beanAttr : XML!Attribute
 (
 name <- 'bean',
 value <- value.getId(),
 parent <- refEl
)
}

 174

Model Driven Software Engineering for Web Applications

Rule CreateConfPropertySetValue

This rule is called for creating the XML representation of sets of elements. Therefore the
rule CreateConfPropertyValue is called for each element in the set.

rule CreateConfPropertySetValue(parent : XML!Element, value : Set(OclAny))
{
 to setEl : XML!Element
 (
 name <- 'set',
 parent <- parent
)
 do
 {
 for(v in value)
 {
 thisModule.CreateConfPropertyValue(setEl, v);
 }
 }
}

Rule CreateConfPropertySequenceValue

This rule is called for creating the XML representation of sequences of elements. Therefore
the rule CreateConfPropertyValue is called for each element in the sequence.

rule CreateConfPropertySequenceValue(parent : XML!Element, value : Sequence(OclAny))
{
 to listEl : XML!Element
 (
 name <- 'list',
 parent <- parent
)
 do
 {
 for(v in value)
 {
 thisModule.CreateConfPropertyValue(listEl, v);
 }
 }
}

 175

Model Driven Software Engineering for Web Applications

5.1.3.3 Serialization to Code

An XML model is transformed to executable code (i.e. an XML document) with the ATL
query XML2Code listed below (cf. 2.3.3.2). This is done by calling the helper method to-
Code on all children of root elements, concatenating the results and writing it to a file
given by the attribute documentName of the root element. For writing strings to a file the
predefined method writeTo of type String is used.

query XML2Code = XML!Root.allInstances()->collect(n | n.getChildren()->
 iterate(n; acc : String = '' | acc + n.toCode()).writeTo(n.documentName));

helper context XML!Element def : getAttributes() : Sequence(XML!Attribute) =
 self.children->select(cn | cn.oclIsKindOf(XML!Attribute));

helper context XML!Element def : getChildren() : Sequence(XML!Node) =
 self.children->select(cn | not cn.oclIsKindOf(XML!Attribute));

helper context XML!Element def : toCode() : String =
 '<' + self.name + self.getAttributes()->iterate(n; acc : String = '' | acc + ' ' + n.name + '=\"' +
 n.value + '\"') + '>\n' + self.getChildren()->iterate(n; acc : String = '' | acc + n.toCode())
 + '</' + self.name + '>\n';

helper context XML!TextNode def : toCode() : String =
 self.value;

5.2 Content via JavaBeans

This section presents the first of the two investigated alternatives for the transformation of
the content model to the platform specific implementation for the platform as described in
the previous section using JavaBeans.

JavaBeans [Sun06a] are lightweight software components for the programming language
Java. The development initially stemmed from the need for a simple way to instantiate and
transfer (desktop) GUI components for the use in GUI builders. In this work not all fea-
tures from the JavaBeans specification are needed.

JavaBeans are essentially Java classes, or Plain Old Java Objects (POJOs), that are subject
to certain constraints [Sun06a]: all fields should have private visibility and be accessible
only by public getters and setters, e.g. for a field named x the corresponding getter has to
be named getX and the setter setX; a public default constructor must be provided; and the

 176

Model Driven Software Engineering for Web Applications

class has to be serializable, thus enabling persistence and data transfer technologies. Fur-
ther general properties of JavaBeans are not in the scope of this work, for more details see
[Sun06a]. Within the context of this work JavaBeans are used as a simple yet powerful im-
plementation technology for the content model. The Spring framework provides a broad
support for using JavaBeans. A BeanFactory instance (provided by the Spring framework)
is responsible for instantiating, configuring and managing a number of beans. This includes
resolving dependencies (i.e. associations) between beans. Additionally, persistence tech-
niques are provided. The simplest way to handle beans is the XML variant of the BeanFac-
tory which allows reading them from an XML document.

JavaBeans allow for fast prototyping and testing of a Web application and in some cases
may even be a sufficient “component technology”. In the case of DANUBIA it fulfils the
special requirements for the component technology as discussed in 6.2.1. The example
bean definition listed in the following is stored in the configuration file content-conf.xml
for the configuration of the content part within the runtime environment configuration as
discussed in 5.1.3. A designated bean with the id rootObject, i.e. an instance of the project
manager, represents the entry point of the application.

<beans>
 …
 <bean id="rootObject" class="ProjectManager">
 <property name="projects">
 <list>
 <ref bean="project1"/>
 …
 </list>
 </property>
 </bean>

 <bean id="project1" class="UserProject">
 <property name="id"><value>1</value></property>
 <property name="name"><value>Project 1</value></property>
 <property name="description"><value>Description of project 1</value></property>
 <property name="scenarios">
 <list>
 <ref bean="scenario1"/>
 …
 </list>
 </property>
 …
 </bean>
 …

 177

Model Driven Software Engineering for Web Applications

 <bean id="scenario1" class="Scenario">
 <property name="id"><value>1</value></property>
 <property name="name"><value>Scenario 1</value></property>
 <property name="description"><value>Description of scenario 1</value></property>
 …
 </bean>
 …
</beans>

In the following, first a metamodel for Java is presented that is used for both Java-based
transformation alternatives. This is followed by an example and the description of the
transformation from the content model to JavaBeans. Finally, the serialization to Java code
is presented. The resulting Java code has to be manually refined for all content classes that
contain at least one operation.

5.2.1 Java Metamodel

A metamodel for Java that covers all features of Java needed by the transformations in this
work is depicted in Figure 79. All classes of the Java metamodel are organized in an in-
heritance hierarchy with the class JavaElement as root element. Java classes, primitive
types and enumerations are distinguished. Java classes and enumerations are assigned to a
package which may be declared as imported. Imported packages are not serialized to code,
see 5.2.4. Java interfaces are represented by Java classes with the attribute isInterface set to
true. Java classes (and interfaces) can be organized in an inheritance hierarchy and they
can be parameterized to support Java 1.5 Generics [Mahmoud04]. Members of a Java class
are either methods or fields. Methods support an ordered list of parameters and can throw
exceptions.

 178

Model Driven Software Engineering for Web Applications

JavaClass
isAbstr act : Boolean
isInterface : Boolean
isPublic : Boolean

Package
isImported : Boolean

EnumerationLiteral

MethodParameter

Method
body[0..1] : String

ClassMember
isPublic : Boolean
isStatic : Boolean

PrimitiveType

JavaElement
name : String

Enumeration

Type

Field

Type

+exceptions
*

+type1

+enumerations

*

+members

*

+owner

1

+package1

+classes*

+method 1

+parameters * {ordered}

+superClasses

*

+type

0..1

+actualTypeParameters *
{ordered}

*

Figure 79. Java metamodel

Constraints

An interface must not contain fields and must not define a method body.

context JavaClass inv InterfaceMembersAndBody :
 self.isInterface implies self.members->forAll(m |
 not m.oclIsTypeOf(Field) and
 m.oclIsTypeOf(Method) implies m.body->isEmpty())

An interface can only have super interfaces.

context JavaClass inv InterfaceSuperClasses :
 self.isInterface implies self.superClasses->forAll(sc | sc.isInterface)

A class can have at most one super class, but may implement several interfaces.

context JavaClass inv ClassSuperClasses :
 not self.isInterface implies self.superClasses->select(sc | not sc.isInterface)->size() <= 1

A field must have a type.

context Field inv FieldType : self.type->notEmpty()

 179

Model Driven Software Engineering for Web Applications

5.2.2 Example

The following code listing shows the JavaBean code generated for the content class Pro-
jectManager by the transformation presented in the next section after serialization to code.
The property projects and the corresponding getter and setter methods are already fully
implemented. The body of the other operations used by the Web processes has to be com-
pleted by the developer. For a more detailed example see also 6.2.1.1.

public class ProjectManager
{
 private List<Project> projects;

 public List<Project> getProjects()
 {
 return projects;
 }

 public void setProjects(List<Project> projects)
 {
 this.projects = projects;
 }

 public UserProject addUserProject(UserProject userProject)
 {
 // to be implemented manually
 }

 public ValidationProject addValidationProject(ValidationProject validationProject)
 {
 // to be implemented manually
 }

 public void removeProject(Project project)
 {
 // to be implemented manually
 }

}

5.2.3 Transformation Content2JavaBeans

The transformation Content2JavaBeans depicted in Figure 80 maps the content model to a
Java model for JavaBeans, which is used for the case study as described in 6.2.1. It com-
prises four transformation rules which are outlined below and detailed in B.4.2. This re-

 180

Model Driven Software Engineering for Web Applications

sembles the code generation facilities that are provided by most UML CASE tools. But, in
contrast to the flexible and completely customizable approach presented here, transforma-
tions implemented in CASE tools are usually hard-coded.

Class2Class
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2JavaBeans

Java ModelContent Model
Class2Class
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2JavaBeans

Java ModelContent Model

Figure 80. Transformation Content2JavaBeans

The downside of using the JavaBeans code resulting from this transformation is that the
bodies of the operations (except for getter and setter methods) still have to be completed by
the developer and that these modifications in the source code are not preserved upon re-
generation from a modified content model.

Rule Class2Class

Each content class from the content model is mapped to a JavaBean class. The superclass
relationship in the source model is mapped to a corresponding superclass relationship in
the target model.

rule Class2Class
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))
 to jc : JAVA!JavaClass
 (
 name <- c.name,
 package <- c.package,
 superClasses <- c.generalization->collect(g | g.general),
 isAbstract <- false,
 isPublic <- true,
 isInterface <- false
)
}

 181

Model Driven Software Engineering for Web Applications

Rule Enumeration2Enumeration

Each enumeration with its enumeration literals is mapped to a corresponding Java enu-
meration by the rules Enumeration2Enumeration and EnumerationLit-
eral2EnumerationLiteral.

rule Enumeration2Enumeration
{
 from e : UWE!Enumeration
 to je : JAVA!Enumeration
 (
 name <- e.name,
 package <- e.package,
 enumerationLiterals <- e.ownedLiteral->collect(el |
 thisModule.EnumerationLiteral2EnumerationLiteral(el))
)
}

lazy rule EnumerationLiteral2EnumerationLiteral
{
 from el : UWE!EnumerationLiteral
 to jel : JAVA!EnumerationLiteral
 (
 name <- el.name
)
}

Rule Property2ClassMembers

Each content property owned by a content class is mapped to a corresponding Java field
and getter and setter methods for that field. The (trivial) code for the method body is gen-
erated by string concatenation. Properties owned by a class comprise attributes as well as
owned association ends. Multi-valued properties are mapped to the parameterized Java col-
lection interfaces java.util.List<E> for ordered properties and java.util.Set<E> for unor-
dered properties by the unique lazy rules Class2ParameterizedList and
Class2ParameterizedSet, respectively. Note that derived properties are mapped by the rule
DerivedProperty2ClassMembers.

rule Property2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and

 182

Model Driven Software Engineering for Web Applications

 not p.isDerived)
 to field : JAVA!Field
 (
 owner <- p.class_,
 name <- '_' + p.name,
 type <- if p.isMultivalued() then
 if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 else p.type endif,
 isPublic <- false,
 isStatic <- false,
 initializer <- …
),
 getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 body <- 'return ' + '_' + p.name + ';'
),
 setter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'set' + p.name.stringFirstToUpper(),
 isPublic <- true,
 isStatic <- false,
 parameters <- Sequence { setterParameter },
 body <- 'this.' + '_' + p.name + ' = ' + '_' + p.name + ';'
),
 setterParameter : JAVA!MethodParameter
 (
 name <- '_' + p.name,
 type <- if p.isMultivalued() then
 if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 else p.type endif
)
}

 183

Model Driven Software Engineering for Web Applications

Rule Operation2Method

Each operation in the content model is mapped to Java method of the corresponding class.
A default method body is generated so that the generated class can be compiled by the Java
compiler.

rule Operation2Method
{
 from o : UWE!Operation (o.class_.oclIsTypeOf(UWE!Class))
 using
 {
 formalParameters : Sequence (UWE!Parameter) = o.ownedParameter->select(op |
 op.direction <> #return);
 }
 to m : JAVA!Method
 (
 name <- o.name,
 owner <- o.class_,
 isPublic <- true,
 isStatic <- false,
 parameters <- parameters,
 type <- i o.type,
 body <- if o.type.oclIsUndefined() then '' else
 if o.type.oclIsKindOf(UWE!DataType) then
 if o.type.name = 'void' then '' else
 if o.type.name = 'Boolean' then 'return false;' else
 'return (' + o.type.name + ')0;'
 endif
 endif
 else
 'return null;'
 endif
 endif
),
 parameters : distinct JAVA!MethodParameter foreach (p in formalParameters)
 (
 name <- '_' + p.name,
 type <- p.type
)
}

 184

Model Driven Software Engineering for Web Applications

Rule Class2ParameterizedSet

This unique lazy rule is explicitly invoked (hence lazy) from other matched rules and al-
ways returns the same (hence unique) Java set class parameterized by the given content
class type.

unique lazy rule Class2ParameterizedSet
{
 from c : UWE!Class
 to s : JAVA!JavaClass
 (
 name <- 'Set',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

Rule Class2ParameterizedList

Like the previous rule but returning a parameterized Java list.

unique lazy rule Class2ParameterizedList
{
 from c : UWE!Class
 to s : JAVA!JavaClass
 (
 name <- 'List',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

5.2.4 Serialization to Code

A Java model is transformed to executable code (i.e. text) with the ATL query Java2Code
outlined below. This is done by calling the helper method toString on all Java classes and

 185

Model Driven Software Engineering for Web Applications

enumerations whose package is not imported and by writing it to files given by the name of
the Java class preceded by the full file path resulting from replacing all ‘.’ characters in the
name of the owning package with the file separator. For writing strings to a file the prede-
fined method writeTo of the type String is used. Only the helpers for serializing classes,
methods and fields are listed here for brevity. For the technical details see B.2.2.3.

query Java2Code = JAVA!Type.allInstances()->
 select(e | if e.oclIsTypeOf(JAVA!JavaClass) or e.oclIsTypeOf(JAVA!Enumeration) then
 e.package.isImported else false endif)->
 collect(x | x.toString().writeTo('src/' + x.package.name.replaceAll('.', '/') + '/' +
 x.name + '.java'));

helper context JAVA!JavaClass def: toString() : String =
 self.package.toString() + self.visibility() + self.modifierAbstract() +
 if self.isInterface then 'interface ' else 'class ' endif + self.name +
 self.superClasses->select(sc | not sc.isInterface or self.isInterface)->
 iterate(sc; acc : String = ''| acc + if acc='' then ' extends ' else ', ' endif + sc.fullName()) +
 self.superClasses->select(sc | not self.isInterface and sc.isInterface)->
 iterate(sc; acc : String = ''| acc + if acc='' then ' implements ' else ', ' endif + sc.fullName()) +
 ' {\n' +
 self.members->iterate(i; acc : String = '' | acc + i.toString()) +
 '\n}\n\n';

helper context JAVA!Field def: toString() : String =
 '\t' + self.visibility() + self.scope() + self.type.fullName() + ' ' + self.name + ';\n';

helper context JAVA!Method def: toString() : String =
 '\t' + self.visibility() + self.scope() +
 if self.type.oclIsUndefined() then 'void' else self.type.fullName() endif
 + ' ' + self.name + '(' +
 self.parameters->iterate(p; acc : String = '' | acc + if acc = '' then '' else ', ' endif + p.toString())
 ')' + if self.exceptions->size() > 0 then ‘ throws ‘ +
 self.exceptions->iterate(e; acc : String = ‘’ | acc + if acc = '' then '' else ‘, ‘ endif + e.name)
 else ‘’ endif + if self.body.oclIsUndefined() then ';\n' else ' {\n\t\t' + self.body + '\n\t}\n' endif;

…

5.3 Content via RMI

In addition to using JavaBeans as described in the last section, this section presents a sec-
ond alternative technology for the model driven implementation of the content concern us-
ing RMI interfaces.

 186

Model Driven Software Engineering for Web Applications

RMI is a Java technology to allows the invocation of methods on remote objects, i.e. ob-
jects that reside in a different Java Virtual Machine than the caller [RMI]. The different
virtual machines may reside on different hosts. The RMI protocol handles the serialization
and deserialization of objects preserving thereby the type of these objects. RMI stands in
contrast to the non platform specific technologies such as CORBA or Web Services. Of
course, RMI is just one technology amongst many. As already stated in the previous sec-
tion, the platform does not impose special requirements on the technology used for the
content model as long as its instances can be treated as Plain Old Java Objects (POJOs).

The transformation presented in this section uses the same metamodel and model-to-code
transformation for Java as presented in the last section. Thus only a corresponding example
for the generated implementation for RMI interfaces and the transformation itself are pre-
sented in the following.

5.3.1 Example

The following code listing shows the RMI interface code generated for the content class
ProjectManager by the transformation presented in the next section after serialization to
code. The interface is a specialization of the Remote interface and each method is declared
to throw a RemoteException.

public interface ProjectManager extends Remote
{
 public List<Project> getProjects() throws RemoteException;
 public void setProjects(List<Project> _projects) throws RemoteException;

 public UserProject addUserProject(String _name, String _description,
 ValidationProject _validationProject) throws RemoteException;
 public ValidationProject addValidationProject(String _name, String _description)
 throws RemoteException;
 public void removeProject(Project _project) throws RemoteException;
}

5.3.2 Transformation Content2RMIInterfaces

The transformation Content2RMIInterfaces depicted in Figure 81 maps the content model
to a Java model for RMI interfaces that is used to access remotely implemented interface
implementations. As already stated for the transformation to JavaBeans, the result of this
transformation resembles the code generation facilities that are provided by most UML
CASE tools. In contrast to the flexible and completely customizable approach presented
here, transformations implemented in CASE tools are usually hard-coded. As this trans-

 187

Model Driven Software Engineering for Web Applications

formation is very similar to the transformation to JavaBeans presented in 5.2.3 only the
differences are detailed here. For the technical details about this transformation see B.4.3.

Class2Interface
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2RMIInterfaces

Java ModelContent Model
Class2Interface
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2RMIInterfaces

Java ModelContent Model

Figure 81. Transformation Content2JavaInterfaces

Rule Class2Interface

Each content class from the content model is mapped to a Java RMI interface. The super-
class relationship in the source model is mapped to a corresponding superclass relationship
(between interfaces) in the target model. Additionally, the super interface for all RMI inter-
faces, which is generated in the entrypoint rule of the transformation, is included in the list
of super classes.

rule Class2Interfaces
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))
 to jc : JAVA!JavaClass
 (
 name <- c.name,
 package <- c.package,
 superClasses <- c.generalization->collect(g | g.general)->
 including(thisModule.remoteClass),
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true
)
}

Rule Property2ClassMembers

Each content property owned by a content class is mapped to corresponding Java getter
and setter methods. Properties owned by a class comprise attributes as well as owned asso-
ciation ends. Multi-valued properties are mapped to the parameterized Java collection in-
terfaces java.util.List<E> for ordered properties and java.util.Set<E> for unordered prop-
erties by the unique lazy rules Class2ParameterizedList and Class2ParameterizedSet, re-

 188

Model Driven Software Engineering for Web Applications

spectively. Note that derived properties are mapped to a getter method by the rule De-
rivedProperty2ClassMembers.

rule Property2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and
 not p.isDerived)
 to getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 exceptions <- Set { thisModule.remoteException }
),
 setter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'set' + p.name.stringFirstToUpper(),
 isPublic <- true,
 isStatic <- false,
 parameters <- Sequence { setterParameter },
 exceptions <- Set { thisModule.remoteException }
),
 setterParameter : JAVA!MethodParameter
 (
 name <- '_' + p.name,
 type <- if p.isMultivalued() then
 if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 else p.type endif
)
}

Rule Operation2Method

Each operation in the content model is mapped to a Java method of the corresponding in-
terface. This rule is similar to the rule with the same name in the transformation Con-
tent2JavaBeans, only that no method body is generated.

 189

Model Driven Software Engineering for Web Applications

rule Operation2Method
{
 from o : UWE!Operation (o.class_.oclIsTypeOf(UWE!Class))
 using
 {
 formalParameters : Sequence (UWE!Parameter) = o.ownedParameter->select(op |
 op.direction <> #return);
 }
 to m : JAVA!Method
 (
 name <- o.name,
 owner <- o.class_,
 isPublic <- true,
 isStatic <- false,
 parameters <- parameters,
 type <- o.type,
 exceptions <- Set { thisModule.remoteException }
),
 parameters : distinct JAVA!MethodParameter foreach (p in formalParameters)
 (
 name <- '_' + p.name,
 type <- p.type
)
}

5.4 Navigation

The navigation model does not have to be directly transformed to code because in the
transformation of the presentation model to Web pages references to elements from the
navigation model are resolved: references to nodes, i.e. navigation classes, access primi-
tives and process classes, are resolved to Web pages; and references to properties of nodes
are resolved to directly access the content model. Nevertheless, a minimum knowledge
about the navigation model is needed in the runtime environment to handle dynamic navi-
gation. For instance, in the example navigation model a navigation link leads from the pro-
ject index to the abstract navigation class Project with the two navigation sub classes
UserProject and ValidationProject as depicted in Figure 82. Thus, when following the link
from the project index to a specific project then not the presentation class for the abstract
navigation class Project should be displayed, but the presentation class for the most spe-
cialized navigation subclass which is compatible with the actual content object type. Com-

 190

Model Driven Software Engineering for Web Applications

patible means that the content class type associated to the navigation class is type compati-
ble with the content object. It is important to stress that dynamic navigation is resolved
within the runtime environment, i.e. the main controller as described in 5.1.2, and not
within the code of a Web page. Therefore, an anchor in a generated Web page always ref-
erences the target node of a link, such as for example the abstract super navigation class
Project.

<<index>>
ProjectIndex

<<navigation class>>
ValidationProject

<<navigation class>>
UserProject

<<navigation class>>
Project

*

Figure 82. Dynamic navigation structure

For providing the dynamic navigation structure to the runtime environment, the informa-
tion about the available navigation classes and their inheritance relationships are trans-
formed to configuration data. As discussed in 5.1.2 and in 5.1.3, this configuration data has
the form of XML nodes which represent NavigationClassInfo objects and their properties
in the runtime environment. On instantiation of these configuration beans the runtime envi-
ronment gets initialized with information about the available navigation classes as ex-
plained in 5.1.2.

In the following, first an example for the representation of navigation info classes is given,
followed by the transformation from the navigation model to configuration data for the
runtime environment.

5.4.1 Example

The following example XML code lines show the generated configuration data for the
navigation classes from Figure 82 after serialization to the file navigation-conf.xml. Each
navigation class is mapped to an XML bean node by the transformation presented in the
next section. For each such bean node the Java class NavigationClassInfo from the runtime
environment is instantiated when the Web application is configured by the Spring bean

 191

Model Driven Software Engineering for Web Applications

factory, see also Figure 75. The property specific reflects the inheritance relationship be-
tween navigation classes.

<bean id="DANUBIA_Navigation_Project" class="uwe.runtime.NavigationClassInfo">
 <property name="name"><value>DANUBIA_Navigation_Project</value></property>
 <property name="specific">
 <list>
 <ref bean="DANUBIA_Navigation_ValidationProject"></ref>
 <ref bean="DANUBIA_Navigation_UserProject"></ref>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.Project</value>
 </property>
</bean>

<bean id="DANUBIA_Navigation_UserProject" class="uwe.runtime.NavigationClassInfo">
 <property name="name"><value>DANUBIA_Navigation_UserProject</value></property>
 <property name="specific">
 <list>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.UserProject</value>
 </property>
</bean>

<bean id="DANUBIA_Navigation_ValidationProject" class="uwe.runtime.NavigationClassInfo">
 <property name="name"><value>DANUBIA_Navigation_ValidationProject</value></property>
 <property name="specific">
 <list>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.ValidationProject</value>
 </property>
</bean>

5.4.2 Transformation Navigation2Conf

The transformation Navigation2Conf depicted in Figure 83 maps the navigation model to
an XML model which is then serialized to an XML document navigation-conf.xml as pre-
sented in 5.1.3. The transformation comprises one rule which is outlined below and de-
tailed in B.4.3. Each navigation class is mapped by this rule NavigationClass2Conf to an

 192

Model Driven Software Engineering for Web Applications

XML bean node. This node is used for the instantiation of the Java class NavigationClass-
Info when the Web application is configured by the Spring bean factory. The rule is a spe-
cialization of the rule NamedElement2Conf presented in 5.1.3.2 for mapping model ele-
ments to bean nodes.

NavigationClass2Conf

Navigation2Conf XML Model
for Navigation

Configuration Data
Navigation Model NavigationClass2Conf

Navigation2Conf XML Model
for Navigation

Configuration Data
Navigation Model

Figure 83. Transformation Navigation2Conf

rule NavigationClass2Conf extends NamedElement2Conf
{
 from el : UWE!NavigationClass
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- 'uwe.runtime.NavigationClassInfo',
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.qualifiedId());
 thisModule.CreateConfProperty(beanEl, 'specific',
 UWE!Generalization.allInstances()->select(g | g.general = el)->collect(g | g.specific));
 thisModule.CreateConfProperty(beanEl, 'contentClass', el.contentClass.fullJavaName());
 }
}

5.5 Process

As presented in 4.5.2, process flows are modeled with extended UML activities allowing
the composition of complex workflows. And, in contrast to other Web approaches, the
process flow model is not dissolved at design level into modeling primitives of the naviga-
tion model. The drawback of using activities for process modeling reveals when the proc-
ess flow model has to be transformed to the platform specific level. Because of the com-
plex execution semantics of activities based on token flows as described in [OMG05a] the
mapping to an executable implementation is difficult.

 193

Model Driven Software Engineering for Web Applications

The proposed solution is to use a platform specific implementation of the platform inde-
pendent process metamodel presented in 4.5.2. A transformation maps a process model to
XML nodes that represent the corresponding configuration of the process runtime envi-
ronment presented in the following. The process runtime environment is part of the generic
runtime environment presented in 5.1, allowing the execution of process activities. The
basic structure and behavior of the process runtime environment corresponds to the ab-
stract definition of syntax and semantics of UML activities. Then an example for the gen-
erated process configuration is given and finally the corresponding transformation to the
configuration data is presented.

5.5.1 Process Runtime Environment: The Web Process Engine

The process runtime environment, or Web process engine, is a part the generic runtime en-
vironment presented in 5.1.2. The runtime environment contains a list of available process
activities and further holds a reference to the currently active process activity, if any.
Within the method handleRequest of the main controller depicted in Figure 75 the control
flow is delegated to the Web process engine if either a new process should be started, or
the next step of the currently active process should be executed. For more details about the
integration of processes in the runtime environment see 5.1.2.

The process runtime environment is represented by the collection of process activities of a
Web application. In Figure 84 the implementation classes for the execution of a process
activity are outlined. The name of the process class representing a process is comprised as
an attribute of the corresponding process activity. This reference is needed in the runtime
environment to identify the invocation of a process. A process activity comprises a list of
activity nodes and set of activity edges. Activity nodes can hold a token which is either a
control token, indicating that a flow of control is currently at a specific node, or an object
token which indicates that an object flow is at a specific node. Activity edges represent the
possible flow of tokens from one activity node to another. Multiple tokens may be present
at different activity nodes at a specific point in time. The method acceptsToken of an activ-
ity node or an activity edge is used to query if a specific token would currently be accepted
which then could be received by the method receiveToken. An activity has an input pa-
rameter node and optionally an output parameter node which serve to hold input and output
object tokens.

 194

Model Driven Software Engineering for Web Applications

ActivityNode
-name : String

+acceptsToken(t : Token) : boolean
+getContextObject() : Object
+getControlToken() : ControlToken
+getName() : String
+getObjectToken() : ObjectToken
+getToken() : Token
+getViewName() : String
+hasToken() : boolean
+init()
+isWaitingForInput() : boolean
+next() : boolean
+processInput()
+receiveToken(t : Token)
+removeToken()

ProcessActivity
-contextObject : Object
-entr yNode : String
-exitNode : String
-f inished : boolean
-inputParameter : Object
-name : String
-processClass : Str ing
-viewName : String

+getContextObject() : Object
+getViewName() : String
+init(inputParameter : Object)
+isFinished() : boolean
+next()

ActivityEdge
-guard : Object = null

+acceptsToken(t : Token) : boolean
+receiveToken(t : Token)

ActivityParameterNode

ObjectToken
-object : Object

+getObject() : Object

ControlToken

ObjectNode ControlNodeAction

ControlFlowObjectFlow

Token

*

+outputParameterNode

0..1

0..1

+inputParameterNode

1

+source

1

+outgoing

*
+target

1

+incoming

*

*{ordered}

Figure 84. Runtime process activity

In Figure 85 the different kind of control nodes supported by the process engine are de-
picted. The implementation of these nodes corresponds to the UML specification as de-
fined in [OMG05a]. In comparison to Figure 48, decision and merge nodes are imple-
mented by a common class DecisionMergeNode, and fork and join nodes by a common
class ForkJoinNode, because most modeling tools do not clearly differentiate the corre-
sponding node types. Figure 86 comprises the different kind of object nodes of a process
activity supported here which are also compliant with the UML specification, cf. 4.5.2.
Pins represent input and output of actions and activity parameter nodes the input and out-
put of process activities, respectively. A central buffer node is used for intermediate buffer-
ing of object tokens while a datastore node represents a permanent (i.e. during the execu-
tion of the activity) buffer.

 195

Model Driven Software Engineering for Web Applications

DecisionMergeNode

ActivityFinalNode FlowFinalNode

ForkJoinNode

ControlNode

FinalNode

Figure 85. Runtime control nodes

ActivityParameterNode

DataStoreNode

CentralBufferNode

ObjectNode

OutputPinInputPin

Pin

Figure 86. Runtime object nodes

The different kinds of actions supported here are depicted in Figure 87. Input and output
pins are associated to actions. An action starts its execution when tokens are available at all
input pins. If optionally a control flow is entering the action an additional control token is
required. After completion of an action the result data is available at the output pins, and an
additional control token is available at the corresponding outgoing control flow, if a control
flow is leaving from the action. The call operation action executes fully automatically by
invoking a method on the target object. The call behavior action is used to compose proc-
ess activities and controls the execution of a subordinated process activity (other kinds of
subordinated behavior are not supported, hence the difference to Figure 47). Finally, a user
action represents an interaction with the user. When it is ready to be executed, i.e. all re-
quired input and control tokens are available, then it indicates that it is waiting for input.
The corresponding user interaction object for the input is returned by calling the method
getContextObject which is specified in the super class ActivityNode.

 196

Model Driven Software Engineering for Web Applications

UserAction
-processClass : String

CallOperationAction
-methodName : String

ProcessActivity

CallBehaviorAction

OutputPinInputPin Action

*
{ordered}

+input

*
{ordered}

+output

1
+target

1

Figure 87. Runtime actions

Before starting the execution of a process activity it has to be initialized by calling the
method init. This results in initializing all activity nodes and placing an object token in the
input parameter node as illustrated by the following simplified Java code lines:

public void init(Object inputParameter)
{
 // initialize all activity nodes
 for(ActivityNode n : activityNodes) n.init();

 // place new object token in input parameter node
 inputParameterNode.receiveToken(new ObjectToken(inputParameter));
 this.inputParameter = inputParameter;

 finished = false;
}

The complete execution of a process activity comprises the handling of user interactions.
Thus, when a process activity contains at least one user interaction then it cannot be exe-
cuted completely in one step. This is the case if a process activity contains at least one user
action either directly, or indirectly by containing a call behavior action that calls another
process activity that contains a user interaction. The method next of a process activity is
called from the runtime environment to execute the process activity until the next user in-
teraction is encountered or the process activity has finished its execution, see 5.1.2. More-
over, either the next user interaction object to be presented to the user is saved in the at-
tribute contextObj, or the output parameter object if the activity has finished with a return
value. The following code lines give an outline to the implementation of the method next:

 197

Model Driven Software Engineering for Web Applications

public void next()
{
 // process input requested after last method call
 for(ActivityNode n : activityNodes)
 {
 if(n.isWaitingForInput())
 {
 n.processInput();
 break;
 }
 }

 // token passing loop
 while(true)
 {
 boolean progress = false;
 for(ActivityNode n : activityNodes)
 {
 progress |= n.next();

 // return in case of waiting for user input
 if(n.isWaitingForInput())
 {
 contextObject = n.getContextObject();
 viewName = n.getViewName();
 return;
 }

 // finish activity and return in case that the output parameter node has an object token
 else if(n == outputParameterNode && n.hasToken())
 {
 finished = true;
 contextObject = outputParameterNode.getObjectToken().getObject();
 viewName = exitNode;
 }

 // finish activity and return in case of reached activity final node
 else if(n instanceof ActivityFinalNode && n.hasToken())
 {
 finished = true;
 contextObject = inputParameter;
 viewName = entryNode;
 return;
 }
 }

 198

Model Driven Software Engineering for Web Applications

 // throw an exception if no progress has been made
 if(!progress) throw new ProcessActivityStallException();
 }
}

First the method processInput of the first activity node that was waiting for input in the last
step is called to process the user input that is now available in the user interaction object.
Then all activity nodes are notified to execute its behavior by calling the method next. If a
node then indicates that is waiting for input the method returns with the user interaction
object returned by this node. If a token arrives either at an activity output parameter node
or at an activity final node the execution of the process activity terminates and the method
returns. After a full loop over all activity nodes a progress must have been made. Then the
loop is repeated. Each activity node therefore has to indicate on returning from the method
next if it made a progress. If no progress has been made an exception is thrown to indicate
that the progress of the process activity has stalled.

A detailed example for the execution of processes in the runtime environment is given in
6.2.3.

5.5.2 Example

As already stated and in contrast to the content and presentation concerns of a Web appli-
cation, the process model is not transformed to code in a specific programming language
but to configuration data of the runtime environment. As explained in 5.1.3 this configura-
tion data has the form of XML bean nodes which represent the objects of the process run-
time environment and their properties as depicted in Figure 84 to Figure 87. On instantia-
tion of these configuration beans the runtime environment gets initialized with the avail-
able process activities which correspond to the process model. The following example
shows an excerpt from the serialized XML bean definition document process-conf.xml for
the process activity and the input activity parameter node of the process RemoveProject
depicted in Figure 57.

<bean class="uwe.runtime.process.ProcessActivity"
 id="ProcessActivity_DANUBIA_Process_RemoveProject_RemoveProject">
 <property name="name"><value>RemoveProject</value></property>
 <property name="processClass">
 <value>DANUBIA_Process_RemoveProject</value>
 </property>
 <property name="entryNode">
 <value>DANUBIA_Navigation_ProjectManager</value>

 199

Model Driven Software Engineering for Web Applications

 </property>
 <property name="activityNodes">
 <list>
 <ref bean="ActivityParameterNode _DANUBIA_Process
 _RemoveProject_RemoveProject_ProjectManager"></ref>
 …
 </list>
 </property>
 <property name="activityEdges">
 <list>
 …
 </list>
 </property>
 <property name="inputParameterNode">
 <ref bean="ActivityParameterNode_DANUBIA_Process
 _RemoveProject_RemoveProject_ProjectManager"></ref>
 </property>
</bean>

<bean class="uwe.runtime.process.ActivityParameterNode" id="ActivityParameterNode_DANUBIA
 _Process _RemoveProject_RemoveProject_ProjectManager">
 <property name="name"><value>ProjectManager</value></property>
 <property name="activity">
 <ref bean="ProcessActivity_DANUBIA_Navigation_RemoveProject_RemoveProject"></ref>
 </property>
 <property name="incoming"><list></list></property>
 <property name="outgoing"><list>…</list></property>
</bean>
…

5.5.3 Transformation Process2Conf

The transformation Process2Conf depicted in Figure 88 maps the process model to con-
figuration data for the process runtime environment. Therefore the transformation rules
defined in 5.1.3.2 are reused. For each class of the process runtime environment depicted
in Figure 84 to Figure 87 a transformation rule which specializes the rule NamedEle-
ment2Conf defined in 5.1.3.2 is responsible for mapping the corresponding model elements
from the process model to a bean node in the XML configuration model. Two basic rules
for mapping process activities and activity nodes are outlined in the following. The later is
an abstract rule that is specialized by sub rules. The rule inheritance hierarchy corresponds
to the class inheritance hierarchy of the classes for the process runtime environment de-
picted in Figure 84 to Figure 87. Finally, the resulting XML model is serialized to the

 200

Model Driven Software Engineering for Web Applications

XML bean definition document process-conf.xml as explained in 5.1.3. For the technical
details of this transformation see B.4.5.

ProcessActivity2Conf
ActivityNode2Conf
Pin2Conf
DecisionNodeOrMergeNode2Conf
ForkNodeOrJoinNode2Conf
CallOperationAction2Conf
UserAction2Conf
ActivityEdge2Conf

Process2Conf

XML Model
for Process

Configuration Data
Process Model

ProcessActivity2Conf
ActivityNode2Conf
Pin2Conf
DecisionNodeOrMergeNode2Conf
ForkNodeOrJoinNode2Conf
CallOperationAction2Conf
UserAction2Conf
ActivityEdge2Conf

Process2Conf

XML Model
for Process

Configuration Data
Process Model

Figure 88. Transformation Process2Conf

rule ProcessActivity2Conf extends NamedElement2Conf
{
 from el : UWE!ProcessActivity
 using
 {
 inputParameterNode : UWE!ActivityParameterNode =
 el.node->select(n | n.oclIsTypeOf(UWE!ActivityParameterNode) and
 n.incoming->size() = 0)->asSequence()->first();
 outputParameterNode : UWE!ActivityParameterNode =
 let ns : Set(UWE!ActivityParameterNode) =
 el.node->select(n | n.oclIsTypeOf(UWE!ActivityParameterNode) and
 n.outgoing->size() = 0) in if ns->size() = 0 then OclUndefined else
 ns->asSequence()->first() endif;
 …
 }
 to classAttr : XML!Attribute
 (
 name <- ‘class’,
 value <- ‘ProcessActivity’,
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'processClass', el.owner.qualifiedId());
 thisModule.CreateConfProperty(beanEl, ‘name’, el.name);
 thisModule.CreateConfProperty(beanEl, ‘activityNodes’, el.node->asSequence());
 thisModule.CreateConfProperty(beanEl, ‘activityEdges’, el.activityEdges);
 thisModule.CreateConfProperty(beanEl, ‘inputParameterNode’, inputParameterNode);
 if(not outputParameterNode.oclIsUndefined())
 {

 201

Model Driven Software Engineering for Web Applications

 thisModule.CreateConfProperty(beanEl, ‘outputParameterNode’,
 outputParameterNode);
 }
 }
 …
}

abstract rule ActivityNode2Conf extends NamedElement2Conf
{
 from el : UWE!ActivityNode
 to classAttr : XML!Attribute
 (
 name <- ‘class’,
 value <- ‘ActivityNode’,
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, ‘name’, el.name);

 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, ‘outgoing’, el.outgoing);

 thisModule.CreateConfProperty(beanEl, ‘incoming’, el.incoming’);
 }
}

5.6 Presentation

In this section the use of the Java Server Pages (JSP) technology for the presentation con-
cern is presented. Although JSPs are just one out of many possible technologies for the
presentation concern in combination with the Spring framework (see 5.1.1), JSPs are the
default presentation technology in Java Web platforms provided by the Tomcat JSP/Servlet
container.

Java Server Pages are a technology for dynamic Web pages which are processed in a
JSP/Servlet Web container. They allow the embedding of Java code into Web pages and
the use of special and possibly customized XML tags within Web pages which are defined
in tag libraries. Here the standard tag library named JavaServer Pages Standard Tag Li-
brary (JSTL) is used to access the content objects without the need for explicit Java code.
JSTL provides tags for common tasks needed for the implementation of Web applications
such as iterations or conditional constructs. Additionally, it provides an expression lan-
guage which is used for accessing the content objects without the need for explicit Java

 202

Model Driven Software Engineering for Web Applications

code, cf. 4.1.3. The following JSP page fragment gives an example about how JSTL can be
used. The current content object that should be displayed, i.e. the actual context, is acces-
sible in a variable with the name self provided by the Web container as described in 5.1.
Expressions in the unified expression language allow to access properties of the content
objects. The example page fragment produces an unnumbered list tag with a list item entry
containing the name for each project of the project list of a project manager content object.
The JSTL tag forEach (“c:” is just an XML namespace prefix) represents an iteration over
the collection given by the expression self.projects. For the tag out the Web container
evaluates the expression project.name and embeds the result into the Web page. For more
details about JSP and JSTL see [JSP].

 <c:forEach var=”project” items=”${self.projects}”>

 <c:out value=”${project.name}” />

 </c:forEach>

In the following sections first a simple metamodel for JSP pages is specified followed by
the results for the running example of this work. Then the transformation from the presen-
tation model to JSP pages and the corresponding serialization transformation to JSP code
are presented.

5.6.1 JSP Metamodel

A simple metamodel for Java Server Pages (JSP) is depicted in Figure 89. It is an exten-
sion of the XML metamodel presented in 5.1.3.1. The only JSP specific class is JSPDirec-
tive covering JSP directives of the (serialized) form “<%@ … %>”.

 203

Model Driven Software Engineering for Web Applications

Root
documentName : String

 Node
name : String
value : String

JSPDirective TextNodeAttribute Element

+children

*

+parent
0..1

Figure 89. JSP metamodel

5.6.2 Example

The following code sample shows an extract from the generated JSP model after serializa-
tion to code for the presentation class UserProject. The name of the presentation class was
mapped to the content of the title and the h2 tags. Further, for each text element a c:out tag
was generated to dynamically embed the value of the corresponding expression in the
page, such as for example the expression self.name which delivers the name of the corre-
sponding user project. For a more detailed example see 6.2.4.

<html>
 <head>
 <title>User Project</title>
 </head>
 <body>
 <div>
 <h2>User Project</h2>
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <c:out value="${self.name}"></c:out>
 </td>
 </tr>
 <tr>
 <td>Id:</td>
 <td>
 <c:out value="${self.id}"></c:out>
 </td>
 </tr>
 <tr>

 204

Model Driven Software Engineering for Web Applications

 <td>Description:</td>
 <td>
 <c:out value="${self.description}"></c:out>
 </td>
 </tr>
 </table>
 </div>
 </body>
</html>

5.6.3 Transformation Presentation2JSP

The transformation Presentation2JSP depicted in Figure 90 transforms the presentation
model to a JSP model representing Java Server Pages. It comprises three main rules which
are outlined in the following. The rule PresentationClass2JSP maps presentation classes to
the JSP model. Sub rules of this rule are responsible for mapping presentation classes for
specific associated node types, such as for example presentation classes that are associated
to navigation classes. The presentation properties owned by a presentation class are
mapped by the rule PresentationProperty2JSP. User interface elements are mapped by the
rule UIElement2JSP. Again, sub rules are responsible for mapping specific user interface
element types, such as for example text elements which are transformed by the rule
Text2JSP also outlined here. The resulting JSP model is then serialized to JSP pages which
can directly be executed in the proposed runtime environment without any modification by
the developer. For more details about this transformation see B.4.6.

PresentationClass2JSP
...
PresentationProperty2JSP
UIElement2JSP
...

Presentation2JSP

JSP ModelPresentation Model

PresentationClass2JSP
...
PresentationProperty2JSP
UIElement2JSP
...

Presentation2JSP

JSP ModelPresentation Model

Figure 90. Transformation Presentation2JSP

Rule PresentationClass2JSP

Each presentation class is mapped to a div element with two attributes class and style for
the specified CSS style for the presentation class. Within the div element first a node for
the caption of the presentation class is embedded. The corresponding tag name is derived
from the containment depth of the presentation class. For a root presentation class the tag

 205

Model Driven Software Engineering for Web Applications

h2 is generated, and for example for a presentation class that is contained within a root
presentation class the tag h3 is generated. The path of containing properties is queried by
the helper containingPropertyPath. Another helper formatTypeName is used to format the
name of a type for a better readability on the user interface. The caption for the presenta-
tion class ProjectManager is for example “Project Manager”. Following the caption node,
the transformation targets for all owned attributes as generated by the rule Presentation-
Property2JSP are embedded in the div tag. If the presentation class is a root presentation
class, i.e. if it is not contained in another presentation class, then the parent of the div tag is
assigned to be the result of the lazy rule RootPresentationClass2JSP. The rule Presenta-
tionClass2JSP is extended for specific node types in order to generate additional tags.

rule PresentationClass2JSP
{
 from pc : UWE!PresentationClass
 to pcBody : JSP!Element
 (
 name <- 'div',
 children <- Sequence { cssClassAttr, cssStyleAttr, captionNode, pc.ownedAttribute },
 parent <- if pc.containingClass().oclIsUndefined() then
 thisModule.RootPresentationClass2JSP(pc) else OclUndefined endif
),
 cssClassAttr : JSP!Attribute
 (
 name <- 'class',
 value <- if pc.cssClass.oclIsUndefined() then '' else pc.cssClass endif
),
 cssStyleAttr : JSP!Attribute
 (
 name <- 'style',
 value <- if pc.cssStyle.oclIsUndefined() then '' else pc.cssStyle endif
),
 captionNode : JSP!Element
 (
 name <- 'h' + (pc.containingPropertyPath()->size() + 2).toString(),
 children <- Sequence { captionTextNode }
),
 captionTextNode : JSP!TextNode
 (
 value <- pc.name.formatTypeName()
)
}

 206

Model Driven Software Engineering for Web Applications

Rule PresentationProperty2JSP

Each presentation property is mapped to a span node which serves as a container for map-
ping the type of the presentation property. The type of a presentation property is either a
user interface element or a presentation class. Thus, either the generated nodes for a user
interface element (see rule UIElement2JSP) or for a presentation class (see rule Presenta-
tionClass2JSP) are embedded in the span node.

rule PresentationProperty2JSP
{
 from pp : UWE!PresentationProperty
 to spanNode : JSP!Element
 (
 name <- 'span',
 children <- Sequence { pp.type }
)
}

Rule UIElement2JSP

Each user interface element is mapped to a span node with two attributes class and style
for the specified CSS style for the user interface element. This rule serves as a base rule for
specific user interface types, see for example the rule Text2JSP.

rule UIElement2JSP
{
 from ui : UWE!UIElement
 to uiBody : JSP!Element
 (
 name <- 'span',
 children <- Sequence { cssClassAttr, cssStyleAttr }
),
 cssClassAttr : JSP!Attribute
 (
 name <- 'class',
 value <- if ui.cssClass.oclIsUndefined() then '' else ui.cssClass endif
),
 cssStyleAttr : JSP!Attribute
 (
 name <- 'style',
 value <- if ui.cssStyle.oclIsUndefined() then '' else ui.cssStyle endif
)
}

 207

Model Driven Software Engineering for Web Applications

Rule Text2JSP

Each text element is mapped to a JSTL out tag (“c:” is the XML namespace prefix) for
dynamically retrieving the value of a navigation property. For more details about how the
expression elExpression is calculated see B.4.6.

rule Text2JSP extends UIElement2JSP
{
 from ui : UWE!Text
 using
 {
 elExpression : String = …;
 }
 to uiBody : JSP!Element
 (
 children <- Sequence { cssClassAttr, cssStyleAttr, cOutEl }
),
 cOutEl : JSP!Element
 (
 name <- 'c:out',
 children <- Sequence { valueAttr }
),
 valueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '${' + elExpression + '}'
)
}

5.6.4 Serialization to Code

The JSP model is transformed to executable code (i.e. text) with the ATL query JSP2Code
listed which is an extension of the query XML2Code presented in 5.1.3.3.

query JSP2Code = JSP!Root.allInstances()->collect(n | n.getChildren()->
 iterate(n; acc : String = '' | acc + n.toCode()).writeTo(‘jsp/’ + n.documentName));

helper context JSP!Element def : getAttributes() : Sequence(JSP!Attribute) =
 self.children->select(cn | cn.oclIsKindOf(JSP!Attribute));

 208

Model Driven Software Engineering for Web Applications

helper context JSP!Element def : getChildren() : Sequence(JSP!Node) =
 self.children->select(cn | not cn.oclIsKindOf(JSP!Attribute));

helper context JSP!Element def : toCode() : String =
 '<' + self.name + self.getAttributes()->iterate(n; acc : String = '' | acc + ' ' + n.name + '=\"' +
 n.value + '\"') + '>\n' + self.getChildren()->iterate(n; acc : String = '' | acc + n.toCode())
 + '</' + self.name + '>\n';

helper context JSP!TextNode def : toCode() : String =
 self.value;

helper context JSP!JSPDirective def : toCode() : String =
 '<%@ ' + self.name + ' ' + self.value + ' %>\n';

 209

6 CASE STUDY

This chapter demonstrates the results of the previous chapters by means of the DANUBIA
case study which was introduced in 1.3. Therefore, first the platform independent analysis
and design of the case study is presented which comprises the automatic and manual con-
struction of the analysis and design models. Then, the transition to the platform specific
implementation, which results in executable code, is described.

6.1 Platform Independent Analysis and Design

In this section the platform independent analysis and design activities for the development
of the case study, as described in chapter 4, are presented. At some places in the text of the
following sections screenshots are used to demonstrate the effect of design decisions and
model transformations, anticipating the final resulting Web pages.

6.1.1 Requirements

The development of the DANUBIA Web application introduced in 1.3 starts with the con-
struction of the requirements model as described in 4.2. The requirements model comprises
the analysis content model and the Web use case model. The analysis content model cap-
tures structure and data of the application, while the Web use case model captures the func-
tionality of the application. It is suggested to construct the analysis content model first, al-
though the appropriate order may depend on the concrete Web application type. Following,
for each analysis content class of the analysis content model the corresponding Web use
cases, which represent the functionality of the analysis content class, are developed.

6.1.1.1 Analysis Content

The analysis content model is a class model that captures structure and data of a Web ap-
plication. The functionality of the application is represented by Web use cases presented in
the next section, hence no operations should be present in the analysis content model. In

Model Driven Software Engineering for Web Applications

the following, first a textual description of the case study is given. Phrases written in italics
serve then to extract the analysis content model.

The main objective of the DANUBIA Web user interface is the management of environ-
mental projects, in short named projects in the following. For a project in general a set of
documents gives detailed information about the project, such as the objective of the pro-
ject, assumptions or results. Further, two different kinds of projects are distinguished, user
projects and validation projects.

A user project serves to examine certain questions, e.g. “how will the expected frequency
of the occurrence of extreme discharge at a gage P change within the next 100 years?”. For
further examination of such questions a collection of scenarios is managed by a user pro-
ject. Before the realization of scenarios the participating simulation components have to be
validated. For this purpose a validation project is used which comprises a collection of
simulations runs.

A scenario is based on a specific assumption in the context of the question of a user pro-
ject, e.g. “the mean temperature will increase by 3°C with a constant temperature gradient
within the next 100 years”. Please note that assumptions are only represented informally by
(textual) scenario descriptions. For each scenario either exactly one simulation can be run
or a set of simulations, a so called simulation ensemble. Additionally, a collection of
documents is managed for a scenario for documentation purposes.

For a simulation ensemble a set of statistically equivalent simulation runs can be executed.
For example a temperature increase of 3°C in 100 years can be realized by different consis-
tent meteorological data sets. Finally, a simulation run represents the executable unit of a
simulation.

The analysis content model is then constructed from this textual description. Additionally,
for the two different kinds of projects an inheritance relationship has been introduced. Fur-
ther, attributes (without type information) have been added, such as name and description
of a project and a scenario and author, title and abstract of a document. The resulting
analysis content model is depicted in Figure 91.

 212

Model Driven Software Engineering for Web Applications

SimulationEnsemble

ValidationProject

SimulationRun

ProjectManager

Scenario

-name
-descrip tion

UserProjectDocument

-author
-title
-abstract

Project

-projects*

-projectManager1

-name
-descrip tion

-documents*

-project

1

-simulationEnsemble

0..1

-scenario1

-validationProject

0..1

-scenarios*

-userProject1

-simulationRuns*

-validationPro ject0..1

-documents*

-scenario

0..1

-simula tionRun

0..1

-scenario

0..1
-simulationRuns*

-simulationEnsemble0..1

Figure 91. Analysis content model

6.1.1.2 Web Use Cases

Web use cases, i.e. specialized UML use cases, are used for modeling the required func-
tionality of a Web application, see 4.2. For each class from the analysis content model pre-
sented in the last section a use case diagram is constructed that comprises all of the corre-
sponding Web use cases which are placed inside the box representing the analysis content
class. Navigation and Web process use cases are distinguished. Navigation use cases repre-
sent navigation functionality. The target of the navigation functionality is represented by
an association between the navigation use case and the corresponding target class of the
analysis content model. Two specialized kinds Web processes are distinguished which later
allows the automatic derivation of the corresponding trivial workflows: simple processes
and edit processes.

 213

Model Driven Software Engineering for Web Applications

The Web use cases for the project manager are depicted in Figure 92. The corresponding
analysis content class is represented as a box that contains its use cases. The Web process
Add Project expresses that the user can add new projects. The resulting project after exe-
cuting the Web process is notated as the content class Project that is associated to the use
case. The Web process Add Project is not a simple process because it requires a dedicated
workflow in which the user first to has to decide which kind of project he wants to add.
Then he should enter exactly the information necessary for the selected kind of project.
The simple process Remove Project expresses that the user can remove a project. The
navigation use case View Projects means that the user can navigate to the list of projects,
represented by the association to the corresponding content class.

For projects in general the user wants to add, remove and view the corresponding docu-
ments as depicted in Figure 93. For user projects scenarios can be added, removed and
viewed. Additionally, the user can navigate to the corresponding validation project and the
user can edit the user project as depicted in Figure 94.

ProjectManager

<<simple process>>
Remove Project

<<web process>>
Add Project

<<navigation>>
View Projects

ProjectManager

DanubiaUser

Project

Project

Figure 92. Web use cases for content class ProjectManager

 214

Model Driven Software Engineering for Web Applications

Project

<<simple process>>
Remove Document

<<simple process>>
Add Document

<<navigation>>
View Documents

ProjectManager

DanubiaUser

Document

Document

Figure 93. Web use cases for content class Project

UserProject

<<navigation>>
View Validation Project

<<simple process>>
Remove Scenario

<<simple process>>
Add Scenario

<<edit>>
Edit User Project

<<navigation>>
View Scenarios

ValidationProject

ProjectManager

DanubiaUser

Scenario

Figure 94. Web use cases for content class UserProject

6.1.2 Content

The content model of a Web application captures the structure and the functionality of a
Web application, neglecting the navigation, process and presentation aspects as discussed
in 4.3. It is, in a first step, derived automatically from the requirements model, i.e. the

 215

Model Driven Software Engineering for Web Applications

analysis content model and the Web use case model presented in the last section. In a sec-
ond step this model is refined by the user.

6.1.2.1 Results of Transformation Requirements2Content

The requirements model presented in the previous section is automatically transformed to
the content model by the transformation Requirements2Content presented in 4.3.2. For
each simple process in the Web use case model an operation is generated by the rule Sim-
pleProcess2Operation. If a target content class for the simple process is specified then a
corresponding return type is assigned to this operation. The resulting operation is inte-
grated with the analysis content class by the rule Content-
Class2ContentClassWithOperations. An overview of the transformation is depicted in
Figure 95. The other Web use case types are taken into account as presented in the follow-
ing sections.

ContentClass2ContentClassWithOperations
SimpleProcess2Operation

Requirements2ContentAnalysis
Content Model

Content Model

Web Use Case
Model

Requirements Model

ContentClass2ContentClassWithOperations
SimpleProcess2Operation

Requirements2ContentAnalysis
Content Model

Content Model

Web Use Case
Model

Requirements Model

Figure 95. Transformation Requirements2Content

The resulting content model is depicted in Figure 96. For instance, for the simple process
Remove Project depicted in Figure 92 the operation removeProject was added to the con-
tent class ProjectManager.

 216

Model Driven Software Engineering for Web Applications

Scenario

ProjectManager

+removeProject()

-name
-description

+addSimula tionRun() : S imu lationRun
+addSimula tionEnsemble() : SimulationEnsemble
+removeSimulationRun()
+removeSimulationEnsemble()
+addDocument() : Document
+removeDocument()

SimulationEnsemble

+addSimulationRun() : Simula tionRun
+removeSimulationRun()

ValidationProject

+addSimulationRun() : Simula tionRun
+removeSimulationRun()

Project

-pro jects*

-projectManager1

-name
-description

+addDocument() : Document
+removeDocument()

UserProject

+addScenario () : Scenario
+removeScenario()

SimulationRun

+startSimulation()
+stopSimulation()

Document

-author
-title
-abstract

-documents*

-project

1

-simulationEnsemble

0..1

-scenar io1

-documents*

-scenar io

0..1

-simulationRun

0..1

-scenar io

0..1

-validationProject

0..1

-scenarios*

-userPro ject1

-simulationRuns*

-va lidationProject0..1

-simulationRuns*

-simulationEnsemble0..1

Figure 96. Content model derived by the transformation Requirements2Content

6.1.2.2 Manual Refinement

The automatically derived content model has to be manually refined by the developer as
described in 4.3.3. The manually refined content model for the case study is depicted in
Figure 97. The following modifications of the automatically derived content model have
been made:

• Addition of id attributes and the attribute state for SimulationRun to represent the
state of a simulation run

 217

Model Driven Software Engineering for Web Applications

• Specification of the type for all attributes, including the specification of the enu-
meration SimulationState

• Specification of all multi-valued association ends as ordered properties

• Specification of parameters for all automatically derived operations to represent the
data a user has to provide for the invocation of the operation, for example the pa-
rameter project for the method removeProject of the content class ProjectManager
to indicate that the user has to provide the project that should be removed

Project

ProjectManager

+removeProject(project : Project)

{ordered}
-projects*

-projectManager1

Document <<enumeration>>
SimulationState-id : String

-author : String
-title : String
-abstract : S tring

-id : S tring
-name : S tring
-description : String

+addDocument(author : String, title : S tring , abstract : String) : Document
+removeDocument(document : Document)

Scenario

-id : String
-name : String
-description : String

+addSimulationRun() : Simula tionRun
+addSimulationEnsemble() : S imu lationEnsemble
+removeSimulationRun()
+removeSimulationEnsemble()
+addDocument(author : String, title : String, abstract : String) : Document
+removeDocument(document : Document)

UserProject

+addScenario(name : Str ing, description : S tring) : Scenario
+removeScenario(scenario : Scenario)

ValidationProject

+addSimulationRun() : SimulationRun
+removeSimula tionRun(simulationRun : S imulationRun)

SimulationEnsemble

+addSimulationRun() : SimulationRun
+removeSimula tionRun(simulationRun : S imulationRun)

INITIALIZING

ABORTED
RUNNING

FINISHED

READY

ERROR

-documents
{ordered}

*

-project

1

-documents
{ordered}

*

-scenario0..1

-va lidationProject

0..1

SimulationRun

-scenarios
{ordered}*

-userProject1

-simulationRuns
{ordered}*

-validationProject0..1

-state : SimulationState
- id : S tring

-simulationRun

0..1

-scenario

0 ..1
+startSimulation()
+stopSimulation()

-simulationRuns
{ordered}

*

-simulationEnsemble0 ..1

-simulationEnsemble

0..1

-scenario1

Figure 97. Manually refined content model

 218

Model Driven Software Engineering for Web Applications

6.1.3 Navigation

As presented in detail in 4.3.3, the objective of navigation modeling is to specify the static
functionality of a Web application, i.e. a static navigation view of the content. Nodes rep-
resent information from the content model and links specify the navigation paths between
nodes. In the following three sections the stepwise construction of the navigation model is
demonstrated for the case study. The first step comprises the initial derivation of the navi-
gation model from the requirements model and the content model. In the following two
steps, first indices and then menus are added to the navigation model. Each step comprises
the automatic derivation by a transformation as well as the manual refinement by the de-
veloper. Note that with the exception of assigning the home node of the application, man-
ual refinement of the navigation model is not necessary for automatically deriving an ex-
ecutable navigation model.

6.1.3.1 Navigation Space

The navigation space model is the starting point for the construction of the navigation
model. It provides a first navigational view of the content model by defining navigation
classes and navigation links. It is automatically derived from the requirements model and
the content model. This derived navigation model has then to be refined by the developer.

 219

Model Driven Software Engineering for Web Applications

6.1.3.1.1 Results of Transformation RequirementsAndContent2Navigation

The transformation RequirementsAndContent2Navigation presented in 4.4.2.1 automati-
cally generates the navigation space model from the requirements model and the content
model. For each content class from the content model, which is either the content class or
the target of a navigation use case from the requirements model, a navigation class is con-
structed by the rule ContentClass2NavigationClass. Further, for each attribute in the con-
tent model a corresponding navigation property is generated by the rule Prop-
erty2NavigationProperty. Properties in the content model which are navigable (in terms of
UML properties) ends of associations are mapped to navigation links by the rule Associa-
tionProperty2NavigationLink.

ContentClass2NavigationClass
Property2NavigationProperty
AssociationProperty2NavigationLink

RequirementsAndContent2Navigation

Navigation Space
Model

Manually Refined
Content Model

Requirements
Model

ContentClass2NavigationClass
Property2NavigationProperty
AssociationProperty2NavigationLink

RequirementsAndContent2Navigation

Navigation Space
Model

Manually Refined
Content Model

Requirements
Model

Figure 98. Transformation RequirementsAndContent2Navigation

The automatically derived initial navigation space model for the case study is depicted in
Figure 99.

 220

Model Driven Software Engineering for Web Applications

<<navigation class>>
SimulationRun

-id : String
-state : S imulationSta te

<<naviga tion class>>
ValidationProject

<<navigation class>>
SimulationEnsemble

<<navigation class>>
Scenario

-id : String
-name : String
-description : String

<<navigation class>>
Project

-id : String
-name : String
-description : S tring

<<navigation class>>
Document

-id : String
-author : String
-title : String
-abstract : String

<<navigation class>>
UserProject

<<navigation class>>
ProjectManager

<<naviga tion link>>

-projects*

<<navigation link>>

-documents

*

<<naviga tion link>>

-documents*

<<navigation link>>

-validationProject

0 ..1

<<navigation link>>

-scenarios*

<<navigation link>>

-simulationRuns*

<<navigation link>>

-simulationRun

0..1

<<navigation link>>

-simulationRuns*

<<navigation link>>

-simula tionEnsemble

0..1

Figure 99. Navigation space model derived by the transformation
RequirementsAndContent2Navigation

6.1.3.1.2 Manual Refinement

The initial navigation space model for the case study presented in the last section was
manually refined, resulting in the navigation model depicted in Figure 100. First, the navi-
gation class ProjectManager was designated as entry point of the Web application by set-
ting the isHome meta property. Second, back navigation links were added to allow the user
to navigate back to each navigation class.

 221

Model Driven Software Engineering for Web Applications

<<navigation class>>
ValidationProject

<<navigation class>>
SimulationEnsemble

<<navigation class>>
SimulationRun

<<navigation class>>
ProjectManager

{isHome}

-id : String
-state : S imulationSta te

<<navigation class>>
UserProject

<<navigation class>>
Scenario

-id : String
-name : String
-description : String

<<navigation class>>
Project

-id : String
-name : String
-description : S tring

<<navigation link>>

-projectManager1

<<navigation link>>
-projects*

<<navigation class>>
Document

<<navigation link>>

-documents

*

-id : String
-author : String
-title : String
-abstract : String

<<navigation link>>

-pro ject

1

<<navigation link>>

-documents*

<<navigation link>>

-validationProject

0 ..1

<<navigation link>>

-scenario

0..1

<<navigation link>>

-simula tionEnsemble

0 ..1

<<navigation link>>

-scenar io0..1

<<navigation link>>

-simulationRun

0 ..1

<<navigation link>>

-scenario

0 ..1

<<navigation link>>

-simula tionEnsemble0..1

<<navigation link>>

-simulationRuns*

<<navigation link>>

-simula tionRuns*

<<navigation link>>

-validationProject0..1

<<naviga tion link>>

-scenarios*

<<navigation link>>

-userProject1

Figure 100. Manually refined navigation space model

6.1.3.2 Addition of Indices

The manually refined navigation space model presented in the last section still comprises
multi-valued ends of navigation links between navigation classes. The transformation
AddIndices presented in 4.4.3.1 inserts index access primitives between the corresponding
navigation classes.

 222

Model Driven Software Engineering for Web Applications

6.1.3.2.1 Results of Transformation AddIndices

The transformation AddIndices depicted in Figure 101 comprises only one transformation
rule NavigationProperty2Index that transforms each multi-valued navigation property
which is member of a navigation link to an index access primitive.

NavigationProperty2Index

AddIndices
Navigation Model

With Added Indices
Manually Refined
Navigation Space

Model
NavigationProperty2Index

AddIndices
Navigation Model

With Added Indices
Manually Refined
Navigation Space

Model

Figure 101. Transformation AddIndices

The resulting navigation model with automatically added indices derived from Figure 100
is depicted in Figure 102. Note that in order to avoid name collisions the transformation
AddIndices automatically prepends the name of the source navigation class to a generated
index if otherwise a name collision in the same namespace would occur, for example Pro-
jectDocumentIndex and ScenarioDocumentIndex instead of two colliding DocumentIndex
indices. This may result in rather long automatically generated names, but the developer
still may change the name to a shorter name in the following manual refinement step. In
the case study the automatically generated names are left unchanged in order to stress the
systematic evolution of model elements.

 223

Model Driven Software Engineering for Web Applications

<<index>>
ScenarioDocumentIndex

<<index>>
ProjectDocumentIndex

<<index>>
SimulationEnsemble
SimulationRunIndex

<<navigation class>>
SimulationRun

<<navigation class>>
ValidationProject

<<navigation class>>
SimulationEnsemble

<<index>>
ValidationProject

SimulationRunIndex

<<navigation class>>
UserProject

<<naviga tion class>>
Project

<<navigation class>>
Document

<<naviga tion class>>
ProjectManager

{isHome}

<<navigation class>>
Scenario

<<index>>
ScenarioIndex

<<index>>
ProjectIndex

<<navigation link>>

-simulationEnsemble

0..1

<<naviga tion link>> -project

1

<<navigation link>>

-documents

1

<<navigation link>>

-scenario
0 ..1

<<navigation link>>

1

<<navigation link>>

-simulationRun

0..1

<<navigation link>>

-scenario

0..1

<<navigation link>>

-va lidationProject

0..1

<<navigation link>>

-scenario

0..1

<<navigation link>>

-simulationEnsemble0..1

<<navigation link>>

-projectManager1

<<navigation link>>

-userProject1

<<navigation link>>

-validationPro ject0..1

<<navigation link>>

*

<<navigation link>>

-documents

1

<<navigation link>>

-pro jects1

<<navigation link>>

-scenarios1

<<naviga tion link>>

*

<<navigation link>>

*

<<navigation link>>

*

<<naviga tion link>>

-simulationRuns1

<<naviga tion link>>

-simulationRuns1

<<naviga tion link>>

*

Figure 102. Navigation model with added indices derived by the transformation AddIndices

6.1.3.2.2 Manual Refinement

In order to remove the number of navigation links some of the automatically derived navi-
gation links to indices were replaced by associations with composite aggregation kind as
depicted in Figure 104. This results in compound nodes for:

• ProjectIndex: part of ProjectManager

 224

Model Driven Software Engineering for Web Applications

• ScenarioIndex: part of UserProject

• ValidationProjectSimulationRunIndex: part of ValidationProject

• SimulationEnsembleSimulationRunIndex: part of SimulationEnsemble

In Figure 103 the differences between the final results of the automatically derived and the
manually refined addition of the index ProjectIndex are demonstrated. In the former case
an anchor links to the page for the index and in the latter case the page for the index is in-
cluded in the page for the project manager.

Figure 103. Differences between the automatically derived (above) and the manually refined
(below) addition of index ProjectIndex

 225

Model Driven Software Engineering for Web Applications

<<index>>
ScenarioDocumentIndex

<<index>>
ProjectDocumentIndex

<<navigation class>>
SimulationEnsemble

<<index>>
SimulationEnsemble
SimulationRunIndex

<<navigation class>>
SimulationRun

<<navigation class>>
ValidationProject

<<index>>
ValidationProject

SimulationRunIndex

<<navigation class>>
Scenario

<<naviga tion class>>
UserProject

<<navigation class>>
Document

<<navigation class>>
ProjectManager

{isHome}

<<navigation class>>
Project

<<index>>
ScenarioIndex

<<index>>
ProjectIndex

<<navigation link>>

-simulationEnsemble

0..1

<<navigation link>> -project

1

<<navigation link>>

-documents

1

<<navigation link>>

-scenario
0..1

<<navigation link>>

1

<<naviga tion link>>

-simula tionRun

0..1

<<naviga tion link>>

-scenario

0..1

<<naviga tion link>>

-validationProject

0..1

<<navigation link>>

-scenario

0..1

<<navigation link>>

-simulationEnsemble0..1

<<navigation link>>

-projectManager1

<<navigation link>>

-valida tionProject0..1

<<navigation link>>

-userPro ject1

<<navigation link>>

*

<<navigation link>>

-documents

1

-projects1

-scenarios1

<<navigation link>>

*

<<navigation link>>

*

<<navigation link>>

*

-simulationRuns1

-simulationRuns1

<<navigation link>>

*

Figure 104. Navigation model after manual refining the automatically added indices

6.1.3.3 Addition of Menus

After the addition of indices as described in the last section, menus are added to the navi-
gation model to organize the outgoing links of navigation classes. The transformation
AddMenus presented in 4.4.4.1 automatically adds a menu to each navigation class with
outgoing links. The resulting navigation model can then be manually refined optionally.

 226

Model Driven Software Engineering for Web Applications

6.1.3.3.1 Results of Transformation AddMenus

The transformation AddMenus comprises two transformation rules as depicted in Figure
105. Each navigation class with at least one outgoing link (this condition includes super
navigation classes as well), or if for the corresponding content class at least one Web proc-
ess use case is defined, is transformed to a navigation class with a menu by the rule Navi-
gationClass2NavigationClassWithMenu. The second rule NavigationProp-
erty2MenuProperty transforms each navigable (in terms of UML properties) navigation
property of an outgoing link to a corresponding property of the menu created by the former
rule.

NavigationClass2NavigationClassWithMenu
NavigationProperty2MenuProperty

AddMenus
Navigation Model

With Added Menus
Manually Refined
Navigation Model

With Added Indices

NavigationClass2NavigationClassWithMenu
NavigationProperty2MenuProperty

AddMenus
Navigation Model

With Added Menus
Manually Refined
Navigation Model

With Added Indices

Figure 105. Transformation AddMenus

The resulting generated menus for the navigation classes Project and UserProject are de-
picted in Figure 106. The inheritance relationship between a project and a user project was
mapped to a corresponding inheritance relationship between the generated menus.

<<navigation class>>
ProjectManager

<<index>>
ProjectDocumentIndex

<<navigation class>>
UserProject

<<navigation class>>
ValidationProject

<<navigation class>>
Project

<<menu>>
ProjectMenu

<<menu>>
UserProjectMenu

<<navigation link>>

-validationPro ject

0..1

<<navigation link>>

-documents

1

<<navigation link>>

-projectManager

1

1

1

Figure 106. Navigation model with added menus derived by the transformation AddMenus

6.1.3.3.2 Manual Refinement

The resulting navigation model was not further refined manually.

 227

Model Driven Software Engineering for Web Applications

6.1.4 Process

Web processes represent the dynamic aspects of a Web application. Processes are inte-
grated in the navigation model by the means of process classes and process links. On the
other hand the behavior of Web processes is defined with the process flow model, i.e.
process activities. The data required by process activities is captured by the process data
model which is developed concurrently with the development of the process flow model.
For more details about Web process modeling see 4.5.

6.1.4.1 Process Integration

The process classes and process links needed for the integration of processes in the naviga-
tion model are derived from the corresponding Web process use cases in the requirements
model. A process link leading to a process class represents the invocation of a process, and
a process link leaving a process class represents the presentation of the result of the proc-
ess.

6.1.4.1.1 Results of Transformation ProcessIntegration

As described in 4.5.1.2, the rule Menu2IntegratedMenu of the transformation ProcessInte-
gration creates a designated process class for each Web process use case in the require-
ments model, see Figure 107. Additionally, an entry process link from the menu for the
content class of the Web process use case leading to this process class is generated. If a
target is defined for the Web process use case then also an exit process link from the proc-
ess class to the navigation class created for the target content class is generated.

Menu2IntegratedMenu

ProcessIntegration

Navigation Model
With Added Menus

Navigation Model
With Integrated

Processes

Requirements
Model

Menu2IntegratedMenu

ProcessIntegration

Navigation Model
With Added Menus

Navigation Model
With Integrated

Processes

Requirements
Model

Figure 107. Transformation ProcessIntegration

The following figures depict the process classes and links automatically generated for the
Web process use cases for the content classes ProjectManager, Project and UserProject in
the requirements model.

 228

Model Driven Software Engineering for Web Applications

<<menu>>
ProjectManagerMenu

<<process class>>
AddProject

<<naviga tion class>>
Project

<<process class>>
RemoveProject

<<process link>> 1

<<process link>> 1 <<process link>> 1

Figure 108. Automatically derived process classes and links for content class ProjectManager

<<process class>>
ProjectRemoveDocument

<<process class>>
ProjectAddDocument

<<navigation class>>
Document

<<menu>>
ProjectMenu

<<process link>> 1

<<process link>> 1

<<process link>> 1

Figure 109. Automatically derived process classes and links for content class Project

<<process class>>
RemoveScenario

<<menu>>
UserProjectMenu

<<navigation class>>
Scenario

<<process class>>
AddScenario

<<process class>>
EditUserProject

<<process link>> 1

<<process link>> 1

<<process link>> 1

<<process link>> 1

Figure 110. Automatically derived process classes and links for content class UserProject

6.1.4.1.2 Manual Refinement

A manual refinement of the automatically generated entry process links was necessary to
ensure that processes can only be invoked when certain conditions are fulfilled. As dis-

 229

Model Driven Software Engineering for Web Applications

cussed in 4.5.1.3, guard conditions of links have to be added manually using the expression
language presented in 4.1.3. The following guards were defined for the case study, see the
referenced figures for the corresponding expressions:

• The process RemoveProject can only be invoked when the list of projects of a pro-
ject manager is not empty, see Figure 111

• The process ProjectRemoveDocument can only be invoked when the list of docu-
ments of a project is not empty, see Figure 112

• The process RemoveScenario can only be invoked when the list of scenario of a
user project is not empty, see Figure 113

<<menu>>
ProjectManagerMenu

<<process class>>
AddProject

<<naviga tion class>>
Project

<<process class>>
RemoveProject

<<process link>>

{guard = not empty self .projects }

1

<<process link>> 1 <<process link>> 1

Figure 111. Manually refined process classes and links for content class ProjectManager

<<process class>>
ProjectRemoveDocument

<<process class>>
ProjectAddDocument

<<navigation class>>
Document

<<menu>>
ProjectMenu

<<process link>> 1

<<process link>>

{guard = not empty self .documents}

1

<<process link>> 1

Figure 112. Manually refined process classes and links for content class Project

 230

Model Driven Software Engineering for Web Applications

<<process class>>
RemoveScenario

<<menu>>
UserProjectMenu

<<navigation class>>
Scenario

<<process class>>
AddScenario

<<process class>>
EditUserProject

<<process link>> 1

<<process link>> 1

<<process link>>

{guard = not empty self .scenarios}

1

<<process link>> 1

Figure 113. Manually refined process classes and links for content class UserProject

6.1.4.2 Process Data and Flow

For each Web process a process activity has to be specified which defines the control and
data flow of the process. Further, for each user action of a process activity a process data
class has to be defined to capture the data the user has to enter for continuing the execution
of the user action. The process flow and the process data models are usually developed
concurrently by adding a corresponding process class to the process data model when add-
ing a user action to the process flow model.

6.1.4.2.1 Results of Transformation CreateProcessDataAndFlow

As presented in 4.5.2.2, the transformation CreateProcessDataAndFlow depicted in Figure
114 automatically generates the process data and the process flow for all Web process use
cases from the requirements model. The data of a process is captured by process data
classes and the flow of a process is represented by a process activity which is owned by the
designated process class in the navigation model with integrated processes presented in the
last section. The transformation comprises three transformation rules which are illustrated
in the following.

 231

Model Driven Software Engineering for Web Applications

CreateProcessDataAndFlowForWebProcess
CreateProcessDataAndFlowForSimpleProcess
CreateProcessDataAndFlowForEdit

CreateProcessDataAndFlow

Requirements
Model

Process Flow
Model

Process Data
Model

Process Model

Navigation Model
With Integrated

Processes

Content
Model

CreateProcessDataAndFlowForWebProcess
CreateProcessDataAndFlowForSimpleProcess
CreateProcessDataAndFlowForEdit

CreateProcessDataAndFlow

Requirements
Model

Process Flow
Model

Process Data
Model

Process Model

Navigation Model
With Integrated

Processes

Content
Model

Figure 114. Transformation CreateProcessDataAndFlow

The rule CreateProcessAndDataFlowForWebProcess generates the process data and flow
for complex processes, i.e. neither edit processes nor simple processes. Only the parame-
ters and the activity parameter nodes of the corresponding process activity can be gener-
ated, as in the case of the Web process AddProject, see Figure 115. The input activity pa-
rameter node ProjectManager receives an object token of type ProjectManager, which
corresponds to the content class associated to the source of the incoming process link lead-
ing to the process. On the other hand, the output activity parameter node Project has to re-
ceive an object of type Project, corresponding to the content class associated to the target
of the outgoing process link leaving the process. Thus, the resulting process flow is incom-
plete and it has to be refined by the developer as presented in the next section.

For simple processes the complete process flow and data is generated by the rule Create-
ProcessAndDataFlowForSimpleProcess. The generated model elements for the simple
processes RemoveProject, AddScenario and StartSimulation are depicted in Figure 116 to
Figure 118. The process AddScenario serves as an example for the generated model ele-
ments in the following. It starts with the input activity parameter node that receives a user
project object token for the user project from which the process was invoked, see Figure
117. This token is duplicated by a fork node. One of these duplicated tokens provides the
target input pin for the invocation of a call operation action (see below). The other token
triggers the user action AddScenarioInput for querying input from the user as represented
by the associated process data class AddScenarioInput. When the user has finished entering
the two data fields corresponding to the two attributes name and description of the process
data class the values of these fields are placed at the two corresponding output pins of the
user action. These two output pins are connected with two corresponding input pins of the
call operation action addScenario. The input pins correspond to the parameters of the op-
eration addScenario in the content model, cf. Figure 97. After the invocation of the opera-
tion on the object provided by the target input pin, the result of the operation call is avail-

 232

Model Driven Software Engineering for Web Applications

able at the scenario output pin, and it is transferred to the output activity parameter node.
With the availability of an object token at the output parameter node the process terminates
and the resulting scenario object is shown to the user.

For edit processes the complete process flow and data is generated by the rule CreateProc-
essAndDataFlowForEdit as well. An example for the edit process EditUserProject is de-
picted in Figure 119. The process flow starts with the input activity parameter node that
receives a user project object token for the user project which should be edited. This object
token provides the data for the input pin of the user action EditUserProjectInput to deter-
mine which object should be edited. As represented by the corresponding process data
class EditUserProjectInput, the user can modify the attributes of the user project corre-
sponding to the attributes of the process data class name, description and id. After the
completion of the input a control flow reaches the activity final node and the process ter-
minates.

ProjectManager : Projec tManager

Project : P rojec t

Figure 115. Automatically derived incomplete process flow for web process AddProject

<<process class>>
RemoveProjectInput

ProjectManager : ProjectManager

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

<<process class>>
RemoveProject

1

-project : Project

Figure 116. Automatically derived process data and flow for simple process RemoveProject

 233

Model Driven Software Engineering for Web Applications

<<process class>>
AddScenarioInput

UserProject : UserProject

Scenario : Scenario

<<user action>>
AddScenarioInput

name description

addScenario
ta rget scenario

name
description

<<process class>>
AddScenario

1

-name : String
-description : String

Figure 117. Automatically derived process data and flow for simple process AddScenario

SimulationRun : SimulationRun

startSimulation

target

Figure 118. Automatically derived process flow for simple process StartSimulation

 234

Model Driven Software Engineering for Web Applications

<<process class>>
EditUserProjectInput

<<process class>>
EditUserProject

1

UserProject : UserProject

<<user action>>
EditUserProjectInput

userProject

-name : String
-descrip tion : String
-id : String

<<process class>>
contentClass = DANUBIA::Content::UserProject

Figure 119. Automatically derived process data and flow for edit process EditUserProject

6.1.4.2.2 Manual Refinement

For complex processes, i.e. neither simple processes nor edit processes, the process data
and flow has to be completely defined by the developer, with exception of the automati-
cally generated parameters and activity parameter nodes. In Figure 120 the manually de-
fined process flow for the process AddProject is depicted. It comprises three user actions
and two call operation actions. The first user action ProjectKindInput is used to query
which kind of project the user wants to add to the project list. Depending on the output of
the user action, which is represented by an enumeration type (see below), either the user
action AddValidationProjectInput or AddUserProjectInput is executed to query the pa-
rameters for the subsequent call operation action addValidationProject or addUserProject,
respectively. Note that these two call operation actions require different parameters, which
have to be provided by the corresponding user actions. Further, the user action AddUser-
ProjectInput requires an input pin for the selection of a validation project from a collection
of validation projects (see below). After the termination of either call operation action the
corresponding project object is passed through a merge node to the output activity parame-
ter node. Taking advantage of the dynamic navigation feature of this approach, either the
page for a validation project or for a user project is then shown to the user.

The process data required for the process flow of the process AddProject is depicted in
Figure 121. For each user action a process class was defined. The process class Pro-
jectKindInput captures the selection of a project kind. Therefore a special enumeration type
ProjectKind was defined. The process class AddValidationProjectInput corresponds to the
parameters of the operation addValidationProject and therefore two attributes of type
String are required. For the operation addUserProject an additional attribute validation-

 235

Model Driven Software Engineering for Web Applications

Project is required for the process class AddUserProjectInput. The selection of a validation
project is optional, hence the multiplicity of the attribute is 0..1. Additionally, a rangeEx-
pression has to be defined for attributes which are neither of primitive type nor enumera-
tions, to express in terms of an expression in the expression language the collection from
which the value of the attribute should be chosen. In this case the collection is given be the
property validationProjects of the content class given be the specified contentClass for the
process class (see below).

Additionally, the definition of the general Web process AddProject requires an extension
of the content model as depicted in Figure 122. On the one hand the operations addValida-
tionProject and addUserProject, that are invoked by the introduced call operation actions,
have to be added to the content class ProjectManager. On the other hand a derived attrib-
ute validationProjects has to be introduced which is used for the selection of a validation
project. Note that the used expression language is not expressive enough to express the
value of this attribute directly. When generating code for the content model a getter opera-
tion getValidationProjects is generated that has to be completed by the developer to return
the set of available validation projects.

For simple processes which require the input of a value other than a primitive type or an
enumeration, the automatically derived process data has to be refined by the developer in
order to define the corresponding rangeExpression property as already explained above. In
the case study this is the case for all simple processes for removing an object, such as for
example the process RemoveProject as depicted in Figure 123. Additionally, for all those
processes it was chosen to add a further user action to confirm the remove action. The in-
put is represented by a particular process class which uses the special enumeration type
YesNoEnum. Depending on the output of this confirm user action either the corresponding
call operation action is triggered or the process terminates because a token reaches the ac-
tivity final node directly.

Edit processes do not require manual refinement, but for the case study it was chosen not
to let the user edit all attributes of the corresponding content class. Therefore, the auto-
matically generated attribute id was removed from the automatically generated process
classes, for instance for the edit process EditUserProject as depicted in Figure 125.

 236

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

addUserProject

targe t
result

name description validationProject

<<user action>>
AddUserProjectInput

descriptionname validationProject

projectManager

addValidationProject

targe t

name description

result

<<user action>>
AddValidationProject Input

name description

<<user action>>
ProjectKindInput

projectKind

Project : Project

 [va lidationProject] [userPro ject]

Figure 120. Manually refined process flow for process AddProject

 237

Model Driven Software Engineering for Web Applications

<<process class>>
AddUserProject Input

<<process class>>
contentClass = DANUBIA::Content::Pro jectManager

<<process class>>
AddProject

-name : String
-description : String
-validationProject : Valida tionProject [0..1]

<<process class>>
AddValidationProjectInput

-name : String
-descrip tion : String

-projectKind : ProjectKind

<<process class>>
ProjectKindInput

<<enumeration>>
ProjectKind

validationProject
userProject

<<process property>>
rangeExpression = self.validationPro jects

11 1

Figure 121. Manually specified process data for process AddProject

ProjectManager

-/validationProjects : Val idationProject [*]

+addValidationProject(name : String, description : Str ing) : Va lidationProject
+addUserProject(name : String, description : String, validationProject : ValidationPro ject) : UserProject
+removeProject(project : P roject)

Figure 122. Refined content model for process AddProject

 238

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 123. Manually refined process flow for process RemoveProject

<<process class>>
Conf irmRemoveProjectInput

-decision : YesNoEnum

<<process class>>
RemoveProjectInput

-project : Project

<<process class>>
RemoveProject

<<enumeration>>
YesNoEnum

yes
no

<<process class>>
contentClass = DANUBIA::Content::ProjectManager

<<process property>>
rangeExpression = self.projects

1 1

Figure 124. Manually refined process data for process RemoveProject

 239

Model Driven Software Engineering for Web Applications

<<process class>>
EditUserProjectInput

<<process class>>
EditUserProject

1

-name : String
-descrip tion : String

<<process class>>
contentClass = DANUBIA::Content::UserProject

Figure 125. Manually refined process data for process EditUserProject

6.1.5 Presentation

The presentation model defines the layout for the underlying navigation and process mod-
els, as presented in 4.6. Presentation classes represent Web pages and are composed of user
interface elements and other presentation classes.

6.1.5.1 Results of Transformation NavigationAndProcess2Presentation

The transformation NavigationAndProcess2Presentation depicted in Figure 126 automati-
cally derives a presentation model from the navigation model and the process model, see
4.6.2. For navigation classes, menus and indices in the navigation model a presentation
class is constructed by the rules NavigationClass2PresentationClass, Menu2Presen-
tationClass and Index2PresentationClass. The rule ProcessClass2PresentationClass cre-
ates a presentation class for each process class in the process model. For each attribute of a
node a corresponding presentation property with the type of a user interface element is cre-
ated by the former rules.

 240

Model Driven Software Engineering for Web Applications

NavigationClass2PresentationClass
Menu2PresentationClass
Index2PresentationClass
ProcessClass2PresentationClass

NavigationAndProcess2Presentation

Process Model

Navigation Model
With Integrated

Processes
Presentation

Model

NavigationClass2PresentationClass
Menu2PresentationClass
Index2PresentationClass
ProcessClass2PresentationClass

NavigationAndProcess2Presentation

Process Model

Navigation Model
With Integrated

Processes
Presentation

Model

Figure 126. Transformation NavigationAndProcess2Presentation

A composite aggregation in the navigation model is mapped to a corresponding composite
aggregation in the presentation model, such as for example the composite aggregation be-
tween navigation class ProjectManager and index ProjectIndex depicted in Figure 104 is
mapped to a composite aggregation between the corresponding presentation classes, see
Figure 127.

Links in the navigation model are mapped to anchors in the presentation model. The multi-
plicities of the corresponding presentation properties correspond to the multiplicities in the
navigation model, see again Figure 127.

Attributes of navigation classes are mapped to text elements, such as for example the at-
tributes id, name and description of a user project as depicted in Figure 130. The text ele-
ment is generic in the sense that it is assumed that all kind of attribute types can be con-
verted to a textual representation.

Attributes of process data classes representing process data are mapped to input elements.
Presentation classes must not be defined for the other process classes which represent
processes as a whole from the navigation model with integrated processes. Primitive types
are mapped to text input elements, enumeration types to enumeration input elements and
all other types are mapped to selection elements. See for example the process data classes
for the process AddProject depicted in Figure 128.

 241

Model Driven Software Engineering for Web Applications

<<presentation class>>
 : ProjectManagerMenu

<<anchor>>
 : AddProject

<<anchor>>
 : RemoveProject

<<presentation class>>
 : ProjectIndex

<<anchor>>
 : Project [*]

<<presentation class>>
ProjectManager

Figure 127. Automatically derived presentation classes for the navigation class
ProjectManager, the menu ProjectManagerMenu and the index ProjectIndex

<<presentation class>>
ProjectKindInput

<<enumeration input>>
 : ProjectKind

<<presentation class>>
AddValidationProjectInput

<<text input>>
 : Name

<<text input>>
 : Description

<<text input>>
 : Name

<<text input>>
 : Description

<<se lection>>
 : ValidationProject

<<presenta tion class>>
AddUserProject Input

Figure 128. Automatically derived presentation classes for the process classes
ProjectKindInput, AddValidationProjectInput and AddUserProjectInput of process AddProject

<<presentation class>>
RemoveProjectInput

<<selection>>
 : Project

<<enumeration input>>
 : Decision

<<presentation class>>
ConfirmRemoveProjectInput

Figure 129. Automatically derived presentation classes for the process classes
RemoveProjectInput and ConfirmRemoveProjectInput of process RemoveProject

 242

Model Driven Software Engineering for Web Applications

<<presentation class>>
 : UserProjectMenu

<<anchor>>
 : ValidationProject

<<anchor>>
 : EditUserProject

<<anchor>>
 : ProjectDocumentIndex

<<anchor>>
 : ProjectManager

<<anchor>>
 : AddScenario

<<anchor>>
 : RemoveScenario

<<anchor>>
 : ProjectAddDocument

<<anchor>>
 : ProjectRemoveDocument

<<text>>
 : Description

<<presentation class>>
 : ScenarioIndex

<<anchor>>
 : Scenario [*]

<<text>>
 : Id

<<text>>
 : Name

<<presenta tion class>>
UserProject

Figure 130. Automatically derived presentation classes for the navigation class UserProject,
the menu UserProjectMenu and the index ScenarioIndex

<<presentation class>>
EditUserProjectInput

<<text input>>
 : Name

<<text input>>
 : Description

Figure 131. Automatically derived presentation class for the process class
EditUserProjectInput of process EditUserProject

 243

Model Driven Software Engineering for Web Applications

6.1.5.2 Manual Refinement

After the automatical derivation of the presentation model for the case study as presented
in the last section some manual refinements have been made as described in 4.6.3, and the
resulting final presentation model is presented in this section.

The screenshots in Figure 132 demonstrate the differences between the automatically de-
rived and the manually refined presentation classes for the navigation class ProjectMan-
ager and the index ProjectIndex. First, a static element Caption with a welcome message
has been added, see Figure 133 for the corresponding manually refined Web pages. Addi-
tionally, the format expression of the anchor contained in the project index has been set to
the value “Project #${id} - ${name}” to provide a meaningful labeling of the index items.

In a similar way the format has been set for all other anchor elements contained in index
presentation classes and for selection elements. Additionally, a CSS style definition has
been applied to the static text elements added to the presentation classes that are displayed
when the user has to confirm that something should be deleted, see Figure 134. The style
definition “color:red” results in rendering the text of the caption element in red.

 244

Model Driven Software Engineering for Web Applications

Figure 132. Differences between the automatically derived (above) and the manually refined
(below) presentation classes for the navigation class ProjectManager and the

index ProjectIndex

 245

Model Driven Software Engineering for Web Applications

<<presentation class>>
 : ProjectManagerMenu

<<anchor>>
 : AddProject

<<anchor>>
 : RemoveProject

<<static text>>
 : Caption

<<presentation class>>
 : ProjectIndex

<<anchor>>
 : Project [*]

<<presentation class>>
ProjectManager

<<static text>>
text = "Welcome to the DANUBIA project manager!"

<<anchor>>
format = "Project #${id} - $ {name}"

Figure 133. Manually refined presentation classes ProjectManager and ProjectIndex

<<presentation class>>
RemoveProjectInput

<<selection>>
 : Project <<selection>>

format = "#${id} - ${name}"

<<presentation class>>
ConfirmRemoveProjectInput

<<static text>>
 : Caption

<<enumeration input>>
 : Decision

<<static text>>
cssStyle = "color:red"
text = "The following action cannot be undone. If you really
want to proceed please select YES."

Figure 134. Manually refined presentation classes RemoveProjectInput and
ConfirmRemoveProjectInput

 246

Model Driven Software Engineering for Web Applications

<<presentation class>>
 : UserProjectMenu

<<anchor>>
 : ProjectManager

<<anchor>>
 : ProjectDocumentIndex

<<anchor>>
 : ProjectRemoveDocument

<<anchor>>
 : ValidationProject

<<anchor>>
 : RemoveScenario

<<anchor>>
 : EditUserProject

<<anchor>>
 : AddScenario

<<anchor>>
 : ProjectAddDocument

<<text>>
 : Description

<<presentation class>>
 : ScenarioIndex

<<anchor>>
 : Scenario [*]

<<text>>
 : Name

<<text>>
 : Id

<<presentation class>>
UserProject

<<anchor>>
format = "Validation Project ${name}"

<<anchor>>
format = "Scenario #${id} - ${name}"

Figure 135. Manually refined presentation classes UserProject and ScenarioIndex

6.2 Platform Specific Implementation

In this section the model driven platform specific implementation of the case study is pre-
sented following the approach described in chapter 5. The following sections demonstrate
how the platform independent models for each of the concerns of a Web application pre-
sented in the previous section are transformed to code.

6.2.1 Content

The DANUBIA system is not a conventional Web application due to its nature as an envi-
ronmental simulation system and some technological constraints, which are discussed in
the following.

 247

Model Driven Software Engineering for Web Applications

Simulations can be run on a variety of platforms, ranging from laptops or desktop com-
puters to cluster or grid computing infrastructures. Therefore, one important requirement is
that simulations can be run offline, i.e. without a user interface, which requires reading
configuration data from configuration files. Due to the same reason, a database cannot be
used for the simulation configuration.

The idea for the implementation of the content model is to use executable instances of
JavaBeans, i.e. lightweight components, to represent the data and functionality for the ad-
ministration and configuration of the DANUBIA system. The JavaBeans code is generated
from the content model as presented in the next section. JavaBeans instances are stored in
an XML file by using the BeanFactory facility provided by the Spring framework12. This
XML file is used on the one hand instead of a database for persistence of the beans which
are manipulated by the runtime environment. On the other hand it can be read offline by
the DANUBIA core system for the configuration of simulation runs. Thus, the DANUBIA
user interface can be used for online and offline simulation runs. The system is online
when a RMI network connection to the core system exists. The core system can then be
triggered directly from the user interface to start a simulation run as sketched in Figure
136. When the user clicks on the corresponding link for the Start Simulation process, then
this request is delegated to the generic runtime environment presented in 5.1.2. This leads
to the execution of the corresponding call operation action startSimulation within the Web
process engine, and in consequence to the invocation of the corresponding method of the
JavaBean for the simulation run. The JavaBean delegates the call to the DANUBIA core
system by invoking the method startSimulation on the remote interface DanubiaServerAc-
cess. The corresponding implementation calls the method loadConfiguration of the class
ConfigurationAdmin which results in loading the XML bean definition file. If the core sys-
tem is offline, then the simulation has to be started manually as sketched in Figure 137. In
contrast to the online scenario the user manually starts the console application Danubia-
Commander and supplies the command “startSimulation” and the simulation id on the
command line. The commander then communicates with the core system in exactly the
same way as from the generic runtime environment.

12 The technique used for representing JavaBeans instances is identical to the technique used for JavaBeans
that represent configuration data of the runtime environment as presented in 5.1.3. The fundamental differ-
ence is that here JavaBeans represent model elements (model level) while the JavaBeans used for configura-
tion data represent metamodel elements (metamodel level).

 248

Model Driven Software Engineering for Web Applications

Figure 136. Online starting of a simulation run

Figure 137. Offline starting of a simulation run

 249

Model Driven Software Engineering for Web Applications

6.2.1.1 Results of Transformation Content2JavaBeans

As presented in 5.2, the transformation Content2JavaBeans depicted in Figure 138 trans-
forms the content model to a Java model representing JavaBeans. Each content class is
mapped to a Java class by the rule Class2Class. The rule Enumeration2Enumeration maps
each content enumeration to a Java enumeration. Further, for each owned attribute of a
content class a corresponding Java field together with a getter and a setter method is gener-
ated by the rule Property2ClassMembers. All fields are properly initialized. For collection
types the corresponding parameterized Java collection types are used. For each operation
in the content model a corresponding Java method is generated by the rule Opera-
tion2Method with an empty method body which has to be completed manually.

Class2Class
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2JavaBeans

Java ModelContent Model
Class2Class
Enumeration2Enumeration
Property2ClassMembers
Operation2Method

Content2JavaBeans

Java ModelContent Model

Figure 138. Transformation Content2JavaBeans

The resulting Java model is then serialized to code as explained in 5.2.4. The following
code sample shows the generated source code for the content class Project. Java fields and
the corresponding getter and setter methods were generated for the non multi-valued at-
tributes id, name, description and projectManager. For the multi-valued attribute docu-
ments a parameterized Java ArrayList is used. The two operations addDocument and re-
moveDocument were generated with an empty method body.

package danubia.content.beans;

public abstract class Project {
 private String _id = "";
 private String _name = "";
 private String _description = "";

 public String getId() {
 return _id;
 }

 public void setId(String _id) {
 this._id = _id;
 }

 250

Model Driven Software Engineering for Web Applications

 public String getName() {
 return _name;
 }

 public void setName(String _name) {
 this._name = _name;
 }

 public String getDescription() {
 return _description;
 }

 public void setDescription(String _description) {
 this._description = _description;
 }

 private danubia.content.beans.ProjectManager _projectManager;

 public danubia.content.beans.ProjectManager getProjectManager() {
 return _projectManager;
 }

 public void setProjectManager(danubia.content.beans.ProjectManager _projectManager) {
 this._projectManager = _projectManager;
 }

 private java.util.List<danubia.content.beans.Document> _documents =
 new java.util.ArrayList<danubia.content.beans.Document>();

 public java.util.List<danubia.content.beans.Document> getDocuments() {
 return _documents;
 }

 public void setDocuments(java.util.List<danubia.content.beans.Document> _documents) {
 this._documents = _documents;
 }

 public void removeDocument(danubia.content.beans.Document _document) {
 }

 public danubia.content.beans.Document addDocument(String _author, String _title,
 String _abstract) {
 return null;
 }

}

 251

Model Driven Software Engineering for Web Applications

6.2.1.2 Manual Refinement

The automatically generated JavaBeans source code for the content model has to be com-
pleted by the developer by implementing the body of all operations in the content model.
Continuing with the example from the previous section the methods addDocument and re-
moveDocument have to be implemented. The following code sample shows a possible im-
plementation of these methods.

package danubia.content.beans;

public abstract class Project {

 // …
 // manually refined code:
 public void removeDocument(danubia.content.beans.Document _document) {
 documents.remove(_document);
 }

 public danubia.content.beans.Document addDocument(String _author, String _title,
 String _abstract) {
 Document d = new Document();
 d.setId("1");
 d.setAuthor(_author);
 d.setTitle(_title);
 d.setAbstract(_abstract);
 d.setProject(this);
 _documents.add(d);
 return d;
 }

}

6.2.2 Navigation

As discussed in 5.4 the runtime environment needs information about the navigation model
to handle dynamic navigation, i.e. to resolve navigation class inheritance. Figure 139 de-
picts such a situation where dynamic navigation plays are role in the case study. The page
for the project manager contains an index of projects. The anchor for each index item
points to the navigation class Project. At runtime, depending on the type of the content ob-
ject, this reference to the navigation class Project is resolved to the most specific sub navi-
gation class of Project whose corresponding content class is compatible with the actual

 252

Model Driven Software Engineering for Web Applications

dynamic content object. Thus, the navigation class Project is either resolved to the naviga-
tion class UserProject or ValidationProject as illustrated in the figure. Another example
for dynamic navigation is the exit link of the process AddProject which also leads to the
target navigation class Project, see Figure 108.

Navigation to Project #2
resolved to
ValidationProject

Navigation to Project #1
resolved to
UserProject

Navigation to Project #2
resolved to
ValidationProject

Navigation to Project #1
resolved to
UserProject

Figure 139. Screenshots for dynamic navigation to sub navigation classes of Project

6.2.2.1 Results of Transformation Navigation2Conf

As presented in 5.4, the information about the navigation model concerning inheritance
between navigation classes is represented by configuration data of the runtime environ-
ment. The navigation model is therefore mapped by the transformation Navigation2Conf

 253

Model Driven Software Engineering for Web Applications

depicted in Figure 140 to an XML model which is then serialized to an XML document.
Each navigation class is mapped by the rule NavigationClass2Conf to an XML bean node.
This node is used for the instantiation of the Java class NavigationClassInfo (cf. Figure 75)
when the Web application is configured by the Spring bean factory. Each such info class is
initialized with the name of the navigation class, the Java type of the content class and the
specific sub navigation classes.

NavigationClass2Conf

Navigation2Conf XML Model
for Navigation

Configuration Data
Navigation Model NavigationClass2Conf

Navigation2Conf XML Model
for Navigation

Configuration Data
Navigation Model

Figure 140. Transformation Navigation2Conf

The generated configuration code for the navigation classes of the case study that play a
role for dynamic navigation is listed in the following.

<bean class="uwe.runtime.NavigationClassInfo" id="DANUBIA_Navigation_Project">
 <property name="name"><value>DANUBIA_Navigation_Project</value></property>
 <property name="specific">
 <list>
 <ref bean="DANUBIA_Navigation_ValidationProject"></ref>
 <ref bean="DANUBIA_Navigation_UserProject"></ref>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.Project</value>
 </property>
</bean>

<bean class="uwe.runtime.NavigationClassInfo" id="DANUBIA_Navigation_UserProject">
 <property name="name"><value>DANUBIA_Navigation_UserProject</value></property>
 <property name="specific">
 <list>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.UserProject</value>
 </property>
</bean>

<bean class="uwe.runtime.NavigationClassInfo" id="DANUBIA_Navigation_ValidationProject">
 <property name="name"><value>DANUBIA_Navigation_ValidationProject</value></property>
 <property name="specific">

 254

Model Driven Software Engineering for Web Applications

 <list>
 </list>
 </property>
 <property name="contentClass">
 <value>danubia.content.beans.ValidationProject</value>
 </property>
</bean>

6.2.2.2 Manual Refinement

Manual refinement of the automatically generated navigation configuration data is gener-
ally not necessary.

6.2.3 Process

As presented in 5.5 processes are executed in the runtime environment by a specialized
implementation of UML activities which is automatically configured to execute application
specific processes. An example for the corresponding configuration data is given in
6.2.3.1.

In order to demonstrate how processes are executed in the runtime environment, the execu-
tion of the process RemoveProject depicted in Figure 123 is presented in the following. For
a description of the algorithm for executing processes in the runtime environment see
5.5.1. On the one hand the relevant log output from the runtime environment is listed, and
on the other hand a series of figures showing the token state at each step of the process
execution is presented. Additionally, the pages shown to the user during the execution of
the process are presented. The execution of the process can be split into three parts. Each
part comprises the automatic execution of the process within the runtime environment until
the next user input is required or the process has terminated.

In the first part the process is started and an object token holding the project manager ob-
ject is placed in the input activity parameter node (Figure 143). Then this token is moved
to the fork node. The duplicated object tokens are placed in the target input pin of the call
operation action and in the project manager input pin of the user action RemoveProjectIn-
put (Figure 144). The user action indicates that it is waiting for input from the user and the
corresponding page is shown (Figure 141). For the first part the following log output was
produced by the runtime environment:

[uwe.runtime.MainController] - Request URI: danubiaweb/DANUBIA_Process_RemoveProject.uwe
[uwe.runtime.MainController] - Starting process RemoveProject
[uwe.runtime.process.ActivityParameterNode] - ProjectManager: Received ObjectToken

 255

Model Driven Software Engineering for Web Applications

 danubia.content.beans.ProjectManager
[uwe.runtime.MainController] - Executing next step of process RemoveProject
[uwe.runtime.process.ActivityParameterNode] - ProjectManager: Removing token
[uwe.runtime.process.ForkJoinNode] - Received ObjectToken
 danubia.content.beans.ProjectManager
[uwe.runtime.process.InputPin] - target: Received ObjectToken
 danubia.content.beans.ProjectManager
[uwe.runtime.process.InputPin] - projectManager: Received ObjectToken
 danubia.content.beans.ProjectManager
[uwe.runtime.process.UserAction] - RemoveProjectInput: Running - waiting for input

Figure 141. Resulting page after the first part of executing the process RemoveProject

After the selection of the validation project #2 and pressing the submit button, the second
part of the execution begins. First, an object token for the selected project is placed in the
output pin of the user action RemoveProjectInput and a control token is offered to the user
action ConfirmRemoveProjectInput (Figure 145). The object token then moves to the pro-
ject input pin of the call operation action and the control token triggers the execution of the
user action ConfirmRemoveProjectInput (Figure 146). This user action indicates that it is
waiting for input from the user and the corresponding page is shown (Figure 142). For the
second part the following log output was produced by the runtime environment:

[uwe.runtime.MainController] - Request URI: /danubiaweb/__processinput__.uwe
[uwe.runtime.MainController] - Executing next step of process RemoveProject
[uwe.runtime.process.OutputPin] - project: Received ObjectToken
 danubia.content.beans.ValidationProject
[uwe.runtime.process.UserAction] - RemoveProjectInput: State finished

 256

Model Driven Software Engineering for Web Applications

[uwe.runtime.process.InputPin] - projectManager: Removing token
[uwe.runtime.process.UserAction] - ConfirmRemoveProjectInput: Received ControlToken
[uwe.runtime.process.OutputPin] - project: Removing token
[uwe.runtime.process.InputPin] - project: Received ObjectToken
 danubia.content.beans.ValidationProject
[uwe.runtime.process.UserAction] - ConfirmRemoveProjectInput: Running - waiting for input

Figure 142. Resulting page after the second part of executing the process RemoveProject

After the user selects “yes” and presses the submit button the third and last part of the
process execution starts. An object token with the value of the user decision is placed at the
output pin of the user action ConfirmRemoveProjectInput (Figure 147). The decision node
then offers this token to both outgoing edges but only the edge with the guard “yes” ac-
cepts the token. Thus, this token triggers the execution of the call operation action (Figure
148). After invoking the corresponding method removeProject of the project manager class
a control token is offered to the outgoing edge (Figure 149). Finally, this control token is
placed at the activity final node and the execution of the process terminates (Figure 150).
Because the process RemoveProject has no exit link, the project manager page from which
the process was invoked is shown again to the user.

[uwe.runtime.MainController] - Request URI: /danubiaweb/__processinput__.uwe
[uwe.runtime.MainController] - Executing next step of process RemoveProject
[uwe.runtime.process.OutputPin] - decision: Received ObjectToken java.lang.String
[uwe.runtime.process.UserAction] - ConfirmRemoveProjectInput: Removing token
[uwe.runtime.process.OutputPin] - decision: Removing token
[uwe.runtime.process.DecisionMergeNode] - Received ObjectToken java.lang.String

 257

Model Driven Software Engineering for Web Applications

[uwe.runtime.process.CallOperationAction] - Received ControlToken
[uwe.runtime.process.CallOperationAction] - Invoking method removeProject
[uwe.runtime.process.InputPin] - project: Removing token
[uwe.runtime.process.InputPin] - target: Removing token
[uwe.runtime.process.CallOperationAction] - Removing token
[uwe.runtime.process.ActivityFinalNode] - Received ControlToken
[uwe.runtime.MainController] - Process RemoveProject has terminated

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 143. Token flow when executing process RemoveProject – step 1

 258

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

Figure 144. Token flow when executing process RemoveProject – step 2

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

Figure 145. Token flow when executing process RemoveProject – step 3

 259

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 146. Token flow when executing process RemoveProject – step 4

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 147. Token flow when executing process RemoveProject – step 5

 260

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

Figure 148. Token flow when executing process RemoveProject – step 6

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

rem oveProject

projecttarget

 [no]

 [yes]

Figure 149. Token flow when executing process RemoveProject – step 7

 261

Model Driven Software Engineering for Web Applications

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

ProjectManager : ProjectManager

<<user action>>
ConfirmRemoveProjectInput

decision

<<user action>>
RemoveProjectInput

project

projectManager

removeProject

projecttarget

 [no]

 [yes]

Figure 150. Token flow when executing process RemoveProject – step 8

6.2.3.1 Results of Transformation Process2Conf

As presented in 5.5, the process model is mapped to configuration data for the process run-
time environment. The process model is therefore mapped by the transformation Proc-
ess2Conf depicted in Figure 151 to an XML model which is then serialized to an XML
document. Each process activity is mapped by the rule ProcessActivity2Conf to an XML
bean node. Other rules are responsible for mapping activity nodes and edges to bean nodes.
The corresponding Java classes presented in 5.5 that together represent an executable proc-
ess are instantiated by the Spring bean factory upon configuration of the Web application.

 262

Model Driven Software Engineering for Web Applications

ProcessActivity2Conf
ActivityNode2Conf
Pin2Conf
DecisionNodeOrMergeNode2Conf
ForkNodeOrJoinNode2Conf
CallOperationAction2Conf
UserAction2Conf
ActivityEdge2Conf

Process2Conf

XML Model
for Process

Configuration Data
Process Model

ProcessActivity2Conf
ActivityNode2Conf
Pin2Conf
DecisionNodeOrMergeNode2Conf
ForkNodeOrJoinNode2Conf
CallOperationAction2Conf
UserAction2Conf
ActivityEdge2Conf

Process2Conf

XML Model
for Process

Configuration Data
Process Model

Figure 151. Transformation Process2Conf

The following configuration data listing shows the generated code for the process activity
and the input activity parameter node of the process RemoveProject.

<bean class="uwe.runtime.process.ProcessActivity"
 id="ProcessActivity_DANUBIA_Process_RemoveProject_RemoveProject">
 <property name="name"><value>RemoveProject</value></property>
 <property name="processClass">
 <value>DANUBIA_Process_RemoveProject</value>
 </property>
 <property name="entryNode">
 <value>DANUBIA_Navigation_ProjectManager</value>
 </property>
 <property name="activityNodes">
 <list>
 <ref bean="ActivityParameterNode _DANUBIA_Process
 _RemoveProject_RemoveProject_ProjectManager"></ref>
 <ref bean="id_196"></ref>
 <ref bean="UserAction_DANUBIA_Process
 _RemoveProject_RemoveProject_RemoveProjectInput"></ref>
 <ref bean="id_197"></ref>
 <ref bean="id_198"></ref>
 <ref bean="UserAction_DANUBIA_Process
 _RemoveProject_RemoveProject_ConfirmRemoveProjectInput"></ref>
 <ref bean="id_199"></ref>
 <ref bean="OutputPin_DANUBIA_Process
 _RemoveProject_RemoveProject_RemoveProjectInput_project"></ref>
 <ref bean="OutputPin_DANUBIA_Process
 _RemoveProject_RemoveProject_ConfirmRemoveProjectInput_decision"></ref>
 <ref bean="id_200"></ref>
 <ref bean="id_201"></ref>
 <ref bean="InputPin_DANUBIA_Process
 _RemoveProject_RemoveProject_RemoveProjectInput_projectManager"></ref>
 </list>

 263

Model Driven Software Engineering for Web Applications

 </property>
 <property name="activityEdges">
 <list>
 <ref bean="id_202"></ref>
 <ref bean="id_203"></ref>
 <ref bean="id_204"></ref>
 <ref bean="id_205"></ref>
 <ref bean="id_206"></ref>
 <ref bean="id_207"></ref>
 <ref bean="id_208"></ref>
 <ref bean="id_209"></ref>
 <ref bean="id_210"></ref>
 </list>
 </property>
 <property name="inputParameterNode">
 <ref bean="ActivityParameterNode_DANUBIA_Process
 _RemoveProject_RemoveProject_ProjectManager"></ref>
 </property>
</bean>

<bean class="uwe.runtime.process.ActivityParameterNode" id="ActivityParameterNode_DANUBIA
 _Process _RemoveProject_RemoveProject_ProjectManager">
 <property name="name"><value>ProjectManager</value></property>
 <property name="activity">
 <ref bean="ProcessActivity_DANUBIA_Navigation_RemoveProject_RemoveProject"></ref>
 </property>
 <property name="incoming"><list></list></property>
 <property name="outgoing"><list>…</list></property>
</bean>

6.2.3.2 Manual Refinement

Manual refinement of the automatically generated process configuration data is generally
not necessary.

6.2.4 Presentation

Java Server Pages are used for the case study as technology for the model driven imple-
mentation of the presentation concern. The following sections comprise the automatic gen-
eration of JSPs from the presentation model and the customization of the resulting pages.

 264

Model Driven Software Engineering for Web Applications

6.2.4.1 Results of Transformation Presentation2JSP

As presented in 5.6, the transformation Presentation2JSP depicted in Figure 152 trans-
forms the presentation model to a JSP model representing Java Server Pages. The trans-
formation comprises three main rules. The rule PresentationClass2JSP maps presentation
classes to the JSP model. Sub rules of this rule are responsible for mapping presentation
classes for specific associated node types, such as for example presentation classes that are
associated to navigation classes. The presentation properties owned by a presentation class
are mapped by the rule PresentationProperty2JSP. User interface elements are mapped by
the rule UIElement2JSP. Again, sub rules are responsible for mapping specific user inter-
face element types, such as for example text elements. The resulting JSP model is then se-
rialized to JSP pages which can directly be executed in the proposed runtime environment
without any modification by the developer.

PresentationClass2JSP
...
PresentationProperty2JSP
UIElement2JSP
...

Presentation2JSP

JSP ModelPresentation Model

PresentationClass2JSP
...
PresentationProperty2JSP
UIElement2JSP
...

Presentation2JSP

JSP ModelPresentation Model

Figure 152. Transformation Presentation2JSP

The following code sample shows the generated JSP code for the presentation class Pro-
jectManager and serves as an example for the structure of the generated pages.

<%@ page language="java" %>
<%@ include file="/WEB-INF/jsp/include.jspf" %>
<html>
 <head>
 <title>Project Manager</title>
 </head>
 <%@ include file="/WEB-INF/jsp/style.jspf" %>
 <body>
 <%@ include file="/WEB-INF/jsp/header.jspf" %>
 <div>
 <h2>Project Manager</h2>
 <p class="" style="">Welcome to the DANUBIA project manager!</p>
 <div>
 <h3>Project Manager Menu</h3>
 <div>

 265

Model Driven Software Engineering for Web Applications

 <c:if test="${not empty self and (not empty self.projects)}">
 <c:set var="obj" scope="request" value="${self}"></c:set>
 <a href="DANUBIA_Process_RemoveProject.uwe?
 objID=<%= objID(request) %>">Remove Project
 </c:if>

 </div>
 <div>

 <c:if test="${not empty self and (true)}">
 <c:set var="obj" scope="request" value="${self}"></c:set>
 <a href="DANUBIA_Process_AddProject.uwe?
 objID=<%= objID(request) %>">Add Project
 </c:if>

 </div>
 </div>
 <div>
 <h3>Project Index</h3>

 <c:forEach items="${self.projects}" var="self_projects_it">

 <c:if test="${not empty self_projects_it and (true)}">
 <c:set var="obj" scope="request" value="${self_projects_it}"></c:set>
 <a href="DANUBIA_Navigation_Project.uwe?
 objID=<%= objID(request) %>">
 <c:out value='Project #${self_projects_it.id} –
 ${self_projects_it.name}' />

 </c:if>

 </c:forEach>

 </div>
 </div>
 </body>
</html>

The first include statement is needed for including some common JSP code, such as for
example for the declaration of the JSTL tag libraries. The other include statements are used
for customization of the JSPs as discussed in the next section.

 266

Model Driven Software Engineering for Web Applications

The JSP code for each generated presentation class starts with a h<1+nesting-depth> tag
containing the formatted name of the presentation class, i.e. depending on the nesting depth
of the presentation class, a different tag is used, e.g. h2 for the root presentation class in the
containment hierarchy ProjectManager, and h3 for the nested presentation classes Pro-
jectManagerMenu and ProjectIndex.

Then, for each presentation property of a presentation class, JSP code is embedded in the
resulting page, depending on the type of the presentation property. For static elements
static code is generated. Output elements are transformed to dynamic JSP code using the
c:out tag of the Java Standard Tag Library (JSTL). Input elements are transformed to input
tags. Anchors are mapped to JSP code, for example for the link to the process RemovePro-
ject:

<c:if test="${not empty self and (not empty self.projects)}">
 <c:set var="obj" scope="request" value="${self}"></c:set>
 <a href="DANUBIA_Process_RemoveProject.uwe?
 objID=<%= objID(request) %>">Remove Project
</c:if>

The outer c:if tag is used to test on the one hand if the target object of the link is valid
(“not empty self”) and on the other hand if the guard condition of the link is fulfilled (“not
empty self.projects”). The variable self holds a reference to the actual content object that
this page presents. If the conditions are fulfilled, then the inner code is executed. First a
variable obj is set to the target content class. The JSP scriptlet code “<%= objID(request)
%>” calls a method objID defined within the included include.jspf file, which reads the
variable obj and returns a unique id for the target content object. This id together with the
corresponding object is also stored in the session context and allows the runtime environ-
ment to resolve the target object when the link to the page DANU-
BIA_Process_RemoveProject.uwe is executed.

6.2.4.2 Manual Refinement

The generated Java Server Pages did not have to be manually refined. However, the ap-
pearance of the resulting JSPs can be customized by modifying two files which are in-
cluded by all pages: the file header.jspf is included at the beginning of the body tag of
each page. Thus, it can be used to apply a common page header to all pages. For the DA-
NUBIA Web application the DANUBIA logo was included. For defining common style
definitions for all pages the file style.jspf can be modified. In Figure 153 the project man-
ager page without appearance customization is depicted. After inclusion of the DANUBIA

 267

Model Driven Software Engineering for Web Applications

logo in the page header and providing a default style definition the resulting page looks as
depicted in Figure 154. It has to be stressed that only files that are included by the gener-
ated JSPs were modified. Thus, these modifications are not lost when running the trans-
formation Presentation2JSP again.

Figure 153. Generated JSP (appearance not yet customized)

 268

Model Driven Software Engineering for Web Applications

Figure 154. Generated JSP (appearance customized)

6.3 Evaluation

This section gives a brief evaluation of the experiences gained from the development of the
case study. The vision of the MDA is that applications are modeled at a platform inde-
pendent level and are transformed by means of model transformations to platform specific
implementations. Thus, the essential question is, how much manual refinement was neces-
sary after the generation of the platform specific implementation, because these steps
would probably have to be repeated for another platform.

The main development efforts have been on the construction of the platform independent
models, which have been elaborated by alternating automatic transformation and manual
refinement steps as presented in 6.1. The following manual refinement activities were re-
quired:

• Addition of missing details to the content model, such as attribute types or multi-
plicities

• Designation of a home node within the navigation model

 269

Model Driven Software Engineering for Web Applications

• Assignment of guard conditions for process links

• Definition of process data and flow for complex processes

• Definition of range expressions for process properties with a complex type, i.e.
process properties with neither a primitive type nor an enumeration type

On the other hand, due to the choice of Java Beans as technology for the implementation of
the content model, the generated Java Beans classes had to be manually refined for all con-
tent classes with at least one operation or one derived attribute. The transformation of the
remaining models to the corresponding platform specific models for the generic platform
did not require manual refinement.

 270

Model Driven Software Engineering for Web Applications

7 CONCLUSION

To conclude this work, in the following the main results are summarized first. Then the
limitations of this approach are discussed, and finally an outlook to possible future research
is given.

7.1 Results

The overall result of this work is the elaboration of a complete MDA-based approach for
Web application development from analysis to the generated implementation. After the
evaluation of current transformation approaches the choice of ATL has proven as adequate
for this work, most important due to the available tool support for running ATL transfor-
mations. Nevertheless, when a fully fledged implementation of QVT becomes available, it
might be preferable to use the future standard QVT instead of ATL. The transformations of
this work are easily transferable to QVT.

For the platform independent analysis and design a metamodel has been defined as a con-
servative extension of the UML 2 metamodel together with OCL constraints, expressing
well-formedness rules, and a UML profile as notation. Transformation rules have been de-
fined for the systematic stepwise evolution of models. The drawback of using the general
modeling language UML, in contrast to a small domain specific language (DSL), is that
transformation rules sometimes become quite lengthy due to the complex structure of the
UML metamodel from which only a small part is actually needed. Additionally, many
OCL constraints have to be defined to ensure the correct use of the modeling elements
which are specializations of elements from the UML metamodel.

The decomposition of the transformation to the platform specific implementation along the
content, navigation, process and presentation concerns has proven to be useful to reduce
the complexity of this transformation and to allow for a higher degree of decoupling be-
tween the corresponding technological counterparts. A generic platform based on Spring
Web framework extended by a custom runtime environment has been proposed to support

 271

Model Driven Software Engineering for Web Applications

a broad range of different target technologies for the different concerns of a Web applica-
tion. Two alternative technologies for the implementation of the content model have been
presented to show the flexibility of the approach.

The use of UML activities for process flow modeling has proven as too complex to be di-
rectly transformable to code. Therefore a process runtime environment was implemented
as part of the overall runtime environment to support the execution of UML activities
based on the semantics of token flows. The process flow model was therefore transformed
to configuration data for the process runtime environment.

Finally, the results of this work have been successfully applied to the DANUBIA case
study. Due to the choice of Java Beans as technology for the implementation of the content
model, the generated Java Beans classes had to be manually refined by implementing the
corresponding operations derived from the content model. On the other hand, the transfor-
mation of the remaining models to the corresponding platform specific models for the ge-
neric platform did not require manual refinement.

The technical details of this work including the metamodels, the transformation environ-
ment and the runtime environment are available on the UWE homepage [UWE].

7.2 Limitations

As already stated in Section 3.1, the fine-grained specification of the behavior of opera-
tions in the content model is not considered in this work. In this sense the transformations
to platform specific models presented here could be considered as being not fully auto-
matic. This work focuses on the modeling of coarse-grained behavior by the means of a
process model which is used to compose the fine-grained behavior, i.e. the invocation of
operations in the content model. Nevertheless, several alternative ways exist for the fully
executable specification of operations, but the challenge will be to ensure that these speci-
fications are independent of platform specific constructs and that they can be transformed
to the platform specific level. UML allows the use of user-defined (textual) languages, so
called action languages, for the specification of behavior as discussed in [Mellor02]. An
action language can also be used within executable activity diagrams that specify the be-
havior of an operation.

The development of data-intensive Web applications with this approach can result cumber-
some because the create, retrieve, update and delete (CRUD) operations found in data-
intensive Web approaches such as for example WebML [Ceri02] are realized in this work

 272

Model Driven Software Engineering for Web Applications

by the more general Web processes. Therefore, for each create or delete operation a corre-
sponding Web process has to be designed and the corresponding service has to be imple-
mented manually. The retrieve and update operations on the other hand can already be
handled fully automatically by using an appropriate technology for the content concern that
provides a database mapping, such as for example Enterprise Java Beans (EJB). The ap-
proach can be improved for data-intensive Web applications by extending the platform in-
dependent metamodel with corresponding modeling elements, such as for example special
Web process use case types and process activity actions that represent database operations.

One concern of Web applications not included in this work is adaptivity. Adaptive Web
applications adapt themselves to dynamic user and context properties, i.e. they allow for
personalization and contextualization. User properties comprise the user’s preferences, in-
terests or knowledge whereas context properties are related to the environment, e.g. the
user location. All concerns presented in this work may be adapted, i.e. content, navigation,
presentation and even processes. For an overview of current adaptive approaches see
[Kappel03b]. A proposal for the (non model driven) treatment of adaptivity within the in-
tegral UWE approach is detailed in [Koch01a]. Because adaptivity is a crosscutting con-
cern it should be addressed with aspect-oriented techniques, thus aspect-orientation in the
realm of model-driven development is an important future research topic.

Aspect-orientation provides a way of modularization of concerns that would otherwise be
scattered across modules. For an overview over aspect-oriented modeling techniques see
[Filman04]. The main tasks that have to be done for the integration of adaptivity using as-
pect-oriented techniques are on the other hand the appropriate aspect-oriented platform in-
dependent modeling of adaptivity, and on the other hand the transformation of these as-
pects to the platform specific models. This transformation corresponds to the weaving ac-
tivity when employing aspect-orientation in programming languages. In [Baumeister05] a
possible way of modeling adaptivity with aspects within the UWE approach is sketched
and the use of aspects for modeling access control for Web applications is presented in
[Zhang05]. Another approach called AspectUWA also investigates the combination of as-
pect-oriented modeling and model-driven development for adaptive Web applications
[Schauerhuber06a]. Additionally, the Spring framework provides support for the applica-
tion of aspect-oriented techniques for Web applications [Spring].

 273

Model Driven Software Engineering for Web Applications

7.3 Future Research

Future Web application approaches should provide enhanced support for the Web 2.0
[O’Reilly05], which is the vaguely defined designation for the recent and still ongoing evo-
lution of the Web. It is not related to a specific technology or a single development, but
rather to the perceived synergy effect of a bundle of recent technologies and developments.
Technologies for Web applications that can be characterized as Web 2.0 applications are
for example Web Services [W3C02] or Ajax [Garrett05].

The broader scope of Web Services is the Service Oriented Architecture (SOA) approach
[Dostal05]. The basic idea of the SOA approach is to see the realization of a business proc-
ess as a composition of services. Hence, the application logic of a system is distributed
over several independent and loosely coupled services. Services are provided by service
providers and used by service consumers. To find a service some kind of directory facility
is necessary. The Service Oriented Architecture approach uses software components
[Szyperski02] for providing services. Although different component technologies such as
Enterprise JavaBeans (EJB), CORBA or DCOM could be used, Web Services are espe-
cially suited for the SOA approach. Web Services make use of XML for service metadata,
communication and directory services, which allows the platform independent implemen-
tation and the use of the internet as the communication layer. By providing adequate plat-
form specific metamodels and transformations for the content aspect, Web services can be
integrated into the approach presented in this work.

The acronym Ajax stands for Asynchronous JavaScript and XML. Ajax incorporates sev-
eral technologies to close the gap between rich and responsive desktop applications and
Web applications by introducing an intermediate layer between the user and the server, the
so called Ajax engine. Although this layer still uses the stateless HTTP protocol for the
communication with the server it allows asynchronous user interaction with the applica-
tion. The downside of this approach is a higher Web server load in comparison to tradi-
tional Web applications due to the use of a polling mechanism for receiving events from
the server. The key technologies of Ajax are a standards-based presentation using XHTML
and CSS, dynamic display and interaction using the Document Object Model (DOM), data
interchange and manipulation using XML and XSLT, asynchronous data retrieval using
XMLHttpRequest and JavaScript for binding everything together [Garrett05]. An already
widespread application using Ajax is for example Google Maps13 which allows the user to

13 http://maps.google.com

 274

Model Driven Software Engineering for Web Applications

interactively navigate within geographical maps. Although the presentation metamodel in
this work is designed for traditional Web applications, Web applications for the Ajax
framework could as well be generated from the platform independent models by providing
appropriate platform specific metamodels and transformations for the presentation aspect.
Nevertheless, for taking full advantage of the features of Ajax, i.e. supporting the devel-
opment of rich and responsive Web applications, the presentation metamodel as presented
here would have to be extended. Additional behavioral models for handling user interface
events would allow to model responsive user interfaces for the Ajax framework. Such an
extended metamodel would not be generic anymore as only Web applications for the Ajax
framework could be generated. On the other hand it would be possible to generate Ajax
Web applications as well as traditional desktop applications from the same platform inde-
pendent models. As Ajax and similar frameworks are gaining relevance and acceptance for
the development of Web applications, future investigations should continue examining the
model driven development of responsive Web applications.

A further future research topic is the combination of model driven Web engineering with
technologies for the Semantic Web. According to [Berners-Lee01], the Semantic Web is an
extension of the current web, which better defines the meaning of information, enabling
computers and people to work better in cooperation. The strength of the Semantic Web ap-
proach is the ability to explicitly represent knowledge by using ontologies and to carry out
automated reasoning. SHDM [Lima03] for example is a MDWE approach that maps ob-
ject-oriented Web application models to ontologies. This allows for example to infer navi-
gation links by using Semantic Web technologies. Another possible application of Seman-
tic Web technologies is to represent the target platform by an ontology as proposed in
[Wagelaar05]. This would allow for automatically selecting and configuring a number of
reusable model transformations for a concrete platform, using description logics.

 275

Model Driven Software Engineering for Web Applications

 276

Model Driven Software Engineering for Web Applications

8 TABLE OF FIGURES

Figure 1. Development process overview______________________________________ 15
Figure 2. Platform specific implementation using a generic platform________________ 17
Figure 3. MDA Pattern, from [Miller03]______________________________________ 24
Figure 4. Example for a platform specific model and the corresponding code _________ 26
Figure 5. Pattern for model type transformations _______________________________ 27
Figure 6. Metamodeling hierarchy example (adapted from [OMG05a]) _____________ 29
Figure 7. Transformation between metamodel and UML profile ___________________ 32
Figure 8. Relationships between QVT parts [OMG05b] __________________________ 39
Figure 9. Graphical notation of QVT Relations_________________________________ 42
Figure 10. Transformation metamodel__ 51
Figure 11. Interoperability between transformation approaches ___________________ 53
Figure 12. PIM2PSM transformations__ 58
Figure 13. Decomposed PIM2PSM transformation______________________________ 59
Figure 14. ATL model handlers ___ 61
Figure 15. The ATL Eclipse plug-in __ 62
Figure 16. UWEXML process __ 65
Figure 17. Global UWE process overview (from [Koch06b])______________________ 67
Figure 18. Metamodel Package Structure _____________________________________ 74
Figure 19. Relationships between models and metamodels________________________ 75
Figure 20. Metamodel for transformation traces________________________________ 78
Figure 21. Example for transformation trace __________________________________ 79
Figure 22. Example for using transformation traces for incremental update __________ 81
Figure 23. Use of an expression language_____________________________________ 83
Figure 24. Metamodel for requirements modeling_______________________________ 87
Figure 25. Analysis content model ___ 89
Figure 26. Use cases for content class ProjectManager __________________________ 90
Figure 27. Use cases for content class UserProject _____________________________ 90
Figure 28. Transformation Requirements2Content ______________________________ 92
Figure 29. Content model derived by transformation Requirements2Content _________ 93
Figure 30. Illustration of the rules for adding operations _________________________ 93
Figure 31. Refined design content model ______________________________________ 96

 277

Model Driven Software Engineering for Web Applications

Figure 32. Metamodel for navigation modeling (backbone) ______________________ 99
Figure 33. Metamodel for navigation modeling (access structures) _______________ 100
Figure 34. Transformation RequirementsAndContent2Navigation ________________ 104
Figure 35. Navigation space model derived by transformation
RequirementsAndContent2Navigation ______________________________________ 105
Figure 36. Manually refined navigation space model __________________________ 108
Figure 37. Transformation AddIndices______________________________________ 109
Figure 38. Navigation model with added indices derived by transformation AddIndices 109
Figure 39. Navigation model with refined indices _____________________________ 111
Figure 40. Transformation AddMenus ______________________________________ 112
Figure 41. Navigation model with added menus derived by transformation AddMenus 112
Figure 42. Metamodel for integration of processes in the navigation model_________ 117
Figure 43. Transformation ProcessIntegration _______________________________ 118
Figure 44. Integrated navigation model for content class ProjectManager derived by
transformation ProcessIntegration ___ 119
Figure 45. Manually refined process classes and links for content class ProjectManager
___ 120
Figure 46. Metamodel for the process data modeling __________________________ 122
Figure 47. Metamodel for the process flow modeling __________________________ 123
Figure 48. UML control nodes __ 124
Figure 49. UML object nodes ___ 124
Figure 50. Transformation CreateProcessDataAndFlow________________________ 127
Figure 51. Incomplete process flow for web process AddProject derived by rule
CreateProcessDataAndFlowForWebProcess_________________________________ 127
Figure 52. Automatically derived process data and flow for simple process RemoveProject
derived by rule CreateProcessDataAndFlowForSimpleProcess __________________ 130
Figure 53. Automatically derived process data and flow for edit process EditUserProject
derived by rule CreateProcessDataAndFlowForEdit___________________________ 133
Figure 54. Manually refined process flow for process AddProject ________________ 136
Figure 55. Manually specified process data for process AddProject_______________ 137
Figure 56. Refined content model for process AddProject _______________________ 137
Figure 57. Manually refined process flow for process RemoveProject _____________ 138
Figure 58. Manually refined process data for process RemoveProject _____________ 138
Figure 59. Manually refined process data for process EditUserProject ____________ 139
Figure 60. Metamodel for presentation modeling (backbone) ____________________ 141
Figure 61. Metamodel for presentation modeling (user interface elements) _________ 142
Figure 62. Metamodel for presentation modeling (output and static elements)_______ 142
Figure 63. Metamodel for presentation modeling (input elements) ________________ 142
Figure 64. Transformation NavigationAndProcess2Presentation _________________ 145

 278

Model Driven Software Engineering for Web Applications

Figure 65. Automatically derived presentation classes for the navigation class
ProjectManager, menu ProjectManagerMenu and index ProjectIndex _____________ 146
Figure 66. Automatically derived presentation classes for the navigation class UserProject
and for the menu UserProjectMenu ___ 147
Figure 67. Automatically derived presentation classes for the process classes
ProjectKindInput, AddValidationProjectInput and AddUserProjectInput of process
AddProject __ 147
Figure 68. Manually refined presentation classes for the navigation class ProjectManager,
menu ProjectManagerMenu and index ProjectIndex____________________________ 151
Figure 69. Manually refined presentation classes for the navigation class UserProject and
for the menu UserProjectMenu __ 152
Figure 70. Decomposed PIM2PSM transformation_____________________________ 154
Figure 71. Common Web platforms and the proposed generic platform_____________ 156
Figure 72. Decomposition of the PIM2PSM transformation for the generic platform __ 157
Figure 73. Dispatching of a Web request to the DispatcherServlet_________________ 159
Figure 74. Handling of a Web request within the Spring Web framework ___________ 163
Figure 75. Runtime environment ___ 164
Figure 76. Control flow within the runtime environment_________________________ 166
Figure 77. Example configuration of the runtime environment ____________________ 170
Figure 78. XML metamodel ___ 171
Figure 79. Java metamodel ___ 179
Figure 80. Transformation Content2JavaBeans _______________________________ 181
Figure 81. Transformation Content2JavaInterfaces ____________________________ 188
Figure 82. Dynamic navigation structure ____________________________________ 191
Figure 83. Transformation Navigation2Conf__________________________________ 193
Figure 84. Runtime process activity___ 195
Figure 85. Runtime control nodes __ 196
Figure 86. Runtime object nodes ___ 196
Figure 87. Runtime actions ___ 197
Figure 88. Transformation Process2Conf ____________________________________ 201
Figure 89. JSP metamodel __ 204
Figure 90. Transformation Presentation2JSP _________________________________ 205
Figure 91. Analysis content model __ 213
Figure 92. Web use cases for content class ProjectManager _____________________ 214
Figure 93. Web use cases for content class Project_____________________________ 215
Figure 94. Web use cases for content class UserProject _________________________ 215
Figure 95. Transformation Requirements2Content _____________________________ 216
Figure 96. Content model derived by the transformation Requirements2Content______ 217
Figure 97. Manually refined content model ___________________________________ 218

 279

Model Driven Software Engineering for Web Applications

Figure 98. Transformation RequirementsAndContent2Navigation ________________ 220
Figure 99. Navigation space model derived by the transformation
RequirementsAndContent2Navigation ______________________________________ 221
Figure 100. Manually refined navigation space model _________________________ 222
Figure 101. Transformation AddIndices_____________________________________ 223
Figure 102. Navigation model with added indices derived by the transformation
AddIndices__ 224
Figure 103. Differences between the automatically derived (above) and the manually
refined (below) addition of index ProjectIndex________________________________ 225
Figure 104. Navigation model after manual refining the automatically added indices _ 226
Figure 105. Transformation AddMenus _____________________________________ 227
Figure 106. Navigation model with added menus derived by the transformation AddMenus
___ 227
Figure 107. Transformation ProcessIntegration ______________________________ 228
Figure 108. Automatically derived process classes and links for content class
ProjectManager ___ 229
Figure 109. Automatically derived process classes and links for content class Project 229
Figure 110. Automatically derived process classes and links for content class UserProject
___ 229
Figure 111. Manually refined process classes and links for content class ProjectManager
___ 230
Figure 112. Manually refined process classes and links for content class Project ____ 230
Figure 113. Manually refined process classes and links for content class UserProject 231
Figure 114. Transformation CreateProcessDataAndFlow_______________________ 232
Figure 115. Automatically derived incomplete process flow for web process AddProject
___ 233
Figure 116. Automatically derived process data and flow for simple process
RemoveProject __ 233
Figure 117. Automatically derived process data and flow for simple process AddScenario
___ 234
Figure 118. Automatically derived process flow for simple process StartSimulation __ 234
Figure 119. Automatically derived process data and flow for edit process EditUserProject
___ 235
Figure 120. Manually refined process flow for process AddProject _______________ 237
Figure 121. Manually specified process data for process AddProject______________ 238
Figure 122. Refined content model for process AddProject ______________________ 238
Figure 123. Manually refined process flow for process RemoveProject ____________ 239
Figure 124. Manually refined process data for process RemoveProject ____________ 239
Figure 125. Manually refined process data for process EditUserProject ___________ 240

 280

Model Driven Software Engineering for Web Applications

Figure 126. Transformation NavigationAndProcess2Presentation_________________ 241
Figure 127. Automatically derived presentation classes for the navigation class
ProjectManager, the menu ProjectManagerMenu and the index ProjectIndex _______ 242
Figure 128. Automatically derived presentation classes for the process classes
ProjectKindInput, AddValidationProjectInput and AddUserProjectInput of process
AddProject __ 242
Figure 129. Automatically derived presentation classes for the process classes
RemoveProjectInput and ConfirmRemoveProjectInput of process RemoveProject ____ 242
Figure 130. Automatically derived presentation classes for the navigation class
UserProject, the menu UserProjectMenu and the index ScenarioIndex _____________ 243
Figure 131. Automatically derived presentation class for the process class
EditUserProjectInput of process EditUserProject______________________________ 243
Figure 132. Differences between the automatically derived (above) and the manually
refined (below) presentation classes for the navigation class ProjectManager and the
index ProjectIndex __ 245
Figure 133. Manually refined presentation classes ProjectManager and ProjectIndex _ 246
Figure 134. Manually refined presentation classes RemoveProjectInput and
ConfirmRemoveProjectInput __ 246
Figure 135. Manually refined presentation classes UserProject and ScenarioIndex ___ 247
Figure 136. Online starting of a simulation run _______________________________ 249
Figure 137. Offline starting of a simulation run _______________________________ 249
Figure 138. Transformation Content2JavaBeans ______________________________ 250
Figure 139. Screenshots for dynamic navigation to sub navigation classes of Project__ 253
Figure 140. Transformation Navigation2Conf_________________________________ 254
Figure 141. Resulting page after the first part of executing the process RemoveProject 256
Figure 142. Resulting page after the second part of executing the process RemoveProject
___ 257

Figure 143. Token flow when executing process RemoveProject – step 1____________ 258
Figure 144. Token flow when executing process RemoveProject – step 2____________ 259
Figure 145. Token flow when executing process RemoveProject – step 3____________ 259
Figure 146. Token flow when executing process RemoveProject – step 4____________ 260
Figure 147. Token flow when executing process RemoveProject – step 5____________ 260
Figure 148. Token flow when executing process RemoveProject – step 6____________ 261
Figure 149. Token flow when executing process RemoveProject – step 7____________ 261
Figure 150. Token flow when executing process RemoveProject – step 8____________ 262
Figure 151. Transformation Process2Conf ___________________________________ 263
Figure 152. Transformation Presentation2JSP ________________________________ 265
Figure 153. Generated JSP (appearance not yet customized) _____________________ 268
Figure 154. Generated JSP (appearance customized)___________________________ 269

 281

Model Driven Software Engineering for Web Applications

Figure 155. UML Profile for trace modeling _________________________________ 303
Figure 156. UML Profile for requirements modeling___________________________ 304
Figure 157. UML Profile for navigation modeling_____________________________ 305
Figure 158. UML Profile for process modeling _______________________________ 306
Figure 159. UML Profile for presentation modeling (backbone)__________________ 307
Figure 160. UML Profile for presentation modeling (output and static elements) ____ 307
Figure 161. UML Profile for presentation modeling (input elements)______________ 307

 282

Model Driven Software Engineering for Web Applications

9 REFERENCES

 [Abouzahra05] A. Abouzahra, J. Bézivin, M. D. Del Fabro, F. Jouault. A Practical
Approach to Bridging Domain Specific Languages with UML
profiles. In Proceedings of the Best Practices for Model Driven
Software Development at OOPSLA'05, San Diego, California, USA.
2005.

[AGG] The Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg/,
last visited 20.04.2007.

[Agrawal03] A. Agrawal, G. Karsai and F. Shi. Graph Transformations on Domain-
Specific Models. Journal on Software and Systems Modeling, 2003.

[Almeida04] J. P. A. Almeida, R. M. Dijkman, M. van Sinderen, L. F. Pires. On the
Notion of Abstract Platform in MDA Development, EDOC 2004:,
2004.

[Amelunxen06] C. Amelunxen, A. Königs, T. Rötschke, A. Schürr. MOFLON: A
Standard-Compliant Metamodeling Framework with Graph
Transformations. In A. Rensink, J. Warmer (eds.), Model Driven
Architecture - Foundations and Applications: Second European
Conference, Heidelberg: Springer Verlag, 2006; Lecture Notes in
Computer Science (LNCS), Vol. 4066, Springer Verlag, 361--375.

[Andries96] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S.
Kuske, D. Kuske, D. Plump, A. Schürr, and G. Taentzer. Graph
Transformation for Specification and Programming. Technical Report
7/96, Universität Bremen, 1996.

[AndroMDA] http://www.andromda.org/, last visited 20.04.2007.

[ArcStyler] Interactive Objects ArcStyler, http://www.arcstyler.com/, last visited
20.04.2007.

 283

http://tfs.cs.tu-berlin.de/agg/
http://www.andromda.org/
http://www.arcstyler.com/

Model Driven Software Engineering for Web Applications

[ArgoUML] ArgoUML open source UML modeling tool, http://argouml.tigris.org/,
version 0.22, last visited 03.04.2007.

[Atkinson01] C. Atkinson, T. Kühne. The Essence of Multilevel Metamodeling. In
4th International Conference of the Unified Modeling Language,
2001.

[ATL05a] ATLAS INRIA & LINA research group. ATL Starter’s Guide, version
0.1, http://www.eclipse.org/m2m/atl/doc/, December 2005, last visited
20.04.2007.

[ATL05b] ATLAS INRIA & LINA research group. Specification of the ATL
Virtual Machine, version 0.1, http://www.eclipse.org/m2m/atl/doc/,
2005, last visited 20.04.2007.

[ATL05c] ATLAS INRIA & LINA research group. ATL Transformation
Description Template, version 0.1,
http://www.eclipse.org/m2m/atl/doc/, December 2005, last visited
20.04.2007.

[ATL05d] ATLAS INRIA & LINA research group. KM3: Kernel
MetaMetaModel, version 0.3, http://www.eclipse.org/m2m/atl/doc/,
August 2005, last visited 20.04.2007.

[ATL06a] ATLAS INRIA & LINA research group. ATL User Manual, version
0.7, http://www.eclipse.org/m2m/atl/doc/, February 2006, last visited
20.04.2007.

[Baumeister05] H. Baumeister, A. Knapp, N. Koch, G. Zhang. Modelling Adaptivity
with Aspects. In 5th International Conference on Web Engineering
(ICWE 2005), Sydney, Australia, David Lowe and Martin Gaedke
(Eds.). LNCS 3579, ©Springer Verlag, 406-416, July 2005.

[Baresi02] L. Baresi, F. Garzotto, P. Paolini. Meta-modeling Techniques meets
Web Application Design Tools. Proc. of FASE 2002, LNCS 2306,
Springer Verlag, pp. 294-307, 2002.

[Baresi05] L. Baresi, L. Mainetti. Beyond Modeling Notations: Consistency and
Adaptability of W2000 Models. In Proc. Of SAC’05, ACM
Symposium on Applied Computing, Santa Fe, USA, 2005.

 284

http://argouml.tigris.org/
http://www.eclipse.org/gmt/atl/doc/
http://www.eclipse.org/gmt/atl/doc/
http://www.eclipse.org/m2m/atl/doc/
http://www.eclipse.org/m2m/atl/doc/
http://www.eclipse.org/m2m/atl/doc/

Model Driven Software Engineering for Web Applications

[Baresi06] L. Baresi, S. Colazzo, L. Mainetti, and S. Morasca. W2000: A
Modeling Notation for Complex Web Applications. In E. Mendes and
N. Mosley (eds.) Web Engineering, pages 335-408, Springer, 2006.

[Barth04] M. Barth, R. Hennicker. A. Kraus, M. Ludwig: DANUBIA: An
Integrative Simulation System for Global Research in the Upper
Danube Basin, Cybernetics and Systems, Vol.7-8, Pages: 639-666,
Taylor&Francis, Oct.-Dec. 2004.

[Bast04] W. Bast. Software Factories vs. MDA,
http://www.theserverside.net/news/thread.tss?thread_id=30082, posted
on 19.11.2004, last visited 20.04.2007.

[Berners-Lee01] T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific
American, May 2001.

[Bézivin03] J. Bézivin, G. Dupé, F. Jouault, and J. E. Rougui. First experiments
with the ATL model transformation language: Transforming XSLT
into XQuery. In the online proceedings of the OOPSLA’03 Workshop
on Generative Techniques in the Context of the MDA,
http://www.softmetaware.com/oopsla2003/mda-workshop.html, 2003,
last visited 20.04.2007.

[Bézivin05] J. Bézivin. On the Unification Power of Models. Software and System
Modeling (SoSym) 4(2):171—188. 2005.

[Börger03] E. Börger, R. Stärk. Abstract State Machines. A method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[Budinsky03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. J. Grose. Eclipse
Modeling Framework, Addison-Wesley, 2003.

[Cáceres04] P. Cáceres, E. Marcos, B. Vela. A MDA-based Approach for Web
Information Systems, Workshop on Software Model Engineering
(WisME 2004), 2004.

[Cachero02] C. Cachero, J. Gómez. Advanced Conceptual Modeling of Web
Applications: Embedding Operation Interfaces in Navigation Design,
21st International Conference on Conceptual Modeling, El Escorial,
Madrid, November 2002.

 285

http://www.theserverside.net/news/thread.tss?thread_id=30082
http://www.softmetaware.com/oopsla2003/mda-workshop.html

Model Driven Software Engineering for Web Applications

[Cachero03] C. Cachero. OO-H: Una extensión a los métodos OO para el modelado
y generación automática de interfaces hipermediales, PhD Thesis,
http://www.dlsi.ua.es/~ccachero/pTesis.htm, 2003, last visited
20.04.2007.

[Ceri02] S. Ceri, P. Fraternali, M. Brambilla, A. Bongio, S. Comai, M. Matera.
Designing Data-Intensive Web Applications. Morgan Kaufmann,
2002.

[Chen76] P. P.-S. Chen. The Entity-Relationship Model - Toward a Unified
View of Data. In ACM Transactions on Database Systems 1/1/1976
ACM-Press ISSN 0362-5915, 1976.

[Cleaveland01] C. Cleaveland. Program Generators with XML and Java. Prentice-
Hall, 2001.

[Cockburn01] A. Cockburn. Agile Software Development. Addison-Wesley
Professional, 2001.

[Cocoon] Apache Cocoon Project, http://cocoon.apache.org/, 2006, last visited
20.04.2007.

[CSS] W3C Cascading Style Sheets, http://www.w3.org/Style/CSS/, 2006,
last visited 20.04.2007.

[Czarnecki98] K. Czarnecki. Generative Programming: Principles and Techniques of
Software Engineering Based on Automated Configuration and
Fragment-Based Component Models. Ph.D. Thesis, Computer Science
Department, Technical University of Ilmenau, Ilmanau, Germany,
1998

[Czarnecki03] K. Czarnecki, S. Helsen. Classification of Model Transformation
Approaches. In Proceedings of the OOPSLA'03 Workshop on the
Generative Techniques in the Context Of Model-Driven Architecture,
Anaheim, California, USA, 2003.

[Díaz04] O. Díaz and J. Rodríguez. Portlets as Web Components: an
Introduction. Journal of Universal Computer Science, 10(4):454–472,
Apr. 2004.

 286

http://www.dlsi.ua.es/%7Eccachero/pTesis.htm
http://cocoon.apache.org/
http://www.w3.org/Style/CSS/

Model Driven Software Engineering for Web Applications

[Dijkstra76] E. W. Dijkstra: A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

[Djuric04] D. Djurić, D. Gašević, V. Devedžić, V. Damjanović. A UML profile
for OWL ontologies. In Proceedings of Model Driven Architecture:
Foundations and Applications (MDAFA 2004), Linköping, Sweden,
2004.

[Dostal05] W. Dostal, M. Jeckle, I. Melzer, B. Zengler. Service-orientierte
Architekturen mit Web Services. Spektrum Verlag, 2005.

[Ehrig05] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer. Generation of Visual
Editors as Eclipse PlugIns. Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering
(ASE'05), 2005.

[Ehrig06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation. EATCS Monographs in Theoretical
Computer Science, Springer, 2006.

[Escalona04a] M. J. Escalona. Modelos y técnicas para la especificación y el análisis
de la navegación en sistemas software. PhD Thesis, University of
Seville, 2004.

[Escalona04b] M. J. Escalona, N. Koch. Requeriments Engineering for Web
Applications: A Comparative Study. Journal of Web Engineering,
Rinton Press, Vol. 2, No. 3, February 2004, 192-212.

[Escalona06] M. J. Escalona, N. Koch. Metamodelling the Requirements of Web
Systems. In Proc. of 2nd International Conference on Web
Information Systems and Technologies, INSTICC, 310-317, Setubal,
Portugal, April 2006.

[Filman04] R. E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software
Development. Addison-Wesley, 2004.

[Finkelstein02] A. Finkelstein, A. Savigni, G. Kappel, W. Retschitzegger, B. Pöll, E.
Kimmerstorfer, W. Schwinger, T. Hofer, C. Feichtner. Ubiquitous
Web Application Development - A Framework for Understanding,
Proc. of SCI2002, 2002.

 287

Model Driven Software Engineering for Web Applications

[Fons03] J. Fons, V. Pelechano, M. Albert, O. Pastor. Development of Web
Applications from Web Enhanced Conceptual Schemas. In Workshop
on Conceptual Modeling and the Web, ER'03, volume 2813 of Lecture
Notes in Computer Science, Springer, 2003.

[Fowler04a] M. Fowler. Inversion of Control Containers and the Dependency
Injection pattern, http://martinfowler.com/articles/injection.html, last
visited 20.04.2007.

[Fowler04b] M. Fowler. Domains Specific Languages (DSL),
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html,
last visited 20.04.2007.

[Fowler05a] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages?, http://martinfowler.com/articles/language
Workbench.html, last visited 20.04.2007.

[Gall95] H. Gall, M. Hauswirth, R. Klösch. Objektorientierte Konzepte in
Smalltalk, C++, Objective-C, Eiffel und Modula-3, Informatik-
Spektrum 18: 195-202. Springer-Verlag, 1995.

[Gamma95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1995.

[Gardner03] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG
MOF 2.0 Query / Views / Transformations Submissions and
Recommendations towards the final Standard, 2003.

[Garrett05] J. J. Garrett. Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/publications/essays/archives/000385.ph
p, 2005, last visited 20.04.2007.

[Garzotto93] F. Garzotto, P. Paolini, and D. Schwabe. HDM- A Model-Based
Approach to Hypertext Application Design. ACM Transactions on
Information Systems, 11(1):1–26, 1993.

[Gerber02] A. Gerber, M. Lawley, K. Raymond, J. Steel, A. Wood.
Transformation: The Missing Link of MDA, In A. Corradini, H.
Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.): Graph Transformation:
First International Conference (ICGT 2002), Barcelona, Spain,

 288

http://martinfowler.com/articles/injection.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://martinfowler.com/articles/language%20Workbench.html
http://martinfowler.com/articles/language%20Workbench.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

Model Driven Software Engineering for Web Applications

October 7-12, 2002. Proceedings. LNCS vol. 2505, Springer-Verlag,
pp. 90 – 105, 2002.

[GLOWA-Danube] GLOWA-Danube research project, http://www.glowa-danube.de/, last
visited 20.04.2007.

[Greenfield04] J. Greenfield, K. Short. Software Factories: Assembling Applications
with Patterns, Frameworks, Models & Tools, Wiley Publishing, Inc,
2004.

[Harmelen01] M. van Harmelen. Interactive System Design Using Oo&hci Methods,
In Object Modeling and User Interface Design, van Harmelen M.
(Ed), Addison Wesley, 2001.

[Heckel05] R. Heckel. Graph Transformation in a Nutshell. In Language
Engineering for Model-Driven Software Development, Dagstuhl
Seminar Proceedings 04101, 2005.

[Hennicker00] R. Hennicker, N. Koch. A UML-based Methodology for Hypermedia
Design. In A. Evans, S. Stuart, and B. Selic, editors, UML'2000 - The
Unified Modeling Language - Advancing the Standard, LNCS 1939,
York, England, ©Springer Verlag, October 2000.

[Hennicker02] R. Hennicker, M. Barth, A. Kraus, M. Ludwig. DANUBIA: A Web-
based Modeling and Decision Support System for Integrative Global
Change Research in the Upper Danube Basin, in BMBF, German
Programme on Globale Change in the Hydrological Cycle (Phase I,
2000 - 2003), Status Report, S.35-38, 2002.

[Hennicker03] R. Hennicker, M. Barth, A. Kraus, M. Ludwig. An Integrated
Simulation System for Global Change Research in the Upper Danube
Basin First World Congress on Information Technology in
Environmental Engineering, ITEE 2003, 2003.

[Hennicker05] R. Hennicker, S. Janisch, A. Kraus, M. Ludwig, W. Mauser, U.
Strasser, R. Ludwig: DANUBIA: Design and Implementation of an
Integrative Simulation and Decision Support System for the Upper
Danube Basin. In Geophysical Research Abstracts (EGU'05), volume
7, 08908 of Abstracts of the European Geosciences Union General
Assembly. Vienna, Austria, 2005.

 289

http://www.glowa-danube.de/

Model Driven Software Engineering for Web Applications

[Hitz05] M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger. UML@Work,
Dpunkt Verlag, 2005.

[J2EE] The Java EE 5 Tutorial, http://java.sun.com/javaee/5/docs/tutorial/
doc/, 2006, last visited 20.04.2007.

[Jacobson99] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software
Development Process, Addison Wesley, 1999.

[Jamda] Jamda: The Java Model Driven Architecture 0.2,
http://sourceforge.net/projects/jamda/, May 2003.

[JMI] Java Metadata Interface 1.0, http://java.sun.com/products/jmi, July
2002, last visited 20.04.2007.

[JSP] Sun microsystem. Java Server Pages Technology,
http://java.sun.com/products/jsp/index.jsp, last visited 20.04.2007.

[Jouault06a] F. Jouault, I. Kurtev. On the Architectural Alignment of ATL and
QVT. In Proceedings of ACM Symposium on Applied Computing
(SAC 06), model transformation track, Dijon, Bourgogne, France,
2006.

[Jouault06b] F. Jouault. New announcements for ATL’2006. 2nd AMMA/ATL
Workshop on Model Engineering (AWME2),
http://www.sciences.univnantes.fr/lina/atl/www/presentations/awme2/
02%20-%20New%20announcements%20for%20ATL'2006%20
(Jouault).ppt, 2006, last visited 08.12.2006.

[Kappel03a] G. Kappel, B. Pröll, S. Reich, W. Retschizegger. Web Engineering,
dpunkt Verlag, 2003.

[Kappel03b] G. Kappel, B. Pröll, W. Retschitzegger, W. Schwinger. Customisation
for Ubiquitous Web Applications – A Comparison of Approaches,
International Journal of Web Engineering and Technology (IJWET),
Inderscience Publishers, 2003.

[Kleppe03] A. Kleppe, J. Warmer, W. Bast. MDA Explained. The Model Driven
Architecture: Practise and Promise, Addison-Wesley, 2003.

[Knapp03] A. Knapp, N. Koch, F. Moser, G. Zhang. ArgoUWE: A CASE Tool
for Web Applications. In Jolita Ralyté and Colette Roland, editors,

 290

http://java.sun.com/javaee/5/docs/tutorial/%0Bdoc/
http://java.sun.com/javaee/5/docs/tutorial/%0Bdoc/
http://java.sun.com/products/jmi
http://java.sun.com/products/jsp/index.jsp
http://www.sciences.univnantes.fr/lina/atl/www/presentations/awme2/02%20-%20New%20announcements%20for%20ATL'2006%20%0B(Jouault).ppt
http://www.sciences.univnantes.fr/lina/atl/www/presentations/awme2/02%20-%20New%20announcements%20for%20ATL'2006%20%0B(Jouault).ppt
http://www.sciences.univnantes.fr/lina/atl/www/presentations/awme2/02%20-%20New%20announcements%20for%20ATL'2006%20%0B(Jouault).ppt

Model Driven Software Engineering for Web Applications

Proc. 1st Int. Wsh. Engineering Methods to Support Information
Systems Evolution (EMSISE'03), pages 37-50, Genève, 2003.

[Knapp05] A. Knapp, N. Koch, G. Zhang. Modelling the Behaviour of Web
Applications with ArgoUWE. In David Lowe and Martin Gaedke,
editors, Proc. 5th Int. Conf. Web Engineering (ICWE'05), volume
3579 of Lect. Notes Comp. Sci., pages 624-626. ©Springer, Berlin,
2005.

[Knapp06] A. Knapp, G. Zhang. Model Transformations for Integrating and
Validating Web Application Models. In Heinrich C. Mayr and Ruth
Breu, editors, Proc. Modellierung 2006 (MOD'06), volume P-82 of
Lect. Notes Informatics, pages 115-128. Gesellschaft für Informatik,
2006.

[Koch01a] N. Koch. Software Engineering for Adaptive Hypermedia Systems:
Reference Model, Modeling Techniques and Development Process.
PhD Thesis, Ludwig-Maximilians-Universität München, UNI-
DRUCK Verlag, 2001.

[Koch01b] N. Koch, A. Kraus, R. Hennicker. The Authoring Process of the
UML-based Web Engineering Approach. In Daniel Schwabe, editor,
First International Workshop on Web-oriented Software Technology
(IWWOST01), June 2001.

[Koch02a] N. Koch, A. Kraus. The Expressive Power of UML-based Web
Engineering, Proceedings of the 2nd. International Workshop on Web
Oriented Software Technology (IWWOST'2002), Workshop at the
ECOOP'2002, Malaga, 2002.

[Koch03a] N. Koch, A. Kraus, C. Cachero and S. Meliá. Modeling Web Business
Processes with OO-H and UWE, In Third International Workshop on
Web-oriented Software Technology (IWWOST03). D. Schwabe, O.
Pastor, G. Rossi, and L. Olsina (Eds.), 27-50, July 2003.

[Koch04a] N. Koch, A. Kraus, C. Cachero and S. Meliá: Integration of Business
Processes in Web Applications Models, Journal of Web Engineering,
Rinton Press, Vol. 3, No. 1 (2004), 022-049, 2004.

[Koch06a] N. Koch, G. Zhang, M. J. Escalona. Model Transformations from
Requirements to Web System Design. In Proc. of 6th International

 291

Model Driven Software Engineering for Web Applications

Conference on Web Engineering (ICWE 2006), Palo Alto, USA,
ACM Press, July 2006.

[Koch06b] N. Koch. Transformations Techniques in the Model-Driven
Development Process of UWE. In Proc. of 2nd Model-Driven Web
Engineering Workshop (MDWE 2006), Palo Alto, USA, ACM Press
July 2006.

[Kraus02] A. Kraus, N. Koch: Generation of Web Applications from UML
Design Models using an XML Publishing Framework, Proceedings of
the Integrated Design and Process Technology Conference,
IDPT'2002, Pasadena, 2002.

[Kraus03a] A. Kraus, N. Koch: A Metamodel for UWE, Technical Report 0301,
University of Munich, 2003.

[Kraus03b] A. Kraus, N. Koch. Towards a Common Metamodel for the
Development of Web Applications, In Third International Conference
on Web Engineering (ICWE 2003). J.M. Cueva Lovelle, B.M.
Gonzalez Rodriguez, L. Joyanes Aguilar, J.E. Labra Gayo and M.P.
Paule Ruiz, editors, LNCS 2722, Springer Verlag, 497-506, July 2003.

[Kurtev06a] I. Kurtev, K. van den Berg, F. Jouault. Rule-based Modularization in
Model Transformation Languages illustrated with ATL, In
Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC 06). ACM Press, Dijon, France, Model transformation (MT
2006), pages 1202—1209, 2006.

[Lara02] J. de Lara, H. Vangheluwe. AToM3: A Tool for Multi-Formalism
Modelling and Meta-Modelling. In Proc. FASE’02, Springer LNCS
2306, pp. 174 – 188, 2002.

[Lassila99] O. Lassila, R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification, W3C Recommendation,
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, 22 February
1999, last visited 20.04.2007.

[Lieberman01] B. Lieberman. UML Activity Diagrams: Versatile Roadmaps for
Understanding System Behavior, Rational Edge Electronic Magazine
for the Rational Community, 2001.

 292

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Model Driven Software Engineering for Web Applications

[Lima03] F. Lima, D. Schwabe. Application Modeling for the Semantic Web.
Proceedings of LA-Web 2003, Santiago, Chile, IEEE Press, pp. 93-
103, 2003.

[Ludwig02] R. Ludwig, W. Mauser, S. Niemeyer, A. Colgan, R. Stolz, H. Escher-
Vetter, M. Kuhn, M. Reichstein, J. Tenhunen, A. Kraus, M. Ludwig,
M. Barth, R. Hennicker. Web-based Modeling of Water, Energy and
Matter Fluxes to Support Decision Making in Mesoscale Catchments -
the Integrative Perspective of GLOWA-Danube, Physics and
Chemistry of the Earth, 2002.

[Ludwig07] M. Ludwig. Modellierung und Architektur eines integrativen
Umweltsimulationssystems. PhD Thesis, 2007.

[Lundell06] B. Lundell, B. Lings, A. Persson, A. Mattsson. UML Model
Interchange in Heterogeneous Tool Environments: An Analysis of
Adoptions of XMI 2, in MoDELS 2006: Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science 4199,
Springer-Verlag, 2006.

[M2M] Eclipse Model-to-Model Transformation (M2M) Project,
http://www.eclipse.org/m2m/, 2007, last visited 20.04.2007.

[MagicDraw] MagicDraw UML modeling tool, http://www.magicdraw.com/, last
visited 20.04.2007.

[Mahmoud04] G. H. Mahmoud. Using and Programming Generics in J2SE 5.0.
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.h
tml, 2004, last visited 15.11.2006.

[Markopoulos00] P. Markopoulos. Supporting Interaction Design with UML, Task
Modelling, TUPIS’ 2000 Workshop at the UML'2000, 2000.

[Markopoulos02] P. Markopoulos. Modelling User Tasks with the Unified Modelling
Language, 2002.

[Marschall03] F. Marschall and P. Braun. Model Transformations for the MDA with
BOTL. In Proceedings of the Workshop on Model Driven
Architecture: Foundations and Applications, University of Twente,
Enschede, The Netherlands, CTIT Technical Report TR–CTIT–03–27,

 293

http://www.eclipse.org/m2m/
http://www.magicdraw.com/
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html

Model Driven Software Engineering for Web Applications

University of Twente, http://trese.cs.utwente.nl/mdafa2003, 2003, last
visited 20.04.2007.

[McNeile03] A. McNeile. MDA: The Vision with the Hole?
http://www.metamaxim.com/download/documents/MDAv1.pdf, 2003,
last visited 20.04.2007.

[Meliá05a] S. Meliá, A. Kraus, N. Koch. MDA Transformations Applied to Web
Application Development. In 5th International Conference on Web
Engineering (ICWE 2005), Sydney, Australia, David Lowe and
Martin Gaedke (Eds.). LNCS 3579, Springer Verlag, 465-471, July
2005.

[Meliá05b] S. Meliá, J. Gomez. Applying Transformations to Model Driven
Development of Web applications. 1st International Workshop on
Best Practices of UML (ER, 2005) Klagenfurt, Austria, October 2005.

[Meliá06a] S. Meliá, J. Gómez. The WebSA Approach: Applying Model-Driven
Engineering To Web Applications, Journal of Web Engineering
(JWE), 5(2): 121-149, 2006.

[Meliá06b] S. Meliá, J. Gómez. UPT: A Graphical Transformation Language
based on a UML Profile. Proceedings of European Workshop on
Milestones, Models and Mappings for Model-Driven Architecture
(3M4MDA 2006), 2nd European Conference on Model Driven
Architecture (EC-MDA 2006), 2006.

[Mellor02] S. J. Mellor, M. J. Balcer. Executable UML: A Foundation for Model
Driven Architecture. Addison-Wesley Professional, 2002.

[Miller03] J. Miller, J. Mukerji. MDA Guide, Object Management Group
(OMG), Inc, Version 1.0.1, 2003.

[Moreno05a] N. Moreno, A. Vallecillo. Modeling Interactions between Web
Applications and Third Party Systems . In Proc. of the V International
Workshop on Web Oriented Software Technologies (IWWOST'05),
Porto, Portugal, June 13, 2005.

[Moreno05b] N. Moreno, R. Romero, A. Vallecillo. Incorporating Cooperative
Portlets in Web Application Development. In Proc. of the Workshop

 294

http://trese.cs.utwente.nl/mdafa2003
http://www.metamaxim.com/download/documents/MDAv1.pdf

Model Driven Software Engineering for Web Applications

on Model-driven Web Engineering (MDWE 2005), pp. 70-79,
Sydney, Australia, July 26, 2005.

[Moreno05c] N. Moreno, A. Vallecillo. A Model-based Approach for Integrating
Third Party Systems with Web Applications. In Proc. of the
International Conference on Web Engineering (ICWE 2005), Sydney,
Australia, July 2005. LNCS 3579, 441-452, Springer-Verlag.

[Moreno06] N. Moreno, P. Fraternalli, A. Vallecillo. A UML 2.0 Profile for
WebML Modeling, In Proc. of 2nd Model-Driven Web Engineering
Workshop (MDWE 2006), ACM, Palo Alto, USA, July 2006, to
appear.

[Muller05] P.-A. Muller, P. Studer, F. Fondement, J. Bézivin. Platform
independent Web application modeling and development with
Netsilon. Software & System Modeling, 4(4), Nov. 2005.

[Muñoz05] J. Muñoz, V. Pelechano. MDA vs Factorías de Software. In
Proceedings of DSDM05, Granada, Spain, September 2005.

[NetBeans] NetBeans, http://www.netbeans.org/, last visited 20.04.2007.

[Nunes00] J.N. Nunes, J.F. Cunha. Towards a UML Profile for Interaction
Design: The Wisdom approach, Proceedings of the Unified Modeling
Language Conference, UML´2000, Evans A. and Kent S. (Eds.).
LNCS 1939, Springer Publishing Company, 2000.

[Nunes06] D. A. Nunes, D. Schwabe. Rapid prototyping of web applications
combining domain specific languages and model driven design. In
Proc. of 6th International Conference on Web Engineering (ICWE
2006), Palo Alto, USA, ACM Press, July 2006.

[NSMDF] Novosoft Metadata Framework and UML library,
http://nsuml.sourceforge.net/, last visited 20.04.2007.

[O’Reilly05] T. O’Reilly. What Is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software. http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html, 2005, last
visited 20.04.2007.

 295

http://www.netbeans.org/
http://nsuml.sourceforge.net/
http://www.oreillynet.com/%20pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/%20pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Model Driven Software Engineering for Web Applications

[OAW] openArchitectureWare platform,
http://www.openarchitectureware.org, last visited 10.08.2006.

[OMG02] Object Management Group (OMG). QVT MOF 2.0
Query/Views/Transformations RFP, October 2002.

[OMG05a] Object Management Group (OMG). Unified Modeling Language
(UML), Version 2.0, Superstructure: http://www.omg.org/cgi-
bin/doc?formal/05-07-04, Infrastructure: http://www.omg.org/cgi-
bin/doc?formal/05-07-05, 2005, last visited 20.04.2007.

[OMG05b] Object Management Group (OMG). MOF Query/ Views/
Transformations, Final Adopted Specification,
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01, 2005, last visited
20.04.2007.

[OMG05c] Object Management Group (OMG). MOF 2.0 / XMI Mapping
Specification, Version 2.1, http://www.omg.org/cgi-
bin/doc?formal/2005-09-01, 2005, last visited 20.04.2007.

[OMG06a] Object Management Group (OMG). Meta Object Facility Core
Specification, Version 2.0, http://www.omg.org/cgi-
bin/doc?formal/2006-01-01, 2006, last visited 20.04.2007.

[OMG06b] Object Management Group (OMG). Object Constraint Language
Specification, Version 2.0. http://www.omg.org/cgi-
bin/doc?formal/2006-05-01, 2006, last visited 20.04.2007.

[OMG06c] Object Management Group (OMG). Business Process Modeling
Notation Specification. http://www.omg.org/docs/dtc/06-02-01.pdf,
2006, last visited 20.04.2007.

[OptimalJ] Compuware OptimalJ. Model-driven development for Java,
http://www.compuware.com/products/optimalj/default.htm, last
visited 20.04.2007.

[Pastor01] O. Pastor, J. Gomez, E. Insfran, V. Pelechano. The OO-Method
Approach for Information Systems Modelling: From Object-Oriented
Conceptual Modeling to Automated Programming. Information
Systems 26, pp 507–534, 2001.

 296

http://www.openarchitectureware.org/
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/docs/dtc/06-02-01.pdf
http://www.compuware.com/products/optimalj/default.htm

Model Driven Software Engineering for Web Applications

[Paternò00] F. Paternò. ConcurTaskTrees and UML: how to marry them?,
TUPIS’2000 Workshop at the UML'2000, 2000.

[Poseidon] Gentleware Poseidon for UML, http://www.gentleware.com/, last
visited 20.04.2007.

[Priese03] L. Priese, H. Wimmel. Theoretische Informatik - Petri Netze, Springer
Verlag, 2003

[QVTP03] QVT Partners. Initial Submission for MOF 2.0
Query/View/Transformations RFP, QVT-Partners, http://qvtp.org/,
2003, last visited 20.04.2007.

[Reenskaug79] T. M. H. Reenskaug. Models - Views – Controllers. Xerox PARC,
technical note, December 1979.

[Retalis02] S. Retalis, A. Papasalourus, M. Skordalakis. Towards a generic
conceptual design meta-model for web-based educational applications.
2nd. International Workshop on Web oriented Software Technology
(IWWOST´02), CYTED, 2002.

[RMI] Sun Microsystems. Remote Method Invocation.
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp, last
visited 20.04.2007.

[Ruscio06] Davide Di Ruscio, Frédéric Jouault, Ivan Kurtev, Jean Bézivin,
Alfonso Pierantonio. Extending AMMA for Supporting Dynamic
Semantics Specifications of DSLs, Hyper Article Online,
http://hal.ccsd.cnrs.fr, 2006, last visited 20.04.2007.

[Schauerhuber06a] A. Schauerhuber. aspectUWA: Applying Aspect-Orientation to the
Model-Driven Development of Ubiquitous Web Applications. Student
Extravaganza: Spring School, AOSD'06, Bonn, Germany, March 19,
2006.

[Schauerhuber06b] A. Schauerhuber, M. Wimmer, E. Kapsammer. Bridging existing Web
Modeling Languages to Model-Driven Engineering: A Metamodel for
WebML, In Proc. of 2nd Model-Driven Web Engineering Workshop
(MDWE 2006), ACM, Palo Alto, USA, July 2006.

 297

http://www.gentleware.com/
http://qvtp.org/
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://hal.ccsd.cnrs.fr/

Model Driven Software Engineering for Web Applications

[Schmidt06] D.C. Schmidt. Model-Driven Engineering, IEEE Computer 39 (2),
2006.

[Schürr89] A. Schürr. Introduction to PROGRES, an Attribute Graph Grammar
Based Specification Language. In Proceedings WG'89 Workshop on
Graph-Theoretic Concepts in Computer Science, LNCS 411, Springer
Verlag, 1989.

[Schwaabe98] D. Schwabe, G. Rossi. An Object Oriented Approach to Web-based
Application Design, Theory and Practice of Object Systems 4(4),
Wiley and Sons, New York, 1998.

[Soley97] R. Soley et. al. Object Management Architecture Guide,
http://doc.omg.org/ab/97-05-05, 1997, last visited 20.04.2007.

[Spring] Spring Framework, http://www.springframework.org/, last visited
20.04.2007.

[Stiegler02] S. Stiegler. Entwicklung eines Generators zur semiautomatischen
Erzeugung von Webanwendungen aus UML Design Modellen,
Diplomarbeit, Ludwig-Maximilians-Universität München, 2002

[Sun02] Sun Microsystems, Inc. Sun ONE Architecture Guide,
http://www.sun.com/software/sunone/docs/arch/, 2002, last visited
20.04.2007.

[Sun06a] Sun Microsystems, Inc. JavaBeans Specification,
http://java.sun.com/products/javabeans/docs/spec.html, 2006, last
visited 20.04.2007.

[Szyperski02] C. Szyperski. Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 2002

[Tekinerdogan04] B. Tekinerdoğan, S. Bilir, C. Abatlevi. Integrating Platform Selection
Rules in the Model Driven Architecture Approach, In Proceedings of
Model Driven Architecture: Foundations and Applications (MDAFA
2004), Linköping, Sweden, 2004.

[Thomas06] D. Thomas, D. Heinemeier Hansson, L. Breedt. Agile Web
Development with Rails, Pragmatic Programmers, 2006.

 298

http://doc.omg.org/ab/97-05-05
http://www.springframework.org/
http://www.sun.com/software/sunone/docs/arch/
http://java.sun.com/products/javabeans/docs/spec.html

Model Driven Software Engineering for Web Applications

[Torres06] V. Torres, V. Pelechano, P. Giner. Generación de aplicaciones Web
basadas en procesos de negocio mediante transformación de modelos,
Jornadas de Ingeniería de Software y Base de Datos (JISBD), XI,
Barcelona, Spain, 2006.

[UWE] UML-based Web Engineering approach (UWE) homepage,
http://www.pst.ifi.lmu.de/projekte/uwe/, last visited 20.04.2007.

[Valderas05] P. Valderas, J. Fons, V. Pelechano. From Web Requirements to
Navigational Design – A Transformational Approach. International
Conference on Web Engineering (ICWE 2005), LNCS 3579, pp. 506-
511, Sydney, 2005.

[VIATRA] VIATRA 2 Model Transformation Framework User’s Guide,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt-
home/subprojects/VIATRA2/index.html, May 2006, last visited
20.04.2007.

[W3C02] W3C Web Services Activity, http://www.w3.org/2002/ws/, 2002, last
visited 20.04.2007.

[Wagelaar05] D. Wagelaar, V. Jonckers. Explicit Platform Models for MDA. In
Proceedings of the ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2005).
Springer-Verlag, Montego Bay, Jamaica, pages 367—381. 2005.

[Weis04] T. Weis. Model-Driven Development of QoS-Enabled Distributed
Applications, PhD Thesis, Technische Universität Berlin, 2004

[Willink03] E. D. Willink. UMLX: A graphical transformation language for MDA.
In Proceedings of the Workshop on Model Driven Architecture:
Foundations and Applications, University of Twente, Enschede, The
Netherlands, CTIT Technical Report TR–CTIT–03–27, University of
Twente, http://trese.cs.utwente.nl/mdafa2003, 2003, last visited
20.04.2007.

[XDE] Rational XDE, http://www.rational.com/products/xde, last visited
20.04.2007.

[XSLT] W3C. XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt, last visited 20.04.2007.

 299

http://www.pst.ifi.lmu.de/projekte/uwe/
http://dev.eclipse.org/viewcvs/indextech.cgi/%7Echeckout%7E/gmt-home/subprojects/VIATRA2/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/%7Echeckout%7E/gmt-home/subprojects/VIATRA2/index.html
http://www.w3.org/2002/ws/
http://trese.cs.utwente.nl/mdafa2003
http://www.rational.com/products/xde
http://www.w3.org/TR/xslt

Model Driven Software Engineering for Web Applications

[Zhang05] G. Zhang, H. Baumeister, N. Koch, A. Knapp. Aspect-Oriented
Modeling of Access Control in Web Applications. In Proc. 6th Int.
Wsh. Aspect Oriented Modeling (WAOM'05), Chicago, 2005.

 300

Model Driven Software Engineering for Web Applications

A UML PROFILE

This section comprises the UML profile definition for platform independent analysis and
design of Web applications. This profile is used as a notation for the metamodel presented
in Chapter 4, see 2.2.4. First, a tabular overview of all stereotypes is presented. Then the
profile definition is presented separately for each concern of a Web application by using
the diagrammatic notation of the UML itself as described in [OMG05a]. Additionally, no-
tation shortcuts are defined, in order to ease the construction of models and to improve the
readability of diagrams using the profile notation.

The metamodel was mapped to the profile following these guidelines:

• Each metaclass is mapped to a stereotype. The name of the metaclass is mapped to
the name of the stereotype by converting the name of the metaclass to a lower case
representation and inserting spaces for each new word (indicated by a change from
a lower case to an upper letter with the exception of acronyms) within the name of
the metaclass.

• Inheritance between metaclasses is mapped to inheritance between stereotypes

• The base class of a stereotype (extension relationship denoted by a filled arrow
head) is derived from the metamodel definition where the base UML metaclass was
defined

• An attribute of a metaclass is mapped to an attribute of a stereotype, maintaining
the defined multiplicities and ordering. Visibilities are not relevant at the meta-
model level.

• The type of an attribute of a metaclass is mapped to the same type for the attribute
of the stereotype for primitive types

• Non primitive attributes of a metaclass, i.e. meta association ends, are mapped to
strings. The string value refers to the full qualified name of the referenced element
as defined in the UML specification. Note that although it is also possible to use

 301

Model Driven Software Engineering for Web Applications

stereotyped dependencies for references between model elements, in most model-
ing tools it is not possible to “draw” such a dependency between arbitrary types of
elements. For instance, in the majority of cases it is not possible to establish a de-
pendency relationship between the ends of an association.

• Derived meta attributes are not mapped to the profile

A.1 Tabular Overview

For each metaclass the corresponding base class from the UML metamodel and the as-
signed stereotype is listed in the following table:

Metaclass Baseclass Stereotype Remarks

Anchor Class «anchor»

Edit UseCase «edit»

EnumerationInput Class «enumeration input»

GuidedTour Class «guided tour»

Image Class «image»

Index Class «index»

Menu Class «menu»

Navigation Class «navigation»

NavigationClass Class «navigation class»

NavigationLink Association «navigation link» Can be omitted

NavigationProperty Property «navigation property» Can be omitted

PresentationClass Class «presentation class »

PresentationProperty Property «presentation property» Can be omitted

ProcessActivity Activity «process activity»

 302

Model Driven Software Engineering for Web Applications

ProcessClass Class «process class»

ProcessLink Association «process link»

ProcessProperty Property «process property» Can be omitted

Query Class «query»

Selection Class «selection»

SimpleProcess UseCase «simple process»

StaticImage Class «static image»

StaticText Class «static text»

Text Class «text»

TextInput Class «text input»

TransformationTrace Abstraction «transformation trace»

UserAction Action «user action»

WebProcess UseCase «web process»

A.2 Trace

The stereotypes for trace modeling are depicted in Figure 155. The filled arrow head de-
notes the extension relationship between a metaclass and a stereotype.

<<stereotype>>
transformat ion trace

<<metaclass>>
Abstraction

Figure 155. UML Profile for trace modeling

 303

Model Driven Software Engineering for Web Applications

A.3 Requirements

The stereotypes for requirements modeling are depicted in Figure 156.

<<stereotype>>
edit

<<stereotype>>
web process

<<metaclass>>
UseCase

<<stereotype>>
simple process

<<stereotype>>
navigation

<<stereotype>>
web use case

Figure 156. UML Profile for requirements modeling

A.4 Navigation

The stereotypes for navigation modeling are depicted in Figure 157.

 304

Model Driven Software Engineering for Web Applications

<<stereotype>>
access primitive

accessedProperties : String [*]{ordered}

<<stereotype>>
query

filterExpression : String [1]

<<stereotype>>
navigation property

contentProperties : S tring [*]
der ivationExpression : Str ing [0..1]

<<stereotype>>
link

isAutomatic : Boolean = false
guard : S tring = true

<<stereotype>>
node

isHome : Boolean = false
isLandmark : Boolean = false

<<stereotype>>
guided tour

sortExpression : String [0..1]

<<stereotype>>
menu

<<stereotype>>
navigation class

contentClass : String [1]

<<stereotype>>
navigation link

<<stereotype>>
index

<<metaclass>>
Class

<<metaclass>>
Property

<<metaclass>>
Association

Figure 157. UML Profile for navigation modeling

Notation Shortcuts

• The attribute contentClass of the stereotype navigation class may be omitted if the
content class has the same unique name as the navigation class

• The stereotype navigation property may be omitted. Additionally, the attribute con-
tentProperties may then be omitted if a property with the same name exists in the
corresponding content class.

A.5 Process

The stereotypes for trace modeling are depicted in Figure 158.

 305

Model Driven Software Engineering for Web Applications

<<stereotype>>
process property

editProperty : S tring [0..1]
rangeExpression : String [0..1]

<<stereotype>>
process class

contentClass : String [0 ..1]

<<stereotype>>
user action

processClass : String

<<stereotype>>
process activity

<<stereotype>>
process link

<<metaclass>>
Activ ity

<<metaclass>>
Action

<<stereotype>>
node

<<stereotype>>
link

<<metaclass>>
Property

Figure 158. UML Profile for process modeling

Notation Shortcuts

• The attribute processClass of the stereotype user action may be omitted if a process
class with the same name is contained in the main process class associated to the
process activity

• The stereotype process property may be omitted. Additionally, if the attribute edit-
Property is omitted and a property with the same name exists in the corresponding
content class (if any) then this property is assumed to be the edit property.

A.6 Presentation

The stereotypes for trace modeling are depicted in Figure 159 to Figure 161.

 306

Model Driven Software Engineering for Web Applications

navigationProperty : String [0..1]

<<stereotype>>
presentation property

<<stereotype>>
ui element

cssClass : String [0 ..1]
cssStyle : String [0..1]

<<stereotype>>
presentat ion class

node : String
format : String [0..1]
cssClass : S tring [0..1]
cssStyle : Str ing [0..1]

<<stereotype>>
anchor

format : String [0..1]

<<stereotype>>
output element

<<stereotype>>
static e lement

<<stereotype>>
input element

<<metaclass>>
Class

<<metaclass>>
Property

Figure 159. UML Profile for presentation modeling (backbone)

<<stereotype>>
output element

<<stereotype>>
static element

<<stereotype>>
static text

text : String

<<stereotype>>
text

<<stereotype>>
image

<<stereotype>>
static image

url : S tring [0..1] u rl : S tring

Figure 160. UML Profile for presentation modeling (output and static elements)

<<ste reotype>>
enumeration input

<<stereotype>>
selection

<<stereo type>>
input element

<<stereo type>>
text input

format : String [0 ..1]

Figure 161. UML Profile for presentation modeling (input elements)

 307

Model Driven Software Engineering for Web Applications

Notation Shortcuts

• The attribute node of the stereotype presentation class may be omitted if the pres-
entation class has the same unique name as the node

• The stereotype presentation property may be omitted. Additionally, if the attribute
navigationProperty is omitted and a property with the same name exists in the cor-
responding node (if any) then this property is assumed to be the navigation prop-
erty.

 308

Model Driven Software Engineering for Web Applications

B ATL TRANSFORMATIONS

In this chapter of the appendix the technical details about the transformations presented in
this work are given. First, the details about the technical setup of the transformation envi-
ronment is presented. Then, all of the used metamodels are presented in the KM3 represen-
tation (see 2.3.3.4) as used in the transformation environment, together with the implemen-
tation of the constraint checking queries and the serialization queries for the platform spe-
cific metamodels. Finally, all of the PIM2PIM and the PIM2PSM transformations pre-
sented in this work are listed with all technical details.

B.1 Transformation Environment Setup

This section lists the exact setup of the ATL transformation environment. It is important to
stick to the exact versions of all participating software components. The transformation
environment is based on Eclipse v3.1 and the following plug-ins have to be installed.
Eclipse and all of the plug-in are available at http://www.eclipse.org.

• EMF v2.1

• UML2 v1.1.0

For the ATL environment the following modules have to be checked out from the public
CVS repository :pserver:anonymous@dev.eclipse.org:/cvsroot/technology for the date
12.12.2006:

• org.atl.eclipse.adt.builder

• org.atl.eclipse.adt.debug

• org.atl.eclipse.adt.doc.developer

• org.atl.eclipse.adt.doc.user

 309

Model Driven Software Engineering for Web Applications

• org.atl.eclipse.adt.editor

• org.atl.eclipse.adt.perspective

• org.atl.eclipse.adt.wizard

• org.atl.eclipse.engine

• org.atl.eclipse.km3

• org.atl.eclipse.mgm

• org.atl.engine.repositories.emf4atl

• org.atl.engine.repositories.mdr4atl

• org.atl.engine.vm

• org.eclipse.am3.core

• org.eclipse.am3.tools.tge

• org.eclipse.am3.ui

• org.eclipse.am3.zoos.atlantic

• org.eclipse.gmt.atl.atl2006

• org.eclipse.gmt.atl.oclquery.core

Further official installation instructions are available at http://www.eclipse.org/m2m/atl/.

B.2 Metamodels

In the following the “implementation” for the metamodels used in this work is presented.
This comprises the UWE metamodel for the platform independent analysis and design de-
scribed in Chapter 4 as well as the metamodels representing technologies for the platform
specific implementation described in Chapter 5. For each metamodel the corresponding
KM3 representation is given. The Kernel MetaMetaModel (KM3) [ATL05d] allows the
definition of metamodels in an easy Java-like textual notation, and a number of standard

 310

Model Driven Software Engineering for Web Applications

bridges allow the conversion to other metamodel formats. Additionally, the corresponding
constraint checking ATL query is presented. Finally, for all platform specific metamodels
the corresponding serialization query to code is listed.

B.2.1 UWE Metamodel

This section comprises the “implementation” of the UWE metamodel for the platform in-
dependent analysis and design described in Chapter 4.

B.2.1.1 KM3 Metamodel

For the definition of the UWE metamodel in the KM3 format first the UML 2 Ecore
metamodel was translated to a KM3 representation. Ecore corresponds directly to a subset
of MOF called Essential MOF or EMOF [OMG06a], see also 2.2.2. Then this metamodel
was extended in a conservative way with UWE specific constructs. Conservative means
that the UML 2 part of the metamodel was not changed. The following KM3 source lists
the UWE specific elements. Note that KM3 does not allow to specify initialization values.

package UWE
{
 -- UWE SPECIFIC ELEMENTS

 -- TRACE

 class TransformationTrace extends Abstraction
 {
 }

 -- REQUIREMENTS

 abstract class WebUseCase extends UseCase
 {
 }

 class Navigation extends WebUseCase
 {
 }

 class WebProcess extends WebUseCase
 {
 }

 class Edit extends WebProcess

 311

Model Driven Software Engineering for Web Applications

 {
 }

 class SimpleProcess extends WebProcess
 {
 }

 -- CONTENT

 -- NAVIGATION

 abstract class NavigationNode extends Class
 {
 attribute isHome : Boolean;
 attribute isLandmark : Boolean;
 }

 class NavigationClass extends NavigationNode
 {
 reference contentClass : Class;
 }

 class NavigationProperty extends Property
 {
 reference contentProperties[*] : Property;
 attribute derivationExpression[0-1] : String;
 }

 abstract class Link extends Association
 {
 attribute isAutomatic : Boolean;
 attribute guard : String;
 }

 class NavigationLink extends Link
 {
 }

 class Menu extends NavigationClass
 {
 }

 abstract class AccessPrimitive extends NavigationNode
 {
 }

 312

Model Driven Software Engineering for Web Applications

 class Index extends AccessPrimitive
 {
 }

 class GuidedTour extends AccessPrimitive
 {
 }

 class Query extends AccessPrimitive
 {
 }

 -- PROCESS

 class ProcessClass extends NavigationNode
 {
 reference contentClass[0-1] : Class;
 }

 class ProcessProperty extends Property
 {
 reference editProperty[0-1] : Property;
 attribute rangeExpression[0-1] : String;
 }

 class ProcessLink extends Link
 {
 }

 class ProcessActivity extends Activity
 {
 }

 class UserAction extends Action
 {
 reference processClass : ProcessClass;
 }

 -- PRESENTATION

 class PresentationClass extends Class
 {
 attribute format[0-1] : String;
 attribute cssClass : String;
 attribute cssStyle : String;
 reference node : NavigationNode;

 313

Model Driven Software Engineering for Web Applications

 }

 class PresentationProperty extends Property
 {
 reference navigationProperty : Property;
 }

 class UIElement extends Class
 {
 attribute cssClass : String;
 attribute cssStyle : String;
 }

 class Anchor extends UIElement
 {
 attribute format[0-1] : String;
 }

 abstract class OutputElement extends UIElement
 {
 }

 class Text extends OutputElement
 {
 }

 class Image extends OutputElement
 {
 attribute url[0-1] : String;
 }

 abstract class InputElement extends UIElement
 {
 }

 class TextInput extends InputElement
 {
 }

 class EnumerationInput extends InputElement
 {
 }

 class Selection extends InputElement
 {
 attribute format[0-1] : String;

 314

Model Driven Software Engineering for Web Applications

 }

 abstract class StaticElement extends UIElement
 {
 }

 class StaticText extends StaticElement
 {
 attribute text : String;
 }

 class StaticImage extends StaticElement
 {
 attribute url : String;
 }

}

B.2.1.2 Constraint Checking Query

This section comprises the implementation of the constraint checking query for checking
the well-formedness of UWE models as described in 4.1.1. Diagrammatic (or implicit) and
explicit constraints are distinguished. Diagrammatic constraints have been defined implic-
itly in the corresponding diagrams representing the metamodel. On the other hand explicit
constraints have been defined using OCL class invariants.

query CheckConstraints =

-- REQUIREMENTS

-- diagrammatic constraints

-- explicit constraints

 UWE!WebUseCase.allInstances()->forAll(x | x.assert(
 x.check_WebUseCaseContentClass(), 'WebUseCaseContentClass')) and
 UWE!WebUseCase.allInstances()->forAll(x | x.assert(
 x.check_WebUseCaseTarget(), 'WebUseCaseTarget')) and
 UWE!Navigation.allInstances()->forAll(x | x.assert(
 x.check_NavigationTarget(), 'NavigationTarget')) and
 UWE!Edit.allInstances()->forAll(x | x.assert(
 x.check_EditTarget(), 'EditTarget')) and

-- NAVIGATION

 315

Model Driven Software Engineering for Web Applications

-- diagrammatic constraints

 UWE!NavigationClass.allInstances()->forAll(x | x.assert(
 x.check_NavigationClassContentClassDefined(),
 'NavigationClassContentClassDefined')) and
 UWE!NavigationLink.allInstances()->forAll(x | x.assert(
 x.check_LinkSource(), 'LinkSource')) and
 UWE!NavigationLink.allInstances()->forAll(x | x.assert(
 x.check_LinkTarget(), 'LinkTarget')) and

-- explicit constraints

 UWE!Namespace.allInstances()->forAll(x | x.assert(
 x.check_NamespaceUniqueHomeNode(), 'NamespaceUniqueHomeNode')) and
 UWE!NavigationNode.allInstances()->forAll(x | x.assert(
 x.check_NodeHomeOrLandmark(), 'NodeHomeOrLandmark')) and
 UWE!NavigationNode.allInstances()->forAll(x | x.assert(
 x.check_NodeReachability(), 'NodeReachability')) and
 UWE!NavigationNode.allInstances()->forAll(x | x.assert(
 x.check_NodeInheritance(), 'NodeInheritance')) and
 UWE!NavigationClass.allInstances()->forAll(x | x.assert(
 x.check_NavigationClassOwnedAttributeType(),
 'NavigationClassOwnedAttributeType')) and
 UWE!NavigationProperty.allInstances()->forAll(x | x.assert(
 x.check_NavigationPropertyType(), 'NavigationPropertyType')) and
 UWE!Link.allInstances()->forAll(x | x.assert(
 x.check_LinkMembers(), 'LinkMembers')) and
 UWE!AccessPrimitive.allInstances()->forAll(x | x.assert(
 x.check_AccessPrimitiveIncoming(), 'AccessPrimitiveIncoming')) and
 UWE!AccessPrimitive.allInstances()->forAll(x | x.assert(
 x.check_AccessPrimitiveOutgoing(), 'AccessPrimitiveOutgoing')) and
 UWE!Index.allInstances()->forAll(x | x.assert(
 x.check_IndexOutgoing(), 'IndexOutgoing')) and
 UWE!GuidedTour.allInstances()->forAll(x | x.assert(
 x.check_GuidedTourOutgoing(), 'GuidedTourOutgoing')) and
 UWE!Query.allInstances()->forAll(x | x.assert(
 x.check_QueryOutgoing(), 'QueryOutgoing')) and

-- PROCESS

-- PROCESS INTEGRATION

-- diagrammatic constraints

-- explicit constraints

 316

Model Driven Software Engineering for Web Applications

 UWE!ProcessClass.allInstances()->forAll(x | x.assert(
 x.check_ProcessClassLinkTypes(), 'ProcessClassLinkTypes')) and
 UWE!ProcessClass.allInstances()->forAll(x | x.assert(
 x.check_ProcessClassLinkCount(), 'ProcessClassLinkCount')) and
 UWE!ProcessClass.allInstances()->forAll(x | x.assert(
 x.check_ProcessClassWebProcess(), 'ProcessClassWebProcess')) and
 UWE!ProcessLink.allInstances()->forAll(x | x.assert(
 x.check_ProcessLinkEnds(), 'ProcessLinkEnds')) and

-- PROCESS DATA AND FLOW

-- diagrammatic constraints

 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityContext(), 'ProcessActivityContext')) and
 UWE!UserAction.allInstances()->forAll(x | x.assert(
 x.check_UserActionProcessClassDefined(), 'UserActionProcessClassDefined')) and

-- explicit constraints

 UWE!ProcessProperty.allInstances()->forAll(x | x.assert(
 x.check_ProcessPropertyType(), 'ProcessPropertyType')) and
 UWE!ProcessProperty.allInstances()->forAll(x | x.assert(
 x.check_ProcessPropertyEditProperty(), 'ProcessPropertyEditProperty')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityProcessClass(), 'ProcessActivityProcessClass')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityParameter(), 'ProcessActivityParameter')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityInputParameter(), 'ProcessActivityInputParameter')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityOutputParameter(), 'ProcessActivityOutputParameter')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityFinalNode(), 'ProcessActivityFinalNode')) and
 UWE!ProcessActivity.allInstances()->forAll(x | x.assert(
 x.check_ProcessActivityInitialNode(), 'ProcessActivityInitialNode')) and
 UWE!UserAction.allInstances()->forAll(x | x.assert(
 x.check_UserActionInput(), 'UserActionInput')) and
 UWE!UserAction.allInstances()->forAll(x | x.assert(
 x.check_UserActionOutput(), 'UserActionOutput')) and

-- PRESENTATION

-- diagrammatic constraints

 317

Model Driven Software Engineering for Web Applications

 UWE!PresentationClass.allInstances()->forAll(x | x.assert(
 x.check_PresentationClassNodeDefined(), 'PresentationClassNodeDefined')) and
 UWE!PresentationProperty.allInstances()->forAll(x | x.assert(
 x.check_PresentationPropertyContainment(), 'PresentationPropertyContainment')) and

 -- explicit constraints

 UWE!NavigationNode.allInstances()->forAll(x | x.assert(
 x.check_NodePresentationClassDefined(), 'NodePresentationClassDefined')) and
 UWE!PresentationClass.allInstances()->forAll(x | x.assert(
 x.check_PresentationClassInheritance(), 'PresentationClassInheritance')) and
 UWE!PresentationProperty.allInstances()->forAll(x | x.assert(
 x.check_PresentationPropertyType(), 'PresentationPropertyType')) and
 UWE!PresentationProperty.allInstances()->forAll(x | x.assert(
 x.check_PresentationPropertyNavigationProperty(),
 'PresentationPropertyNavigationProperty')) and
 UWE!UIElement.allInstances()->forAll(x | x.assert(
 x.check_UIElementInheritance(), 'UIElementInheritance')) and
 UWE!UIElement.allInstances()->forAll(x | x.assert(
 x.check_UIElementContainment(), 'UIElementContainment'))

 ;

uses UWEHelpers;

helper context UWE!NamedElement def : assert(checkResult : Boolean, constraintName : String)
: Boolean =
 if checkResult then true else
 false.debug(self.oclType().toString() + ' ' + self.fullName() + ' Constraint ' + constraintName)
 endif;

-- REQUIREMENTS

-- diagrammatic constraints

-- explicit constraints

helper context UWE!WebUseCase def : check_WebUseCaseContentClass() : Boolean =
 self.subject->select(c | c.oclIsTypeOf(UWE!Class))->size() = 1;

helper context UWE!WebUseCase def : check_WebUseCaseTarget() : Boolean =
 UWE!Association.allInstances()->
 select(a | a.endType->size() = 2 and a.endType->includes(self))->
 collect(a | a.endType->excluding(self)->first())->
 select(t | t.oclIsTypeOf(UWE!Class))->size() <= 1;

 318

Model Driven Software Engineering for Web Applications

helper context UWE!Navigation def : check_NavigationTarget() : Boolean =
 let target : UWE!Class = self.target() in
 if target.oclIsUndefined() then false else
 let contentClass : UWE!Class = self.contentClass() in
 if contentClass.oclIsUndefined() then true else -- other constraint violated
 contentClass.ownedAttribute->exists(p | p.type = target)
 endif
 endif;

helper context UWE!Edit def : check_EditTarget() : Boolean =
 self.target().oclIsUndefined();

-- NAVIGATION

-- diagrammatic constraints

helper context UWE!NavigationClass def : check_NavigationClassContentClassDefined()
 : Boolean =
 not self.contentClass.oclIsUndefined();

helper context UWE!Link def : check_LinkSource() : Boolean = not self.source().oclIsUndefined();

helper context UWE!Link def : check_LinkTarget() : Boolean = not self.target().oclIsUndefined();

-- explicit constraints

helper context UWE!Namespace def : check_NamespaceUniqueHomeNode() : Boolean =
 self.member->select(e | e.oclIsKindOf(UWE!NavigationNode))->
 select(n | n.isHome)->size() <= 1;

helper context UWE!NavigationNode def : check_NodeHomeOrLandmark() : Boolean =
 self.isHome or self.isLandmark implies self.oclIsKindOf(UWE!NavigationClass);

helper context UWE!NavigationNode def : check_NodeReachability() : Boolean =
 not (self.isHome or self.isLandmark) implies (
 let allNodes : Set(UWE!NavigationNode) = self.allParents()->including(self) in
 UWE!NavigationNode.allInstances()->exists(n | n.ownedAttribute->
 exists(p | allNodes->includes(p.type))));

helper context UWE!NavigationNode def : check_NodeInheritance() : Boolean =
 if self.oclIsKindOf(UWE!NavigationClass) then
 self.parents()->forAll(sn | if sn.oclType() = self.oclType() then
 if sn.contentClass.oclIsUndefined() or self.contentClass.oclIsUndefined() then
 true else -- other constraints already fails then
 self.contentClass.conformsTo(sn.contentClass)
 endif

 319

Model Driven Software Engineering for Web Applications

 else false endif)
 else self.parents()->isEmpty() endif;

helper context UWE!NavigationClass def : check_NavigationClassOwnedAttributeType()
 : Boolean =
 self.ownedAttribute->forAll(p | p.oclIsKindOf(UWE!NavigationProperty));

helper context UWE!NavigationProperty def : check_NavigationPropertyType() : Boolean =
 self.type.oclIsKindOf(UWE!DataType) or self.type.oclIsKindOf(UWE!NavigationNode);

helper context UWE!Link def : check_LinkMembers() : Boolean =
 self.memberEnd->size() = 2 and self.ownedEnd->size() = 1 and
 self.memberEnd->forAll(p | p.type.oclIsKindOf(UWE!NavigationNode));

helper context UWE!AccessPrimitive def : check_AccessPrimitiveIncoming() : Boolean =
 let ps : Set(UWE!Property) = UWE!NavigationNode.allInstances()->
 collect(n | n.ownedAttribute)->flatten()->select(p |
 p.association.oclIsKindOf(UWE!Link) and p.type = self) in
 ps->forAll(p | p.lower = 1 and p.upper = 1);

helper context UWE!AccessPrimitive def : check_AccessPrimitiveOutgoing() : Boolean =
 self.outLinks()->size() = 1;

helper context UWE!Index def : check_IndexOutgoing() : Boolean =
 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(UWE!Link) implies
 p.isMultivalued() and p.type.oclIsKindOf(UWE!NavigationClass));

helper context UWE!GuidedTour def : check_GuidedTourOutgoing() : Boolean =
 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(UWE!Link) implies
 p.isMultivalued() and p.type.oclIsKindOf(UWE!NavigationClass));

helper context UWE!Query def : check_QueryOutgoing() : Boolean =
 self.ownedAttribute->forAll(p | p.association.oclIsKindOf(UWE!Link) implies
 p.lower = 1 and p.upper = 1 and p.type.oclIsKindOf(UWE!Index));

-- PROCESS

-- PROCESS INTEGRATION

-- diagrammatic constraints

-- explicit constraints

helper context UWE!ProcessClass def : check_ProcessClassLinkTypes() : Boolean =
 self.inLinks()->forAll(pl | pl.oclIsTypeOf(UWE!ProcessLink)) and
 self.outLinks()->forAll(pl | pl.oclIsTypeOf(UWE!ProcessLink));

 320

Model Driven Software Engineering for Web Applications

helper context UWE!ProcessClass def : check_ProcessClassLinkCount() : Boolean =
 self.inLinks()->size() <= 1 and self.outLinks()->size() <= 1;

helper context UWE!ProcessClass def : check_ProcessClassWebProcess() : Boolean =
 self.inLinks()->notEmpty() implies self.useCase->select(uc |
 uc.oclIsKindOf(UWE!WebProcess))->size() = 1;

helper context UWE!ProcessLink def : check_ProcessLinkEnds() : Boolean =
 (self.source().oclIsKindOf(UWE!NavigationClass) and
 self.target().oclIsTypeOf(UWE!ProcessClass)) or
 (self.source().oclIsTypeOf(UWE!ProcessClass) and
 self.target().oclIsKindOf(UWE!NavigationClass));

-- PROCESS DATA AND FLOW

-- diagrammatic constraints

helper context UWE!ProcessActivity def : check_ProcessActivityContext() : Boolean =
 if self."context".oclIsKindOf(UWE!ProcessClass) then
 self."context".ownedBehavior->size() = 1
 else false endif;

helper context UWE!UserAction def : check_UserActionProcessClassDefined() : Boolean =
 not self.processClass.oclIsUndefined();

-- explicit constraints

helper context UWE!ProcessProperty def : check_ProcessPropertyType() : Boolean =
 self.type.oclIsKindOf(UWE!DataType) or self.type.oclIsTypeOf(UWE!Class);

helper context UWE!ProcessProperty def : check_ProcessPropertyEditProperty() : Boolean =
 not self.editProperty.oclIsUndefined() implies
 if self.processClass().oclIsUndefined() then false else
 if self.processClass().contentClass.oclIsUndefined() then false else
 self.processClass().contentClass.allOwnedAttribute()->includes(self.editProperty)
 endif
 endif;

helper context UWE!ProcessActivity def : check_ProcessActivityProcessClass() : Boolean =
 if self.processClass().oclIsUndefined() then false else self.processClass().inLinks()->notEmpty()
endif;

helper context UWE!ProcessActivity def : check_ProcessActivityParameter() : Boolean =
 self.parameter->select(p | p.direction = #"in")->size() = 1 and
 self.parameter->select(p | p.direction = #out)->size() <= 1 and

 321

Model Driven Software Engineering for Web Applications

 self.parameter->select(p | p.direction = #inout)->size() = 0 and
 self.parameter->select(p | p.direction = #return)->size() = 0;

helper context UWE!ProcessActivity def : check_ProcessActivityInputParameter() : Boolean =
 if self.processClass().oclIsUndefined() then false else
 let ls : Set(UWE!Link) = self.processClass().inLinks() in
 if ls->isEmpty() then false else
 let source : UWE!NavigationNode = ls->asSequence()->first()->source() in
 if source.oclIsKindOf(UWE!NavigationClass) then
 let inputParameter : UWE!Parameter = self.parameter->select(p |
 p.direction = #"in")->first() in
 if inputParameter.oclIsUndefined() then false else
 source.contentClass.conformsTo(inputParameter.type) endif
 else false endif
 endif
 endif;

helper context UWE!ProcessActivity def : check_ProcessActivityOutputParameter() : Boolean =
 if self.processClass().oclIsUndefined() then false else
 if self.processClass().outLinks()->size() = 1 then
 self.parameter->select(p | p.direction = #out)->size() = 1 and
 not self.node->exists(n | n.oclIsKindOf(UWE!ActivityFinalNode)) and (
 let target : UWE!NavigationNode = self.processClass().outLinks()->asSequence()->
 first()->target() in
 if target.oclIsKindOf(UWE!NavigationClass) then
 let outputParameter : UWE!Parameter = self.parameter->select(p |
 p.direction = #out)->first() in
 if outputParameter.oclIsUndefined() then false else
 outputParameter.type.conformsTo(target.contentClass) endif
 else false endif)
 else true endif
 endif;

helper context UWE!ProcessActivity def : check_ProcessActivityFinalNode() : Boolean =
 if self.processClass().oclIsUndefined() then false else
 if self.processClass().outLinks()->isEmpty() then
 self.node->exists(n | n.oclIsKindOf(UWE!ActivityFinalNode))
 else true endif
 endif;

helper context UWE!ProcessActivity def : check_ProcessActivityInitialNode() : Boolean =
 not self.node->exists(n | n.oclIsKindOf(UWE!InitialNode));

helper context UWE!UserAction def : check_UserActionInput() : Boolean =
 if self.processClass.oclIsUndefined() then true else
 -- because then other constraints are violated

 322

Model Driven Software Engineering for Web Applications

 if self.processClass.contentClass.oclIsUndefined() then
 self.input->isEmpty() and self.incoming->notEmpty()
 else
 self.input->size() = 1 and self.input->forAll(pin |
 if pin.type.oclIsUndefined() then false else
 pin.type.conformsTo(self.processClass.contentClass) endif)
 endif
 endif;

helper context UWE!UserAction def : check_UserActionOutput() : Boolean =
 if self.processClass.oclIsUndefined() then true else
 -- because then other constraints are violated
 let pps : Sequence(UWE!ProcessProperty) = self.processClass.processProperties() in
 self.output->forAll(pin | pps->exists(p | if pin.type.oclIsUndefined() or
 p.type.oclIsUndefined() then false else
 p.name = pin.name and p.type.conformsTo(pin.type) endif))
 endif;

-- PRESENTATION

-- diagrammatic constraints

helper context UWE!PresentationClass def : check_PresentationClassNodeDefined() : Boolean =
 not self.node.oclIsUndefined();

helper context UWE!PresentationProperty def : check_PresentationPropertyContainment()
 : Boolean =
 self.class_.oclIsKindOf(UWE!PresentationClass);

-- explicit constraints

helper context UWE!NavigationNode def : check_NodePresentationClassDefined() : Boolean =
 not self.isAbstract and (self.oclIsKindOf(UWE!ProcessClass) implies
 self.inLinks()->isEmpty())
 implies UWE!PresentationClass.allInstances()->select(pc | pc.node = self)->size() = 1;

helper context UWE!PresentationClass def : check_PresentationClassInheritance() : Boolean =
 self.parents()->isEmpty();

helper context UWE!PresentationProperty def : check_PresentationPropertyType() : Boolean =
 self.type.oclIsKindOf(UWE!UIElement) or self.type.oclIsKindOf(UWE!PresentationClass);

helper context UWE!PresentationProperty def : check_PresentationPropertyNavigationProperty()
 : Boolean =
 if not self.class_.oclIsKindOf(UWE!PresentationClass) then true else
 -- because then other constraints are violated

 323

Model Driven Software Engineering for Web Applications

 if self.class_.node.oclIsUndefined() then true else
 -- because then other constraints are violated
 if self.type.oclIsKindOf(UWE!StaticElement) then
 self.navigationProperty.oclIsUndefined() else
 if self.class_.node.oclIsKindOf(UWE!ProcessClass) then
 self.navigationProperty.oclIsKindOf(UWE!ProcessProperty) else
 if self.class_.node.oclIsKindOf(UWE!AccessPrimitive) then
 self.navigationProperty.oclIsUndefined() else
 self.navigationProperty.oclIsKindOf(UWE!NavigationProperty)
 endif
 endif
 endif
 endif
 endif;

helper context UWE!UIElement def : check_UIElementInheritance() : Boolean =
 self.parents()->isEmpty();

helper context UWE!UIElement def : check_UIElementContainment() : Boolean =
 let ps : Set(UWE!PresentationProperty) =
 UWE!PresentationProperty.allInstances()->select(p | p.type = self) in
 ps->size() = 1 and ps->forAll(p | p.isComposite and
 p.class_.oclIsKindOf(UWE!PresentationClass));

B.2.2 Java Metamodel

This section comprises the “implementation” of the metamodel for Java presented in 5.2.

B.2.2.1 KM3 Metamodel

package JAVA
{

 abstract class JavaElement
 {
 attribute name : String;
 }

 class Package extends JavaElement
 {
 reference classes[*] container : JavaClass oppositeOf "package";
 reference enumerations[*] container : Enumeration oppositeOf "package";
 attribute isImported : Boolean;
 }

 324

Model Driven Software Engineering for Web Applications

 abstract class ClassMember extends JavaElement
 {
 attribute isStatic : Boolean;
 attribute isPublic : Boolean;

 reference owner : JavaClass oppositeOf members;
 reference type[0-1] : Type;
 }

 class Field extends ClassMember
 {
 attribute initializer[0-1] : String;
 }

 abstract class Type extends JavaElement
 {
 }

 class JavaClass extends Type
 {
 attribute isAbstract : Boolean;
 attribute isPublic : Boolean;
 attribute isInterface : Boolean;

 reference superClasses[*] : JavaClass;
 reference actualTypeParameters[*] ordered : JavaClass;
 reference "package" : Package oppositeOf classes;
 reference members[*] container : ClassMember oppositeOf owner;
 }

 class Method extends ClassMember
 {
 attribute body : String;

 reference parameters[*] ordered container : MethodParameter oppositeOf method;
 reference exceptions[*] : JavaClass;
 }

 class PrimitiveType extends Type
 {
 }

 class Enumeration extends Type
 {
 reference "package" : Package oppositeOf enumerations;

 325

Model Driven Software Engineering for Web Applications

 reference enumerationLiterals[*] ordered container :
 EnumerationLiteral oppositeOf "enumeration";
 }

 class EnumerationLiteral extends JavaElement
 {
 reference "enumeration" : Enumeration oppositeOf enumerationLiterals;
 }

 class MethodParameter extends JavaElement
 {
 reference type : Type;
 reference method : Method oppositeOf parameters;
 }
}

package PrimitiveTypes
{
 datatype String;
 datatype Integer;
 datatype Boolean;
}

B.2.2.2 Constraint Checking Query

query CheckConstraints_Java =

 JAVA!JavaClass.allInstances()->forAll(x |
 x.assert(x.check_InterfaceMembersAndBody(), 'InterfaceMembersAndBody')) and
 JAVA!JavaClass.allInstances()->forAll(x |
 x.assert(x.check_InterfaceSuperClasses(), 'InterfaceSuperClasses')) and
 JAVA!JavaClass.allInstances()->forAll(x |
 x.assert(x.check_ClassSuperClasses(), 'ClassSuperClasses')) and
 JAVA!Field.allInstances()->forAll(x |
 x.assert(x.check_FieldType(), 'FieldType'))
 ;

helper context JAVA!JavaElement def : assert(checkResult : Boolean, constraintName : String) :
 Boolean =
 if checkResult then true else
 false.debug(self.oclType().toString() + ' ' + self.name + ' Constraint ' + constraintName)
 endif;

helper context JAVA!JavaClass def : check_InterfaceMembersAndBody() : Boolean =
 self.isInterface implies self.members->forAll(m |

 326

Model Driven Software Engineering for Web Applications

 not m.oclIsTypeOf(JAVA!Field) and
 m.oclIsTypeOf(JAVA!Method) implies m.body->isEmpty());

helper context JAVA!JavaClass def : check_InterfaceSuperClasses() : Boolean =
 self.isInterface implies self.superClasses->forAll(sc | sc.isInterface);

helper context JAVA!JavaClass def : check_ClassSuperClasses() : Boolean =
 not self.isInterface implies self.superClasses->select(sc | not sc.isInterface)->size() <= 1;

helper context JAVA!Field def : check_FieldType() : Boolean =
 self.type->notEmpty();

B.2.2.3 Serialization Query

query Java2Code = JAVA!Type.allInstances()->
 select(e | if e.oclIsTypeOf(JAVA!JavaClass) or e.oclIsTypeOf(JAVA!Enumeration) then
 if e.package.oclIsUndefined() then false else not e.package.isImported endif
 else false endif)->collect(x | x.toString().writeTo(
 ‘src/' + x.package.name.replaceAll('.', '/') + '/' + x.name + '.java'));

helper context JAVA!ClassMember def: visibility() : String =
 if self.isPublic then
 'public '
 else
 'private '
 endif;

helper context JAVA!JavaClass def: visibility() : String =
 if self.isPublic then
 'public '
 else
 'private '
 endif;

helper context JAVA!ClassMember def: scope() : String =
 if self.isStatic then
 'static '
 else
 ''
 endif;

helper context JAVA!JavaClass def: modifierAbstract() : String =
 if self.isAbstract then
 'abstract '
 else

 327

Model Driven Software Engineering for Web Applications

 ''
 endif;

helper context JAVA!Type def : fullName() : String = self.name;

helper context JAVA!JavaClass def : fullName() : String =
 if self.package.oclIsUndefined() then self.name else self.package.name + '.' + self.name endif +
 if self.actualTypeParameters->isEmpty() then '' else
 '<' + self.actualTypeParameters->iterate(tp; acc : String = '' | acc +
 if acc = '' then '' else ',' endif + tp.fullName()) + '>'
 endif;

helper context JAVA!Enumeration def : fullName() : String =
 if self.package.oclIsUndefined() then self.name else self.package.name + '.' + self.name endif;

helper context JAVA!Package def: toString() : String =
 'package ' + self.name + ';\n\n';

helper context JAVA!JavaClass def: toString() : String =
 self.package.toString() + self.visibility() +
 self.modifierAbstract() +
 if self.isInterface then 'interface ' else 'class ' endif + self.name +
 self.superClasses->select(sc | not sc.isInterface or self.isInterface)->
 iterate(sc; acc : String = '' |
 acc +
 if acc = '' then
 ' extends '
 else
 ', '
 endif +
 sc.fullName()
) +
 self.superClasses->select(sc | not self.isInterface and sc.isInterface)->
 iterate(sc; acc : String = '' |
 acc +
 if acc = '' then
 ' implements '
 else
 ', '
 endif +
 sc.fullName()
) +
 ' {\n' +
 self.members->iterate(i; acc : String = '' |
 acc + i.toString()
) +

 328

Model Driven Software Engineering for Web Applications

 '\n}\n\n';

helper context JAVA!Enumeration def: toString() : String =
 self.package.toString() +
 'public enum ' + self.name +
 ' {\n\t' +
 self.enumerationLiterals->iterate(el; res : String = '' |
 if res = '' then el.name else res + ', ' + el.name endif
) +
 ';\n}\n\n';

helper context JAVA!PrimitiveType def: toString() : String =
 if self.name = 'Integer' then
 'int '
 else if self.name = 'Boolean' then
 'boolean '
 else if self.name = 'String' then
 'java.lang.String '
 else if self.name = 'Long' then
 'long '
 else
 'void '
 endif endif endif endif;

helper context JAVA!Field def: toString() : String =
 '\t' + self.visibility() + self.scope() +
 if self.type.oclIsUndefined() then '???' else self.type.fullName() endif
 + ' ' + self.name + if self.initializer.oclIsUndefined() then '' else ' = ' + self.initializer endif + ';\n';

helper context JAVA!Method def: toString() : String =
 '\t' + self.visibility() + self.scope() +
 if self.type.oclIsUndefined() then 'void' else self.type.fullName() endif
 + ' ' + self.name + '(' +
 self.parameters->iterate(i; acc : String = '' |
 acc +
 if acc = '' then
 ''
 else
 ', '
 endif +
 i.toString()
) +
 ')' + if self.exceptions->size() > 0 then ' throws ' +
 self.exceptions->iterate(e; acc : String = '' |
 acc + if acc = '' then '' else ', ' endif + e.fullName())
 else '' endif + if self.body.oclIsUndefined() then ';\n' else ' {\n\t\t' + self.body + '\n\t}\n' endif;

 329

Model Driven Software Engineering for Web Applications

helper context JAVA!MethodParameter def: toString() : String =
 self.type.fullName()
 + ' ' + self.name;

B.2.3 XML Metamodel

This section comprises the “implementation” of the metamodel for XML which is used for
generating configuration data for the runtime environment as presented in 5.1.3.

B.2.3.1 KM3 Metamodel

package XML
{
 abstract class Node
 {
 attribute name : String;
 attribute value : String;
 reference parent[0-1] : Element oppositeOf children;
 }

 class Attribute extends Node
 {
 }

 class TextNode extends Node
 {
 }

 class Element extends Node
 {
 reference children[*] ordered container : Node oppositeOf parent;
 }

 class Root extends Element
 {
 attribute documentName : String;
 }
}

package PrimitiveTypes
{
 datatype Boolean;
 datatype Integer;

 330

Model Driven Software Engineering for Web Applications

 datatype String;
}

B.2.3.2 Constraint Checking Query

query CheckConstraints_XML =

 XML!Node.allInstances()->forAll(x |
 x.assert(x.check_RootParent(), 'RootParent'))
 ;

helper context XML!Node def : assert(checkResult : Boolean, constraintName : String) :
 Boolean =
 if checkResult then true else
 false.debug(self.oclType().toString() + ' ' + self.name + ' Constraint ' + constraintName)
 endif;

helper context XML!Node def : check_RootParent() : Boolean =
 self.parent->isEmpty() implies self.oclIsTypeOf(XML!Root) and
 self.oclIsKindOf(XML!Root) implies self.parent->isEmpty();

B.2.3.3 Serialization Query

query XML2Code = XML!Root.allInstances()->collect(n | n.getChildren()->
 iterate(n; acc : String = '<?xml version=\"1.0\" encoding=\"UTF-8\"?>' + '\n' +
 '<!DOCTYPE beans PUBLIC \"-//SPRING//DTD BEAN//EN\"’ +
 ‘\"http://www.springframework.org/dtd/spring-beans.dtd\">' + '\n\n'
 | acc + n.toCode()).writeTo(‘conf/’ + n.documentName));

helper context XML!Element def : getAttribute(name : String) : String =
 self.children->select(an | an.oclIsKindOf(XML!Attribute) and an.name = 'name')->first().value;

helper context XML!Element def : getAttributes() : Sequence(XML!Attribute) =
 self.children->select(cn | cn.oclIsKindOf(XML!Attribute));

helper context XML!Element def : getChildren() : Sequence(XML!Node) =
 self.children->select(cn | not cn.oclIsKindOf(XML!Attribute));

helper context XML!Element def : toCode() : String =
 '<' + self.name + self.getAttributes()->iterate(n; acc : String = '' | acc + ' ' + n.name + '=\"' +
n.value + '\"') + '>'
 + self.getChildren()->iterate(n; acc : String = '' | acc + n.toCode())
 + '</' + self.name + '>\n';

 331

Model Driven Software Engineering for Web Applications

helper context XML!TextNode def : toCode() : String =
 self.value;

B.2.4 JSP Metamodel

This section comprises the “implementation” of the metamodel for Java Server Pages pre-
sented in 5.6.

B.2.4.1 KM3 Metamodel

package JSP
{
 abstract class Node
 {
 attribute name : String;
 attribute value : String;
 reference parent[0-1] : Element oppositeOf children;
 }

 class Attribute extends Node
 {
 }

 class TextNode extends Node
 {
 }

 class Element extends Node
 {
 reference children[*] ordered container : Node oppositeOf parent;
 }

 class Root extends Element
 {
 attribute documentName : String;
 }

 abstract class JSPNode extends Node
 {
 }

 class JSPDirective extends JSPNode
 {

 332

Model Driven Software Engineering for Web Applications

 }
}

package PrimitiveTypes
{
 datatype Boolean;
 datatype Integer;
 datatype String;
}

B.2.4.2 Constraint Checking Query

query CheckConstraints_JSP =

 JSP!Node.allInstances()->forAll(x |
 x.assert(x.check_RootParent(), 'RootParent'))
 ;

helper context JSP!Node def : assert(checkResult : Boolean, constraintName : String) :
 Boolean =
 if checkResult then true else
 false.debug(self.oclType().toString() + ' ' + self.name + ' Constraint ' + constraintName)
 endif;

helper context JSP!Node def : check_RootParent() : Boolean =
 self.parent->isEmpty() implies self.oclIsTypeOf(JSP!Root) and
 self.oclIsKindOf(JSP!Root) implies self.parent->isEmpty();

B.2.4.3 Serialization Query

query JSP2Code = JSP!Root.allInstances()->collect(n | n.getChildren()->
 iterate(n; acc : String = '' | acc + n.toCode()).writeTo(‘jsp/’ + n.documentName));

helper context JSP!Element def : getAttributes() : Sequence(JSP!Attribute) =
 self.children->select(cn | cn.oclIsKindOf(JSP!Attribute));

helper context JSP!Element def : getChildren() : Sequence(JSP!Node) =
 self.children->select(cn | not cn.oclIsKindOf(JSP!Attribute));

helper context JSP!Element def : toCode() : String =
 '<' + self.name + self.getAttributes()->iterate(n; acc : String = '' | acc + ' ' + n.name + '=\"' +
 n.value + '\"') + '>\n' + self.getChildren()->iterate(n; acc : String = '' | acc + n.toCode())
 + '</' + self.name + '>\n';

 333

Model Driven Software Engineering for Web Applications

helper context JSP!TextNode def : toCode() : String =
 self.value;

helper context JSP!JSPDirective def : toCode() : String =
 '<%@ ' + self.name + ' ' + self.value + ' %>\n';

B.3 PIM2PIM Transformations

This section comprises the implementation of the PIM2PIM transformations for the sys-
tematic model evolution as presented in Chapter 4. All PIM2PIM transformations are re-
fining transformations as described in 2.3.3.3. At the time of writing the actual version of
the ATL compiler, called ATL 2006, did not yet support refining transformations. There-
fore, the older version, called ATL 2004, had to be used. Unfortunately, the older version
did not support rule inheritance yet, thus some of the transformations had to be written in a
more verbose way. For activating the ATL 2004 compiler, the following code line has to
be placed at the beginning of a transformation:

-- @atlcompiler atl2004

The transformation code presented in the two following sections has to be included by all
PIM2PIM transformations presented in the rest of this section.

B.3.1 Refinement Header

For refining transformations a trigger rule has to be defined, which either directly or indi-
rectly references all model elements that should implicitly be copied from the source to the
target model. Therefore, the following rule Model2Model has to be included by all
PIM2PIM transformations. It copies all Model elements from the source model to the tar-
get model and triggers the implicit copying of all directly or indirectly owned members.

rule Model2Model
{
 from p : UWE!Model
 to tp : UWE!Model
 (
 name <- p.name,
 owner <- p.owner,
 ownedMember <- p.ownedMember
)
}

 334

Model Driven Software Engineering for Web Applications

B.3.2 Trace Header

The following transformation rules and helpers have to be included by the PIM2PIM trans-
formations, in order to maintain transformation traces as presented in 4.1.2.

helper def : tracePackageExists : Boolean = false;

entrypoint rule Init()
{
 do
 {
 thisModule.tracePackageExists <- (UWE!TransformationTrace.allInstances()->size() > 0);
 }
}

unique lazy rule CreatePackage
{
 from name : String
 to p : UWE!Package
 (
 name <- name,
 owningPackage <- UWE!Model.allInstances()->asSequence()->first()
)
}

rule CreateTrace(sourceEl : UWE!NamedElement, targetEl : UWE!NamedElement,
 ruleName : String)
{
 to t : UWE!TransformationTrace
 (
 name <- ruleName,
 supplier <- Set { sourceEl },
 client <- Set { targetEl },
 owningPackage <- if thisModule.tracePackageExists then
 UWE!TransformationTrace.allInstances()->asSequence()->first().owningPackage
 else thisModule.CreatePackage('Trace') endif
)
}

helper context UWE!NamedElement def : getTraceSource(ruleName : String)
 : UWE!NamedElement =
 let ts : Set(UWE!NamedElement) = UWE!TransformationTrace.allInstances()->
 select(t | t.name = ruleName and t.client->includes(self))->
 collect(t | t.supplier)->flatten() in

 335

Model Driven Software Engineering for Web Applications

 if ts->size() > 0 then ts->asSequence()->first() else OclUndefined endif;

helper context UWE!NamedElement def : hasTraceSource(ruleName : String) : Boolean =
 not self.getTraceSource(ruleName).oclIsUndefined();

helper context UWE!NamedElement def : getTraceTarget(ruleName : String) :
 UWE!NamedElement =
 let ts : Set(UWE!NamedElement) = UWE!TransformationTrace.allInstances()->
 select(t | t.name = ruleName and t.supplier->includes(self))->
 collect(t | t.client)->flatten() in
 if ts->size() > 0 then ts->asSequence()->first() else OclUndefined endif;

helper context UWE!NamedElement def : hasTraceTarget(ruleName : String) : Boolean =
 not self.getTraceTarget(ruleName).oclIsUndefined();

B.3.3 Transformation Requirements2Content

module Requirements2Content;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

rule ContentClass2ContentClassWithOperations
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))
 to tc : UWE!Class
 (
 name <- c.name,
 isAbstract <- c.isAbstract,
 owner <- c.owner,
 ownedAttribute <- c.ownedAttribute,
 ownedOperation <- c.ownedOperation->union(
 c.useCase->select(uc | uc.oclIsKindOf(UWE!SimpleProcess) and
 not uc.hasTraceTarget('SimpleProcess2Operation'))->collect(uc |
 thisModule.resolveTemp(uc, 'o'))),
 ownedBehavior <- c.ownedBehavior,
 nestedClassifier <- c.nestedClassifier,
 useCase <- c.useCase,
 ownedUseCase <- c.ownedUseCase,
 generalization <- c.generalization
)

 336

Model Driven Software Engineering for Web Applications

}

rule SimpleProcess2Operation
{
 from sp : UWE!SimpleProcess (not sp.hasTraceTarget('SimpleProcess2Operation'))
 using
 {
 target : UWE!Class = sp.target();
 }
 to tsp : UWE!SimpleProcess
 (
 name <- sp.name,
 subject <- sp.subject,
 include <- sp.include,
 extend <- sp.extend,
 extensionPoint <- sp.extensionPoint,
 ownedBehavior <- sp.ownedBehavior,
 attribute <- sp.attribute,
 ownedBehavior <- sp.ownedBehavior
),
 o : UWE!Operation
 (
 name <- sp.name.regexReplaceAll(' ', '').firstToLower(),
 type <- target,
 ownedParameter <- if target.oclIsUndefined() then Sequence {} else
 Sequence { thisModule.Type2ReturnParameter(target) } endif
)
 do
 {
 thisModule.CreateTrace(sp, o, 'SimpleProcess2Operation');
 }
}

lazy rule Type2ReturnParameter
{
 from t : UWE!Type
 to p : UWE!Parameter
 (
 type <- t,
 direction <- #return
)
}

B.3.4 Transformation RequirementsAndContent2Navigation

 337

Model Driven Software Engineering for Web Applications

module RequirementsAndContent2Navigation;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

helper context UWE!Class def : isContentClass() : Boolean =
 self.oclIsTypeOf(UWE!Class);

helper context UWE!Package def : isContentPackage() : Boolean =
 self.ownedMember->select(el | el.oclIsKindOf(UWE!Class))->exists(c |
 c.isContentClass()) or
 self.ownedMember->select(el | el.oclIsKindOf(UWE!Package))->exists(p |
 p.isContentPackage());

helper context UWE!Element def : isRelevantForNavigation() : Boolean =
 UWE!WebUseCase.allInstances()->exists(uc | uc.contentClass() = self or uc.target() = self);

-- rule for copying package structure from content to navigation, not outlined in 4.4.2.1

rule ContentPackage2NavigationPackage
{
 from p : UWE!Package (p.oclIsTypeOf(UWE!Package) and p.isContentPackage() and
 not p.hasTraceTarget('ContentPackage2NavigationPackage'))
 using
 {
 owningPackage : UWE!Package = let traceP : UWE!Package =
 p.owningPackage.getTraceTarget('ContentPackage2NavigationPackage') in
 if traceP.oclIsUndefined() then
 if p.owningPackage.oclIsTypeOf(UWE!Model) then p.owningPackage
 else thisModule.resolveTemp(p.owningPackage, 'np') endif
 else traceP endif;
 }
 to tp : UWE!Package
 (
 name <- p.name,
 owner <- p.owner,
 ownedMember <- p.ownedMember
),
 np : UWE!Package
 (
 name <- if p.owningPackage.oclIsTypeOf(UWE!Model) then 'Navigation' else p.name endif,
 owner <- owningPackage,

 338

Model Driven Software Engineering for Web Applications

 owningPackage <- owningPackage
)
 do
 {
 thisModule.CreateTrace(p, np, 'ContentPackage2NavigationPackage');
 }
}

rule ContentClass2NavigationClass
{
 from c : UWE!Class (c.isRelevantForNavigation() and
 not c.hasTraceTarget('ContentClass2NavigationClass'))
 using
 {
 owningPackage : UWE!Package =
 if c.owningPackage.oclIsUndefined() then OclUndefined else
 let traceP : UWE!Package = c.owningPackage.getTraceTarget(
 'ContentPackage2NavigationPackage') in
 if traceP.oclIsUndefined() then thisModule.resolveTemp(c.owningPackage, 'np')
 else traceP endif
 endif;
 }
 to tc : UWE!Class
 (
 name <- c.name,
 isAbstract <- c.isAbstract,
 owner <- c.owner,
 ownedAttribute <- c.ownedAttribute,
 ownedOperation <- c.ownedOperation,
 ownedBehavior <- c.ownedBehavior,
 nestedClassifier <- c.nestedClassifier,
 useCase <- c.useCase,
 ownedUseCase <- c.ownedUseCase,
 generalization <- c.generalization
),
 nc : UWE!NavigationClass
 (
 name <- c.name,
 isAbstract <- c.isAbstract,
 contentClass <- tc,
 owner <- owningPackage,
 owningPackage <- owningPackage,
 generalization <- ng,
 ownedAttribute <- c.ownedAttribute->select(p | p.type.oclIsKindOf(UWE!DataType)
 or (p.type.oclIsTypeOf(UWE!Class) and not p.association.oclIsUndefined() and
 c.useCase->exists(uc | uc.oclIsKindOf(UWE!Navigation) and uc.target() = p.type)))->

 339

Model Driven Software Engineering for Web Applications

 collect(p | thisModule.resolveTemp(p, 'np'))
),
 ng : distinct UWE!Generalization foreach (g in c.generalization)
 (
 general <- let traceC : UWE!Class = g.general.getTraceTarget(
 'ContentClass2NavigationClass') in
 if traceC.oclIsUndefined() then thisModule.resolveTemp(g.general, 'nc')
 else traceC endif
)
 do
 {
 thisModule.CreateTrace(c, nc, 'ContentClass2NavigationClass');
 }
}

rule Property2NavigationProperty
{
 from p : UWE!Property (if p.class_.oclIsUndefined() or p.type.oclIsUndefined() then false else
 p.oclIsTypeOf(UWE!Property) and
 p.class_.isRelevantForNavigation() and p.association.oclIsUndefined() and
 p.type.oclIsKindOf(UWE!DataType) and
 not p.hasTraceTarget('Property2NavigationProperty')
 endif)
 using
 {
 nc : UWE!NavigationClass = let traceC : UWE!NavigationClass =
 p.class_.getTraceTarget('ContentClass2NavigationClass') in
 if traceC.oclIsUndefined() then thisModule.resolveTemp(p.class_, 'nc') else traceC endif;
 }
 to tp : UWE!Property
 (
 name <- p.name,
 owner <- p.owner,
 class_ <- p.class_,
 type <- p.type,
 aggregation <- p.aggregation,
 upper <- p.upper,
 lower <- p.lower,
 isOrdered <- p.isOrdered,
 isUnique <- p.isUnique,
 isStatic <- p.isStatic,
 isComposite <- p.isComposite,
 isDerived <- p.isDerived,
 isReadOnly <- p.isReadOnly
),
 np : UWE!NavigationProperty

 340

Model Driven Software Engineering for Web Applications

 (
 name <- p.name,
 owner <- nc,
 class_ <- nc,
 type <- p.type,
 aggregation <- p.aggregation,
 upper <- p.upper,
 lower <- p.lower,
 isOrdered <- p.isOrdered,
 isUnique <- p.isUnique,
 isStatic <- p.isStatic,
 isComposite <- p.isComposite,
 contentProperties <- Sequence { p }
)
 do
 {
 thisModule.CreateTrace(p, np, 'Property2NavigationProperty');
 }
}

rule AssociationProperty2NavigationLink
{
 from p : UWE!Property (if p.class_.oclIsUndefined() or p.type.oclIsUndefined() then false else
 if p.class_.oclIsTypeOf(UWE!Class) then
 p.oclIsTypeOf(UWE!Property) and
 not p.association.oclIsUndefined() and
 p.class_.useCase->exists(uc |
 uc.oclIsKindOf(UWE!Navigation) and uc.target() = p.type)
 else false endif and
 not p.hasTraceTarget('AssociationProperty2NavigationLink')
 endif)
 using
 {
 source : UWE!NavigationClass = let traceC : UWE!NavigationClass =
 p.class_.getTraceTarget('ContentClass2NavigationClass') in
 if traceC.oclIsUndefined() then thisModule.resolveTemp(p.class_, 'nc') else traceC endif;
 target : UWE!NavigationClass = let traceC : UWE!NavigationClass =
 p.type.getTraceTarget('ContentClass2NavigationClass') in
 if traceC.oclIsUndefined() then thisModule.resolveTemp(p.type, 'nc') else traceC endif;
 owningPackage : UWE!Package = if p.class_.owningPackage.oclIsUndefined() then
 OclUndefined else
 let traceP : UWE!Package = p.class_.owningPackage.getTraceTarget(
 'ContentPackage2NavigationPackage') in
 if traceP.oclIsUndefined() then thisModule.resolveTemp(
 p.class_.owningPackage, 'np') else traceP endif
 endif;

 341

Model Driven Software Engineering for Web Applications

 }
 to tp : UWE!Property
 (
 name <- p.name,
 owner <- p.owner,
 class_ <- p.class_,
 type <- p.type,
 aggregation <- p.aggregation,
 upper <- p.upper,
 lower <- p.lower,
 isOrdered <- p.isOrdered,
 isUnique <- p.isUnique,
 isStatic <- p.isStatic,
 isComposite <- p.isComposite,
 isDerived <- p.isDerived,
 isReadOnly <- p.isReadOnly
),
 nl : UWE!NavigationLink
 (
 name <- source.name + ' -> ' + target.name,
 owner <- owningPackage,
 owningPackage <- owningPackage
),
 nps : UWE!Property
 (
 association <- nl,
 owner <- nl,
 owningAssociation <- nl,
 type <- source
),
 np : UWE!NavigationProperty
 (
 name <- p.name,
 owner <- source,
 class_ <- source,
 type <- target,
 association <- nl,
 contentProperties <- Set { p },
 aggregation <- p.aggregation,
 upper <- p.upper,
 lower <- p.lower,
 isOrdered <- p.isOrdered,
 isUnique <- p.isUnique,
 isStatic <- p.isStatic,
 isComposite <- p.isComposite
)

 342

Model Driven Software Engineering for Web Applications

 do
 {
 thisModule.CreateTrace(p, nl, 'AssociationProperty2NavigationLink');
 }
}

B.3.5 Transformation AddIndices

module AddIndices;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

rule NavigationProperty2Index
{
 from np : UWE!NavigationProperty (np.isMultivalued() and
 np.association.oclIsKindOf(UWE!Link) and
 np.class_.oclIsKindOf(UWE!NavigationClass) and
 np.type.oclIsKindOf(UWE!NavigationClass) and
 not np.hasTraceTarget('AddIndices'))
 to tnp : UWE!NavigationProperty
 (
 name <- np.name,
 owner <- np.owner,
 class_ <- np.class_,
 type <- index,
 association <- np.association,
 aggregation <- np.aggregation,
 upper <- 1,
 lower <- 1,
 isOrdered <- np.isOrdered,
 isUnique <- np.isUnique,
 isStatic <- np.isStatic,
 isComposite <- np.isComposite,
 derivationExpression <- np.derivationExpression,
 contentProperties <- np.contentProperties
),
 index : UWE!Index
 (
 name <- if UWE!Property.allInstances()->select(p | p.isMultivalued() and
 p.association.oclIsKindOf(UWE!Link) and p.type = np.type)->size() > 1 then

 343

Model Driven Software Engineering for Web Applications

 np.class_.name else '' endif + np.type.name + 'Index',
 owner <- np.class_.owner,
 package <- np.class_.package,
 owningPackage <- np.class_.owningPackage,
 ownedAttribute <- Sequence { npt }
),
 nl : UWE!NavigationLink
 (
 owner <- np.class_.owner,
 package <- np.class_.package,
 owningPackage <- np.class_.owningPackage
),
 nps : UWE!Property
 (
 owner <- nl,
 association <- nl,
 owningAssociation <- nl,
 type <- index,
 lower <- 1,
 upper <- 1
),
 npt : UWE!Property
 (
 owner <- index,
 association <- nl,
 class_ <- index,
 type <- np.type,
 aggregation <- np.aggregation,
 isComposite <- np.isComposite,
 lower <- 0,
 upper <- 0-1 -- ATL bug: -1 for unlimited gives error
)
 do
 {
 thisModule.CreateTrace(np, index, 'NavigationProperty2Index');
 }
}

B.3.6 Transformation AddMenus

module AddMenus;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

 344

Model Driven Software Engineering for Web Applications

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

rule NavigationClass2NavigationClassWithMenu
{
 from nc : UWE!NavigationClass (nc.oclIsTypeOf(UWE!NavigationClass) and
 (nc.ownedAttribute->select(p | not p.isComposite and
 p.association.oclIsKindOf(UWE!Link) and
 p.type.oclIsKindOf(UWE!NavigationNode) and
 not p.type.oclIsTypeOf(UWE!Menu))->size() > 0
 or nc.contentClass.useCase->exists(uc | uc.oclIsKindOf(UWE!WebProcess))) and
 not nc.hasTraceTarget('NavigationClass2Menu'))
 using
 {
 menuNps : Sequence(UWE!Property) = nc.ownedAttribute->select(p |
 not p.isComposite and p.association.oclIsKindOf(UWE!Link) and
 p.type.oclIsKindOf(UWE!NavigationNode) and not p.type.oclIsTypeOf(UWE!Menu));
 otherNps : Sequence(UWE!Property) =
 (nc.ownedAttribute->asSet() - menuNps->asSet())->asSequence();
 }
 to tnc : UWE!NavigationClass
 (
 name <- nc.name,
 isAbstract <- nc.isAbstract,
 owner <- nc.owner,
 feature <- otherNps->including(apt)->union(nc.ownedOperation),
 ownedAttribute <- otherNps->including(apt),
 ownedOperation <- nc.ownedOperation,
 ownedBehavior <- nc.ownedBehavior,
 nestedClassifier <- nc.nestedClassifier,
 package <- nc.package,
 generalization <- nc.generalization,
 isHome <- nc.isHome,
 isLandmark <- nc.isLandmark,
 useCase <- nc.useCase,
 contentClass <- nc.contentClass
),
 menu : UWE!Menu
 (
 name <- nc.name + 'Menu',
 isAbstract <- nc.isAbstract,
 owner <- nc.owner,
 package <- nc.package,
 owningPackage <- nc.owningPackage,
 feature <- menuNps,

 345

Model Driven Software Engineering for Web Applications

 ownedAttribute <- menuNps,
 package <- nc.package,
 generalization <- mg,
 contentClass <- nc.contentClass
),
 a : UWE!Association
 (
 owner <- nc.owner,
 package <- nc.package,
 owningPackage <- nc.owningPackage
),
 aps : UWE!Property
 (
 owner <- a,
 association <- a,
 owningAssociation <- a,
 type <- nc,
 lower <- 1,
 upper <- 1
),
 apt : UWE!NavigationProperty
 (
 owner <- nc,
 association <- a,
 class_ <- nc,
 type <- menu,
 aggregation <- #composite,
 isComposite <- true,
 lower <- 1,
 upper <- 1
),
 mg : distinct UWE!Generalization foreach (g in nc.generalization)
 (
 general <- thisModule.resolveTemp(g.general, 'menu'),
 specific <- menu
)
 do
 {
 thisModule.CreateTrace(nc, menu, 'NavigationClass2Menu');
 }
}

rule NavigationProperty2MenuProperty
{
 from np : UWE!NavigationProperty (np.class_.oclIsTypeOf(UWE!NavigationClass) and
 np.type.oclIsKindOf(UWE!NavigationNode) and not np.type.oclIsTypeOf(UWE!Menu) and

 346

Model Driven Software Engineering for Web Applications

 not np.isComposite and np.association.oclIsKindOf(UWE!Link) and
 not np.hasTraceTarget('NavigationProperty2MenuProperty'))
 to tnp : UWE!NavigationProperty
 (
 name <- np.name,
 owner <- thisModule.resolveTemp(np.class_, 'menu'),
 class_ <- thisModule.resolveTemp(np.class_, 'menu'),
 type <- np.type,
 association <- np.association,
 aggregation <- np.aggregation,
 upper <- np.upper,
 lower <- np.lower,
 isOrdered <- np.isOrdered,
 isUnique <- np.isUnique,
 isStatic <- np.isStatic,
 isComposite <- np.isComposite,
 derivationExpression <- np.derivationExpression,
 contentProperties <- np.contentProperties
)
 do
 {
 thisModule.CreateTrace(np, tnp, 'NavigationProperty2MenuProperty');
 }
}

B.3.7 Transformation ProcessIntegration

module ProcessIntegration;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

rule Menu2IntegratedMenu
{
 from nc : UWE!Menu (
 nc.contentClass.useCase->exists(uc | uc.oclIsKindOf(UWE!WebProcess)
 and nc.hasTraceSource('NavigationClass2Menu'))
)
 using
 {
 wps : Sequence(UWE!WebProcess) = nc.contentClass.useCase->select(uc |

 347

Model Driven Software Engineering for Web Applications

 uc.oclIsKindOf(UWE!WebProcess))->
 select(wp | not wp.subject->exists(c |
 c.oclIsTypeOf(UWE!ProcessClass)))->asSequence();
 wpsWithTarget : Sequence(UWE!WebProcess) = wps->select(wp |
 not wp.target().oclIsUndefined());
 wpsWithoutTarget : Sequence(UWE!WebProcess) = wps->select(wp |
 wp.target().oclIsUndefined());
 wpsOrdered : Sequence(UWE!WebProcess) = wpsWithTarget->union(wpsWithoutTarget);
 }
 to tnc : UWE!Menu
 (
 name <- nc.name,
 owner <- nc.owner,
 feature <- nc.feature->including(npt),
 ownedAttribute <- nc.ownedAttribute->including(npt),
 ownedOperation <- nc.ownedOperation,
 ownedBehavior <- nc.ownedBehavior,
 nestedClassifier <- nc.nestedClassifier,
 package <- nc.package,
 generalization <- nc.generalization,
 isHome <- nc.isHome,
 isLandmark <- nc.isLandmark,
 useCase <- nc.useCase,
 contentClass <- nc.contentClass
),
 pc : distinct UWE!ProcessClass foreach (wp in wpsOrdered)
 (
 name <- let n : String = wp.name.regexReplaceAll(' ', '').firstToUpper() in
 if UWE!WebProcess.allInstances()->select(uc |
 uc.name.regexReplaceAll(' ', '').firstToUpper() = n)->size() > 2 then
 nc.getTraceSource('NavigationClass2Menu').name else '' endif + n,
 owner <- nc.owner,
 package <- nc.package,
 owningPackage <- nc.owningPackage,
 useCase <- wp,
 ownedAttribute <- wpsOrdered->iterate(wp; res : Sequence(OclAny) = Sequence{} | res->
 including(if wpsWithTarget->includes(wp) then
 enpt->at(wpsWithTarget->indexOf(wp)) else Sequence {} endif))
),
 pl : distinct UWE!ProcessLink foreach (wp in wpsOrdered)
 (
 name <- wp.name.regexReplaceAll(' ', '').firstToUpper() + 'Entry',
 owner <- nc.owner,
 package <- nc.package,
 owningPackage <- nc.owningPackage
),

 348

Model Driven Software Engineering for Web Applications

 nps : distinct UWE!Property foreach (wp in wpsOrdered)
 (
 owner <- pl,
 association <- pl,
 owningAssociation <- pl,
 type <- tnc,
 lower <- 1,
 upper <- 1
),
 npt : distinct UWE!NavigationProperty foreach (wp in wpsOrdered)
 (
 owner <- tnc,
 association <- pl,
 class_ <- tnc,
 type <- pc,
 lower <- 1,
 upper <- 1
),

 -- exit link
 epl : distinct UWE!ProcessLink foreach (wp in wpsWithTarget)
 (
 name <- wp.name.regexReplaceAll(' ', '').firstToUpper() + 'Exit',
 owner <- nc.owner,
 package <- nc.package,
 owningPackage <- nc.owningPackage
),
 enps : distinct UWE!Property foreach (wp in wpsWithTarget)
 (
 owner <- epl,
 association <- epl,
 owningAssociation <- epl,
 type <- pc,
 lower <- 1,
 upper <- 1
),
 enpt : distinct UWE!Property foreach (wp in wpsWithTarget)
 (
 owner <- pc,
 association <- epl,
 class_ <- pc,
 type <- wp.target().getTraceTarget('ContentClass2NavigationClass'),
 lower <- 1,
 upper <- 1
)
}

 349

Model Driven Software Engineering for Web Applications

B.3.8 Transformation CreateProcessDataAndFlow

module CreateProcessDataAndFlow;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

rule CreateProcessDataAndFlowForWebProcess
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess().oclIsTypeOf(UWE!WebProcess))
 using
 {
 source : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.inLinks() in
 if ls->isEmpty() then OclUndefined else ls->asSequence()->first().source() endif;
 target : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.outLinks() in
 if ls->isEmpty() then OclUndefined else ls->asSequence()->first().target() endif;
 targetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence {} else
 Sequence { true } endif;
 nTargetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence { true } else
 Sequence {} endif;
 }
 to tpc : UWE!ProcessClass
 (
 name <- pc.name,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 owner <- pc.owner,
 feature <- pc.feature,
 ownedAttribute <- pc.ownedAttribute,
 ownedOperation <- pc.ownedOperation,
 ownedBehavior <- Sequence { pa },
 nestedClassifier <- pc.nestedClassifier,
 package <- pc.package,
 generalization <- pc.generalization,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 useCase <- pc.useCase
),
 pa : UWE!ProcessActivity

 350

Model Driven Software Engineering for Web Applications

 (
 name <- pc.name,
 owner <- pc,
 useCase <- pc.useCase,
 parameter <- Sequence { entryPar }->union(exitPar)
),

 -- create input parameter and activity parameter node
 entryAPN : UWE!ActivityParameterNode
 (
 name <- source.contentClass.name,
 owner <- pa,
 activity <- pa,
 type <- source.contentClass,
 parameter <- entryPar
),
 entryPar : UWE!Parameter
 (
 name <- source.contentClass.name.firstToLower(),
 direction <- #"in",
 type <- source.contentClass
),

 -- conditionally create output parameter and activity parameter node
 exitAPN : distinct UWE!ActivityParameterNode foreach(b in targetSeq)
 (
 name <- target.contentClass.name,
 owner <- pa,
 activity <- pa,
 type <- target.contentClass,
 parameter <- exitPar
),
 exitPar : distinct UWE!Parameter foreach(b in targetSeq)
 (
 name <- target.contentClass.name.firstToLower(),
 direction <- #out,
 type <- target.contentClass
),

 -- conditionally create activity final node
 finalNode : distinct UWE!ActivityFinalNode foreach(b in nTargetSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa
)

 351

Model Driven Software Engineering for Web Applications

}

rule CreateProcessDataAndFlowForEdit
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess().oclIsTypeOf(UWE!Edit))
 using
 {
 source : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.inLinks() in
 if ls->isEmpty() then OclUndefined else ls->asSequence()->first().source() endif;
 }
 to tpc : UWE!ProcessClass
 (
 name <- pc.name,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 owner <- pc.owner,
 feature <- pc.feature,
 ownedAttribute <- pc.ownedAttribute->including(inputPCProperty),
 ownedOperation <- pc.ownedOperation,
 ownedBehavior <- Sequence { pa },
 nestedClassifier <- pc.nestedClassifier,
 package <- pc.package,
 generalization <- pc.generalization,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 useCase <- pc.useCase
),
 inputPCProperty : UWE!Property
 (
 class_ <- tpc,
 owner <- tpc,
 type <- inputPC,
 isComposite <- true,
 aggregation <- #composite,
 lower <- 1,
 upper <- 1
),
 pa : UWE!ProcessActivity
 (
 name <- pc.name,
 owner <- pc,
 useCase <- pc.useCase,
 parameter <- Sequence { entryPar }
),

 352

Model Driven Software Engineering for Web Applications

 -- create input parameter and activity parameter node
 entryAPN : UWE!ActivityParameterNode
 (
 name <- source.contentClass.name,
 owner <- pa,
 activity <- pa,
 type <- source.contentClass,
 parameter <- entryPar
),
 entryPar : UWE!Parameter
 (
 name <- source.contentClass.name.firstToLower(),
 direction <- #"in",
 type <- source.contentClass
),

 -- create user action
 userAction : UWE!UserAction
 (
 name <- pc.name + 'Input',
 owner <- pa,
 activity <- pa,
 processClass <- inputPC,
 input <- Sequence { inputPin }
),
 inputPin : UWE!InputPin
 (
 name <- source.contentClass.name.firstToLower(),
 owner <- userAction,
 type <- source.contentClass
),

 -- create object flow from input activity parameter node to input pin of user action
 inputObjectFlow : UWE!ObjectFlow
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- entryAPN,
 target <- inputPin
),

 -- create process data class
 inputPC : UWE!ProcessClass
 (
 name <- pc.name + 'Input',

 353

Model Driven Software Engineering for Web Applications

 owner <- pc.owningPackage,
 package <- pc.owningPackage,
 owningPackage <- pc.owningPackage,
 contentClass <- source.contentClass,
 ownedAttribute <- pp
),
 pp : distinct UWE!ProcessProperty foreach(cp in source.contentClass.allOwnedAttribute()->
 select(p | p.type.oclIsKindOf(UWE!DataType) and not p.isMultivalued()))
 (
 name <- cp.name,
 class_ <- inputPC,
 owner <- inputPC,
 type <- cp.type,
 lower <- cp.lower,
 upper <- cp.upper,
 editProperty <- cp
),

 -- create activity final node
 finalNode : UWE!ActivityFinalNode
 (
 name <- '',
 owner <- pa,
 activity <- pa
),

 -- create control flow to activity final node
 finalFlow : UWE!ControlFlow
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- userAction,
 target <- finalNode
)
}

rule CreateProcessDataAndFlowForSimpleProcess
{
 from pc : UWE!ProcessClass (pc.ownedBehavior->isEmpty() and
 pc.webProcess().oclIsTypeOf(UWE!SimpleProcess) and
 pc.webProcess().hasTraceTarget('SimpleProcess2Operation'))
 using
 {
 source : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.inLinks() in
 if ls->isEmpty() then OclUndefined else ls->asSequence()->first().source() endif;

 354

Model Driven Software Engineering for Web Applications

 target : UWE!NavigationClass = let ls : Set(UWE!Link) = pc.outLinks() in
 if ls->isEmpty() then OclUndefined else ls->asSequence()->first().target() endif;
 targetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence {} else
 Sequence { true } endif;
 nTargetSeq : Sequence(Boolean) = if target.oclIsUndefined() then Sequence { true } else
 Sequence {} endif;
 o : UWE!Operation = pc.webProcess().getTraceTarget('SimpleProcess2Operation');
 inputPar : Sequence(UWE!Parameter) = o.ownedParameter->select(p |
 p.direction <> #return);
 parSeq : Sequence(Boolean) = if inputPar->isEmpty() then Sequence {} else
 Sequence { true } endif;
 nParSeq : Sequence(Boolean) = if inputPar->notEmpty() then Sequence {} else
 Sequence { true } endif;
 typeSeq : Sequence(Boolean) = if o.type.oclIsUndefined() then Sequence {} else
 Sequence { true } endif;
 nTypeSeq : Sequence(Boolean) = if o.type.oclIsUndefined() then Sequence { true } else
 Sequence {} endif;
 }
 to tpc : UWE!ProcessClass
 (
 name <- pc.name,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 owner <- pc.owner,
 feature <- pc.feature,
 ownedAttribute <- pc.ownedAttribute->union(inputPCProperty),
 ownedOperation <- pc.ownedOperation,
 ownedBehavior <- Sequence { pa },
 nestedClassifier <- pc.nestedClassifier,
 package <- pc.package,
 generalization <- pc.generalization,
 isHome <- pc.isHome,
 isLandmark <- pc.isLandmark,
 useCase <- pc.useCase
),
 pa : UWE!ProcessActivity
 (
 name <- pc.name,
 owner <- pc,
 useCase <- pc.useCase,
 parameter <- Sequence { entryPar }->union(exitPar)
),

 -- create input parameter and activity parameter node
 entryAPN : UWE!ActivityParameterNode
 (

 355

Model Driven Software Engineering for Web Applications

 name <- source.contentClass.name,
 owner <- pa,
 activity <- pa,
 type <- source.contentClass,
 parameter <- entryPar,
 outgoing <- flowToForkNode->union(directTargetFlow)
),
 entryPar : UWE!Parameter
 (
 name <- source.contentClass.name.firstToLower(),
 direction <- #"in",
 type <- source.contentClass
),

 -- create call operation action with target and input pins
 coa : UWE!CallOperationAction
 (
 name <- o.name,
 owner <- pa,
 operation <- o,
 activity <- pa,
 input <- inputPin->including(targetPin),
 output <- resultPin,
 target <- targetPin
),
 targetPin : UWE!InputPin
 (
 name <- 'target',
 owner <- coa,
 type <- o.class_,
 incoming <- flowFromForkNode2->union(directTargetFlow)
),
 inputPin : distinct UWE!InputPin foreach (p in inputPar)
 (
 name <- p.name,
 owner <- coa,
 type <- p.type
),

 -- create user action and process data class if operation has parameters
 userAction : distinct UWE!UserAction foreach (b in parSeq)
 (
 name <- pc.name + 'Input',
 owner <- pa,
 activity <- pa,
 processClass <- inputPC

 356

Model Driven Software Engineering for Web Applications

),
 inputPC : distinct UWE!ProcessClass foreach (b in parSeq)
 (
 name <- pc.name + 'Input',
 owner <- pc.owningPackage,
 package <- pc.owningPackage,
 owningPackage <- pc.owningPackage
),
 inputPCProperty : distinct UWE!Property foreach (b in parSeq)
 (
 isComposite <- true,
 aggregation <- #composite,
 type <- inputPC,
 class_ <- pc,
 owner <- pc,
 lower <- 1,
 upper <- 1
),

 -- create properties, output pins and object flows from the user action to the
 call operation action for all parameters
 pp : distinct UWE!ProcessProperty foreach(p in inputPar)
 (
 name <- p.name,
 type <- p.type,
 lower <- p.lower,
 upper <- p.upper
),
 outputPin : distinct UWE!OutputPin foreach (p in inputPar)
 (
 name <- p.name,
 type <- p.type
),
 outputObjectFlow : distinct UWE!ObjectFlow foreach (p in inputPar)
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- outputPin,
 target <- inputPin
),

 -- create output pin and object flow if operation has a return type
 resultPin : distinct UWE!OutputPin foreach (b in typeSeq)
 (
 name <- 'result',

 357

Model Driven Software Engineering for Web Applications

 owner <- coa,
 type <- o.type
),
 resultObjectFlow : distinct UWE!ObjectFlow foreach (b in typeSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- resultPin,
 target <- exitAPN
),

 -- conditionally create output parameter and activity parameter node
 exitAPN : distinct UWE!ActivityParameterNode foreach(b in targetSeq)
 (
 name <- target.contentClass.name,
 owner <- pa,
 activity <- pa,
 type <- target.contentClass,
 parameter <- exitPar
),
 exitPar : distinct UWE!Parameter foreach(b in targetSeq)
 (
 name <- target.contentClass.name.firstToLower(),
 direction <- #out,
 type <- target.contentClass
),

 -- conditionally create fork node and flows if operation has parameters
 forkNode : distinct UWE!ForkNode foreach (b in parSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa
),
 flowToForkNode : distinct UWE!ObjectFlow foreach (b in parSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 target <- forkNode
),
 flowFromForkNode1 : distinct UWE!ControlFlow foreach (b in parSeq)
 (
 name <- '',
 owner <- pa,

 358

Model Driven Software Engineering for Web Applications

 activity <- pa,
 source <- forkNode,
 target <- userAction
),
 flowFromForkNode2 : distinct UWE!ObjectFlow foreach (b in parSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- forkNode
),

 -- conditionally object flow if operation has no parameters
 directTargetFlow : distinct UWE!ObjectFlow foreach (b in nParSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa
),

 -- conditionally create activity final node and control flow
 finalNode : distinct UWE!ActivityFinalNode foreach(b in nTargetSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa
),
 finalControlFlow : distinct UWE!ControlFlow foreach (b in nTypeSeq)
 (
 name <- '',
 owner <- pa,
 activity <- pa,
 source <- coa,
 target <- finalNode
)
 do
 {
 for(ipc in inputPC)
 {
 ipc.ownedAttribute <- pp;
 for(p in pp)
 {
 p.class_ <- ipc;
 p.owner <- ipc;
 }
 }

 359

Model Driven Software Engineering for Web Applications

 for(ua in userAction)
 {
 ua.output <- outputPin;
 for(op in outputPin)
 {
 op.owner <- ua;
 }
 }
 for(rp in resultPin)
 {
 rp.owner <- coa;
 }
 }
}

B.3.9 Transformation NavigationAndProcess2Presentation

module NavigationAndProcess2Presentation;
create OUT : UWE refining IN : UWE;

uses UWEHelpers;
uses strings;

-- INCLUDE Refinement Header HERE
-- INCLUDE Trace Header HERE

helper context UWE!Package def : isNavigationPackage() : Boolean =
 self.ownedMember->exists(el | el.oclIsKindOf(UWE!NavigationNode)) or
 self.ownedMember->select(el | el.oclIsKindOf(UWE!Package))->exists(p |
p.isNavigationPackage());

helper context UWE!Package def : isNavigationPackage() : Boolean =
 self.ownedMember->exists(el | el.oclIsKindOf(UWE!NavigationNode)) or
 self.ownedMember->select(el | el.oclIsKindOf(UWE!Package))->exists(p |
p.isNavigationPackage());

-- rule for copying package structure from navigation to presentation, not outlined in 4.6.2

rule NavigationPackage2PresentationPackage
{
 from p : UWE!Package (p.oclIsTypeOf(UWE!Package) and p.isNavigationPackage() and
 not p.hasTraceTarget('NavigationPackage2PresentationPackage'))
 using
 {
 owningPackage : UWE!Package = let traceP : UWE!Package =

 360

Model Driven Software Engineering for Web Applications

 p.owningPackage.getTraceTarget('NavigationPackage2PresentationPackage') in
 if traceP.oclIsUndefined() then
 if p.owningPackage.oclIsTypeOf(UWE!Model) then p.owningPackage
 else thisModule.resolveTemp(p.owningPackage, 'pp') endif
 else traceP endif;
 }
 to tp : UWE!Package
 (
 name <- p.name,
 owner <- p.owner,
 ownedMember <- p.ownedMember
),
 pp : UWE!Package
 (
 name <- if p.owningPackage.oclIsTypeOf(UWE!Model) then 'Presentation'
 else p.name endif,
 owner <- owningPackage,
 owningPackage <-owningPackage
)
 do
 {
 thisModule.CreateTrace(p, pp, 'NavigationPackage2PresentationPackage');
 }
}

rule NavigationClass2PresentationClass
{
 from nn : UWE!NavigationClass (not nn.isAbstract and
 nn.oclIsTypeOf(UWE!NavigationClass) and
 not nn.hasTraceTarget('Node2PresentationClass'))
 using
 {
 owningPackage : UWE!Package =
 if nn.owningPackage.oclIsUndefined() then OclUndefined else
 let traceP : UWE!Package = nn.owningPackage.getTraceTarget(
 'NavigationPackage2PresentationPackage') in
 if traceP.oclIsUndefined() then thisModule.resolveTemp(nn.owningPackage, 'pp')
 else traceP endif
 endif;
 allOwnedAttribute : Sequence(UWE!Property) = nn.allOwnedAttribute();
 textAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.type.oclIsKindOf(UWE!DataType));
 anchorAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.association.oclIsKindOf(UWE!Link));
 pcAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p | p.isComposite and
 p.type.oclIsKindOf(UWE!NavigationNode) and not p.type.isAbstract and

 361

Model Driven Software Engineering for Web Applications

 not p.association.oclIsKindOf(UWE!Link));
 }
 to tnn : UWE!NavigationClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 isHome <- nn.isHome,
 isLandmark <- nn.isLandmark,
 owner <- nn.owner,
 ownedAttribute <- nn.ownedAttribute,
 ownedOperation <- nn.ownedOperation,
 ownedBehavior <- nn.ownedBehavior,
 nestedClassifier <- nn.nestedClassifier,
 useCase <- nn.useCase,
 generalization <- nn.generalization,
 -- specific
 contentClass <- nn.contentClass
),
 pc : UWE!PresentationClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 node <- nn,
 owningPackage <- owningPackage,
 -- specific
 ownedAttribute <- textPps->union(anchorPps)->union(pcPps),
 nestedClassifier <- textUis->union(anchorUis)
),
 textPps : distinct UWE!PresentationProperty foreach (p in textAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- textUis,
 lower <- p.lower,
 upper <- p.upper
),
 textUis : distinct UWE!Text foreach (p in textAttribute)
 (
 name <- p.name.firstToUpper(),
 owner <- pc
),
 anchorPps : distinct UWE!PresentationProperty foreach (p in anchorAttribute)

 362

Model Driven Software Engineering for Web Applications

 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- anchorUis,
 lower <- p.lower,
 upper <- p.upper
),
 anchorUis : distinct UWE!Anchor foreach (p in anchorAttribute)
 (
 name <- p.type.name,
 owner <- pc
),
 pcPps : distinct UWE!PresentationProperty foreach (p in pcAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- let traceT : UWE!PresentationClass =
 nn.getTraceTarget('Node2PresentationClass') in
 if traceT.oclIsUndefined() then thisModule.resolveTemp(p.type, 'pc') else traceT endif,
 lower <- p.lower,
 upper <- p.upper
)
 do
 {
 thisModule.CreateTrace(nn, pc, 'Node2PresentationClass');
 }
}

rule Menu2PresentationClass
{
 from nn : UWE!Menu (not nn.isAbstract and
 not nn.hasTraceTarget('Node2PresentationClass'))
 using
 {
 owningPackage : UWE!Package =
 if nn.owningPackage.oclIsUndefined() then OclUndefined else
 let traceP : UWE!Package = nn.owningPackage.getTraceTarget(
 'NavigationPackage2PresentationPackage') in

 363

Model Driven Software Engineering for Web Applications

 if traceP.oclIsUndefined() then thisModule.resolveTemp(nn.owningPackage, 'pp')
 else traceP endif
 endif;
 allOwnedAttribute : Sequence(UWE!Property) = nn.allOwnedAttribute();
 textAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.type.oclIsKindOf(UWE!DataType));
 anchorAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.association.oclIsKindOf(UWE!Link));
 pcAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p | p.isComposite and
 p.type.oclIsKindOf(UWE!NavigationNode) and not p.type.isAbstract and
 not p.association.oclIsKindOf(UWE!Link));
 }
 to tnn : UWE!Menu
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 isHome <- nn.isHome,
 isLandmark <- nn.isLandmark,
 owner <- nn.owner,
 ownedAttribute <- nn.ownedAttribute,
 ownedOperation <- nn.ownedOperation,
 ownedBehavior <- nn.ownedBehavior,
 nestedClassifier <- nn.nestedClassifier,
 useCase <- nn.useCase,
 generalization <- nn.generalization,
 -- specific
 contentClass <- nn.contentClass
),
 pc : UWE!PresentationClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 node <- nn,
 owningPackage <- owningPackage,
 -- specific
 ownedAttribute <- textPps->union(anchorPps)->union(pcPps),
 nestedClassifier <- textUis->union(anchorUis)
),
 textPps : distinct UWE!PresentationProperty foreach (p in textAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,

 364

Model Driven Software Engineering for Web Applications

 type <- textUis,
 lower <- p.lower,
 upper <- p.upper
),
 textUis : distinct UWE!Text foreach (p in textAttribute)
 (
 name <- p.name.firstToUpper(),
 owner <- pc
),
 anchorPps : distinct UWE!PresentationProperty foreach (p in anchorAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- anchorUis,
 lower <- p.lower,
 upper <- p.upper
),
 anchorUis : distinct UWE!Anchor foreach (p in anchorAttribute)
 (
 name <- p.type.name,
 owner <- pc
),
 pcPps : distinct UWE!PresentationProperty foreach (p in pcAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- let traceT : UWE!PresentationClass =
 nn.getTraceTarget('Node2PresentationClass') in
 if traceT.oclIsUndefined() then thisModule.resolveTemp(p.type, 'pc') else traceT endif,
 lower <- p.lower,
 upper <- p.upper
)
 do
 {
 thisModule.CreateTrace(nn, pc, 'Node2PresentationClass');
 }
}

 365

Model Driven Software Engineering for Web Applications

rule Index2PresentationClass
{
 from nn : UWE!Index (not nn.isAbstract and
 not nn.hasTraceTarget('Node2PresentationClass'))
 using
 {
 owningPackage : UWE!Package =
 if nn.owningPackage.oclIsUndefined() then OclUndefined else
 let traceP : UWE!Package = nn.owningPackage.getTraceTarget(
 'NavigationPackage2PresentationPackage') in
 if traceP.oclIsUndefined() then thisModule.resolveTemp(nn.owningPackage, 'pp')
 else traceP endif
 endif;
 }
 to tnn : UWE!Index
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 isHome <- nn.isHome,
 isLandmark <- nn.isLandmark,
 owner <- nn.owner,
 ownedAttribute <- nn.ownedAttribute,
 ownedOperation <- nn.ownedOperation,
 ownedBehavior <- nn.ownedBehavior,
 nestedClassifier <- nn.nestedClassifier,
 useCase <- nn.useCase,
 generalization <- nn.generalization
 -- specific
),
 pc : UWE!PresentationClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 node <- nn,
 owningPackage <- owningPackage,
 -- specific
 ownedAttribute <- Sequence { anchorPp },
 nestedClassifier <- Sequence { anchorUi }
),
 anchorPp : UWE!PresentationProperty
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,

 366

Model Driven Software Engineering for Web Applications

 type <- anchorUi,
 lower <- 0,
 upper <- 0-1
),
 anchorUi : UWE!Anchor
 (
 name <- nn.outLinks()->first().target().name,
 owner <- pc
)
 do
 {
 thisModule.CreateTrace(nn, pc, 'Node2PresentationClass');
 }
}

rule ProcessClass2PresentationClass
{
 from nn : UWE!ProcessClass (not nn.isAbstract and nn.inLinks()->isEmpty() and
 not nn.hasTraceTarget('Node2PresentationClass'))
 using
 {
 owningPackage : UWE!Package =
 if nn.owningPackage.oclIsUndefined() then OclUndefined else
 let traceP : UWE!Package = nn.owningPackage.getTraceTarget(
 'NavigationPackage2PresentationPackage') in
 if traceP.oclIsUndefined() then thisModule.resolveTemp(nn.owningPackage, 'pp')
 else traceP endif
 endif;
 allOwnedAttribute : Sequence(UWE!Property) = nn.allOwnedAttribute();
 textInputAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.type.oclIsKindOf(UWE!PrimitiveType));
 enumerationInputAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.type.oclIsKindOf(UWE!Enumeration));
 selectionAttribute : Sequence(UWE!Property) = allOwnedAttribute->select(p |
 p.type.oclIsTypeOf(UWE!Class));
 }
 to tnn : UWE!ProcessClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 isHome <- nn.isHome,
 isLandmark <- nn.isLandmark,
 owner <- nn.owner,
 ownedAttribute <- nn.ownedAttribute,
 ownedOperation <- nn.ownedOperation,
 ownedBehavior <- nn.ownedBehavior,

 367

Model Driven Software Engineering for Web Applications

 nestedClassifier <- nn.nestedClassifier,
 useCase <- nn.useCase,
 generalization <- nn.generalization,
 -- specific
 contentClass <- nn.contentClass
),
 pc : UWE!PresentationClass
 (
 -- general from Node2PresentationClass
 name <- nn.name,
 node <- nn,
 owningPackage <- owningPackage,
 -- specific
 ownedAttribute <- textInputPps->union(enumerationInputPps)->union(selectionPps),
 nestedClassifier <- textInputUis->union(enumerationInputUis)->union(selectionUis)
),
 textInputPps : distinct UWE!PresentationProperty foreach (p in textInputAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- textInputUis,
 lower <- p.lower,
 upper <- p.upper
),
 textInputUis : distinct UWE!TextInput foreach (p in textInputAttribute)
 (
 name <- p.name.firstToUpper(),
 owner <- pc
),
 enumerationInputPps : distinct UWE!PresentationProperty
 foreach (p in enumerationInputAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- enumerationInputUis,
 lower <- p.lower,
 upper <- p.upper
),

 368

Model Driven Software Engineering for Web Applications

 enumerationInputUis : distinct UWE!EnumerationInput foreach (p in enumerationInputAttribute)
 (
 name <- p.name.firstToUpper(),
 owner <- pc
),
 selectionPps : distinct UWE!PresentationProperty foreach (p in selectionAttribute)
 (
 name <- '',
 owner <- pc,
 class_ <- pc,
 aggregation <- #composite,
 isComposite <- true,
 navigationProperty <- p,
 type <- selectionUis,
 lower <- p.lower,
 upper <- p.upper
),
 selectionUis : distinct UWE!Selection foreach (p in selectionAttribute)
 (
 name <- p.name.firstToUpper(),
 owner <- pc,
 format <- p.type.name
)
 do
 {
 thisModule.CreateTrace(nn, pc, 'Node2PresentationClass');
 }
}

B.4 PIM2PSM Transformations

This section comprises the implementation of the PIM2PSM transformations for the trans-
formation of the platform independent design models to the platform specific implementa-
tion models as presented in Chapter 5. All PIM2PSM transformations are regular, i.e. non
refining, transformations using the actual version of the ATL compiler, called ATL 2006,
which supports rule inheritance. For activating the ATL 2006 compiler, the following code
line has to be placed at the beginning of a transformation:

-- @atlcompiler atl2006

 369

Model Driven Software Engineering for Web Applications

B.4.1 Configuration Header

The following transformation rules and helpers are included by the transformations Navi-
gation2Conf and Process2Conf in order to generate XML configuration data for the run-
time environment as presented in 5.1.3.

helper context OclAny def : strippedTypeName() : String =
 let n : String = self.oclType().toString() in
 let i : Integer = n.indexOf('!') in
 if i < 0 then n else n.substring(i+2, n.size()) endif;

helper context OclAny def : isPrimitive() : Boolean =
 self.oclIsTypeOf(Boolean) or self.oclIsTypeOf(Integer) or self.oclIsTypeOf(Real)
 or self.oclIsTypeOf(String);

helper def : processPackageName : String = 'uwe.runtime.process';

helper def : confIdCounter : Integer = 0;
helper def : confIdMap : Map(UWE!NamedElement, String) = Map{};
helper def : beansNode : XML!Element = OclUndefined;

helper context UWE!NamedElement def : getId() : String =
 let mapId : String = thisModule.confIdMap->get(self) in
 if mapId.oclIsUndefined() then let qn : String = self.qualifiedId() in
 if qn.oclIsUndefined() or qn = '' then
 thisModule.CreateId(self)
 else self.strippedTypeName() + '_' + qn endif
 else mapId endif;

rule CreateId(el : UWE!NamedEl)
{
 do
 {
 -- increase id counter
 thisModule.confIdCounter <- thisModule.confIdCounter + 1;

 -- rememberid in global map
 thisModule.confIdMap <- thisModule.confIdMap->including(el, 'id_' +
 thisModule.confIdCounter.toString());
 'id_' + thisModule.confIdCounter.toString();
 }
}

abstract rule NamedElement2Conf
{

 370

Model Driven Software Engineering for Web Applications

 from el : UWE!NamedElement
 to beanEl : XML!Element
 (
 name <- 'bean',
 parent <- thisModule.beansNode
),
 idAttr : XML!Attribute
 (
 name <- 'id',
 value <- el.getId(),
 parent <- beanEl
)
}

rule CreateConfProperty(parent : XML!Element, name : String, value : OclAny)
{
 to propertyEl : XML!Element
 (
 name <- 'property',
 parent <- parent
),
 nameAttr : XML!Attribute
 (
 name <- 'name',
 value <- name,
 parent <- propertyEl
)
 do
 {
 thisModule.CreateConfPropertyValue(propertyEl, value);
 }
}

rule CreateConfPropertyValue(parent : XML!Element, value : OclAny)
{
 do
 {
 if(value.isPrimitive())
 {
 thisModule.CreateConfPropertyPrimitiveValue(parent, value);
 }
 else
 {
 if(value.oclIsKindOf(UWE!NamedElement))
 {
 thisModule.CreateConfPropertyRefValue(parent, value);

 371

Model Driven Software Engineering for Web Applications

 }
 else
 {
 if(value.oclIsKindOf(Set(OclAny)))
 {
 thisModule.CreateConfPropertySetValue(parent, value);
 }
 else
 {
 if(value.oclIsKindOf(Sequence(OclAny)))
 {
 thisModule.CreateConfPropertySequenceValue(parent, value);
 }
 else
 {
 value.debug('Property value cannot be converted to conf');
 }
 }
 }
 }
 }
}

rule CreateConfPropertyPrimitiveValue(parent : XML!Element, value : OclAny)
{
 to valueEl : XML!Element
 (
 name <- 'value',
 parent <- parent
),
 stringValue : XML!TextNode
 (
 value <- value.toString(),
 parent <- valueEl
)
}

rule CreateConfPropertyRefValue(parent : XML!Element, value : UWE!NamedElement)
{
 to refEl : XML!Element
 (
 name <- 'ref',
 parent <- parent
),
 beanAttr : XML!Attribute
 (

 372

Model Driven Software Engineering for Web Applications

 name <- 'bean',
 value <- value.getId(),
 parent <- refEl
)
}

rule CreateConfPropertySetValue(parent : XML!Element, value : Set(OclAny))
{
 to setEl : XML!Element
 (
 name <- 'set',
 parent <- parent
)
 do
 {
 for(v in value)
 {
 thisModule.CreateConfPropertyValue(setEl, v);
 }
 }
}

rule CreateConfPropertySequenceValue(parent : XML!Element,
 value : Sequence(OclAny))
{
 to listEl : XML!Element
 (
 name <- 'list',
 parent <- parent
)
 do
 {
 for(v in value)
 {
 thisModule.CreateConfPropertyValue(listEl, v);
 }
 }
}

B.4.2 Transformation Content2JavaBeans

module Content2JavaBeans;
create OUT : JAVA from IN : UWE;

uses strings;

 373

Model Driven Software Engineering for Web Applications

uses Java;
uses UWEHelpers;

helper def : utilPck : JAVA!Package = OclUndefined;

helper context UWE!Class def : fullJavaName() : String =
 if self.owningPackage.oclIsUndefined() then '' else self.owningPackage.fullJavaName() + '.'
 endif + self.name;

helper context UWE!Package def : fullJavaName() : String =
 let qn : String = self.qualifiedNameBySeparator('.') in
 if qn.oclIsUndefined() then '' else qn.toLower() + '.' endif + 'beans';

entrypoint rule CreateSingletons()
{
 to utilPck : JAVA!Package
 (
 name <- 'java.util',
 isImported <- true
)
 do
 {
 thisModule.utilPck <- utilPck;
 }
}

rule Package2Package
{
 from p : UWE!Package (p.oclIsTypeOf(UWE!Package) and p.ownedMember->exists(el |
 el.oclIsTypeOf(UWE!Class)))
 to jp : JAVA!Package
 (
 name <- p.fullJavaName(),
 isImported <- false
)
}

rule Class2Class
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))
 to jc : JAVA!JavaClass
 (
 name <- c.name,
 package <- c.package,
 superClasses <- c.generalization->collect(g | g.general),
 isAbstract <- false,

 374

Model Driven Software Engineering for Web Applications

 isPublic <- true,
 isInterface <- false
)
}

rule PrimitiveType2PrimitiveType
{
 from pt : UWE!PrimitiveType
 to jpt : JAVA!PrimitiveType
 (
 name <- pt.name
)
}

rule Enumeration2Enumeration
{
 from e : UWE!Enumeration (UWE!Property.allInstances()->exists(p |
 p.class_.oclIsTypeOf(UWE!Class) and p.type = e))
 to je : JAVA!Enumeration
 (
 name <- e.name,
 package <- e.package,
 enumerationLiterals <- e.ownedLiteral->collect(el |
 thisModule.EnumerationLiteral2EnumerationLiteral(el))
)
}

lazy rule EnumerationLiteral2EnumerationLiteral
{
 from el : UWE!EnumerationLiteral
 to jel : JAVA!EnumerationLiteral
 (
 name <- el.name
)
}

rule Property2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and
 not p.isDerived)
 to field : JAVA!Field
 (
 owner <- p.class_,
 name <- '_' + p.name,
 type <- if p.isMultivalued() then

 375

Model Driven Software Engineering for Web Applications

 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif,
 isPublic <- false,
 isStatic <- false,
 initializer <- if p.type.name = 'String' then '""' else
 if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then 'new java.util.ArrayList<' +
 p.type.fullJavaName() + '>()' else
 if p.isOrdered then 'new java.util.ArrayList<' + p.type.fullJavaName() + '>()'
 else 'new java.util.HashSet<' + p.type.fullJavaName() + '>()' endif
 endif
 else OclUndefined endif
 endif
),
 getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 body <- 'return ' + '_' + p.name + ';'
),
 setter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'set' + p.name.stringFirstToUpper(),
 isPublic <- true,
 isStatic <- false,
 parameters <- Sequence { setterParameter },
 body <- 'this.' + '_' + p.name + ' = ' + '_' + p.name + ';'
),
 setterParameter : JAVA!MethodParameter
 (
 name <- '_' + p.name,
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else

 376

Model Driven Software Engineering for Web Applications

 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif
)
}

rule DerivedProperty2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and
 p.isDerived)
 to getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 body <- if p.type.oclIsUndefined() then '' else
 if p.type.oclIsKindOf(UWE!DataType) then
 if p.type.name = 'void' then '' else
 if p.type.name = 'Boolean' then 'return false;' else
 'return (' + p.type.name + ')0;'
 endif
 endif
 else
 'return null;'
 endif
 endif
)
}

rule Operation2Method
{
 from o : UWE!Operation (o.class_.oclIsTypeOf(UWE!Class))
 using
 {
 formalParameters : Sequence (UWE!Parameter) = o.ownedParameter->select(op |
 op.direction <> #return);
 }
 to m : JAVA!Method

 377

Model Driven Software Engineering for Web Applications

 (
 name <- o.name,
 owner <- o.class_,
 isPublic <- true,
 isStatic <- false,
 parameters <- parameters,
 type <- if o.type.oclIsKindOf(UWE!PrimitiveType) then
 thisModule.PrimitiveType2PrimitiveType(o.type) else o.type endif,
 body <- if o.type.oclIsUndefined() then '' else
 if o.type.oclIsKindOf(UWE!DataType) then
 if o.type.name = 'void' then '' else
 if o.type.name = 'Boolean' then 'return false;' else
 'return (' + o.type.name + ')0;'
 endif
 endif
 else
 'return null;'
 endif
 endif
),
 parameters : distinct JAVA!MethodParameter foreach (p in formalParameters)
 (
 name <- '_' + p.name,
 type <- p.type
)
}

unique lazy rule Class2ParameterizedSet
{
 from c : UWE!Class
 to s : JAVA!JavaClass
 (
 name <- 'Set',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

unique lazy rule Class2ParameterizedList
{
 from c : UWE!Class
 to s : JAVA!JavaClass
 (

 378

Model Driven Software Engineering for Web Applications

 name <- 'List',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

B.4.3 Transformation Content2RMIInterfaces

module Content2RMIInterfaces;
create OUT : JAVA from IN : UWE;

uses strings;
uses Java;
uses UWEHelpers;

helper def : utilPck : JAVA!Package = OclUndefined;
helper def : rmiPck : JAVA!Package = OclUndefined;
helper def : remoteClass : JAVA!Cass = OclUndefined;
helper def : remoteException : JAVA!Cass = OclUndefined;

helper context UWE!Class def : fullJavaName() : String =
 if self.owningPackage.oclIsUndefined() then ''
 else self.owningPackage.fullJavaName() + '.' endif + self.name;

helper context UWE!Package def : fullJavaName() : String =
 let qn : String = self.qualifiedNameBySeparator('.') in
 if qn.oclIsUndefined() then '' else qn.toLower() + '.' endif + 'rmi';

entrypoint rule CreateSingletons()
{
 to utilPck : JAVA!Package
 (
 name <- 'java.util',
 isImported <- true
),
 rmiPck : JAVA!Package
 (
 name <- 'java.rmi',
 isImported <- true
),
 remoteClass : JAVA!JavaClass
 (

 379

Model Driven Software Engineering for Web Applications

 name <- 'Remote',
 package <- rmiPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true
),
 remoteException : JAVA!JavaClass
 (
 name <- 'RemoteException',
 package <- rmiPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- false
)
 do
 {
 thisModule.utilPck <- utilPck;
 thisModule.rmiPck <- rmiPck;
 thisModule.remoteClass <- remoteClass;
 thisModule.remoteException <- remoteException;
 }
}

rule Package2Package
{
 from p : UWE!Package (p.oclIsTypeOf(UWE!Package) and p.ownedMember->exists(el |
 el.oclIsTypeOf(UWE!Class)))
 to jp : JAVA!Package
 (
 name <- p.fullJavaName(),
 isImported <- false
)
}

rule Class2Interfaces
{
 from c : UWE!Class (c.oclIsTypeOf(UWE!Class))
 to jc : JAVA!JavaClass
 (
 name <- c.name,
 package <- c.package,
 superClasses <- c.generalization->collect(g | g.general)->including(
 thisModule.remoteClass),
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true

 380

Model Driven Software Engineering for Web Applications

)
}

rule PrimitiveType2PrimitiveType
{
 from pt : UWE!PrimitiveType
 to jpt : JAVA!PrimitiveType
 (
 name <- pt.name
)
}

rule Enumeration2Enumeration
{
 from e : UWE!Enumeration (UWE!Property.allInstances()->exists(p |
 p.class_.oclIsTypeOf(UWE!Class) and p.type = e))
 to je : JAVA!Enumeration
 (
 name <- e.name,
 package <- e.package,
 enumerationLiterals <- e.ownedLiteral->collect(el |
 thisModule.EnumerationLiteral2EnumerationLiteral(el))
)
}

lazy rule EnumerationLiteral2EnumerationLiteral
{
 from el : UWE!EnumerationLiteral
 to jel : JAVA!EnumerationLiteral
 (
 name <- el.name
)
}

rule Property2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and
 not p.isDerived)
 to getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else

 381

Model Driven Software Engineering for Web Applications

 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 exceptions <- Set { thisModule.remoteException }
),
 setter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'set' + p.name.stringFirstToUpper(),
 isPublic <- true,
 isStatic <- false,
 parameters <- Sequence { setterParameter },
 exceptions <- Set { thisModule.remoteException }
),
 setterParameter : JAVA!MethodParameter
 (
 name <- '_' + p.name,
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif
)
}

rule DerivedProperty2ClassMembers
{
 from p : UWE!Property (p.class_.oclIsTypeOf(UWE!Class) and
 (p.type.oclIsKindOf(UWE!DataType) or p.type.oclIsTypeOf(UWE!Class)) and
 p.isDerived)
 to getter : JAVA!Method
 (
 owner <- p.class_,
 name <- 'get' + p.name.stringFirstToUpper(),
 type <- if p.isMultivalued() then
 if p.isOrdered.oclIsUndefined() then thisModule.Class2ParameterizedList(p.type)
 else if p.isOrdered then thisModule.Class2ParameterizedList(p.type) else
 thisModule.Class2ParameterizedSet(p.type) endif
 endif
 else p.type endif,
 isPublic <- true,
 isStatic <- false,
 exceptions <- Set { thisModule.remoteException }

 382

Model Driven Software Engineering for Web Applications

)
}

rule Operation2Method
{
 from o : UWE!Operation (o.class_.oclIsTypeOf(UWE!Class))
 using
 {
 formalParameters : Sequence (UWE!Parameter) = o.ownedParameter->select(op |
 op.direction <> #return);
 }
 to m : JAVA!Method
 (
 name <- o.name,
 owner <- o.class_,
 isPublic <- true,
 isStatic <- false,
 parameters <- parameters,
 type <- if o.type.oclIsKindOf(UWE!PrimitiveType) then
 thisModule.PrimitiveType2PrimitiveType(o.type) else o.type endif,
 exceptions <- Set { thisModule.remoteException }
),
 parameters : distinct JAVA!MethodParameter foreach (p in formalParameters)
 (
 name <- '_' + p.name,
 type <- p.type
)
}

unique lazy rule Class2ParameterizedSet
{
 from c : UWE!Class
 to s : JAVA!JavaClass
 (
 name <- 'Set',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

unique lazy rule Class2ParameterizedList
{
 from c : UWE!Class

 383

Model Driven Software Engineering for Web Applications

 to s : JAVA!JavaClass
 (
 name <- 'List',
 package <- thisModule.utilPck,
 isAbstract <- false,
 isPublic <- true,
 isInterface <- true,
 actualTypeParameters <- Sequence { c }
)
}

B.4.4 Transformation Navigation2Conf

module Navigation2Conf;
create OUT : XML from IN : UWE;

uses UWEHelpers;

-- INCLUDE Configuration Header HERE

entrypoint rule CreateList()
{
 to beanEl : XML!Element
 (
 name <- 'bean',
 parent <- beansNode
),
 idAttr : XML!Attribute
 (
 name <- 'id',
 value <- 'navigationClassInfos',
 parent <- beanEl
),
 classAttr : XML!Attribute
 (
 name <- 'class',
 value <- 'uwe.runtime.ListBean',
 parent <- beanEl
),
 rootNode : XML!Root
 (
 children <- Sequence { beansNode },
 documentName <- 'navigation-conf.xml'
),
 beansNode : XML!Element

 384

Model Driven Software Engineering for Web Applications

 (
 name <- 'beans'
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'list', UWE!NavigationClass.allInstances());
 thisModule.beansNode <- beansNode;
 }
}

rule NavigationClass2Conf extends NamedElement2Conf
{
 from el : UWE!NavigationClass
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- 'uwe.runtime.NavigationClassInfo',
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.qualifiedId());
 thisModule.CreateConfProperty(beanEl, 'specific',
 UWE!Generalization.allInstances()->select(g | g.general = el)->collect(g | g.specific));
 thisModule.CreateConfProperty(beanEl, 'contentClass', el.contentClass.fullJavaName());
 }
}

B.4.5 Transformation Process2Conf

module Process2Conf;
create OUT : XML from IN : UWE;

uses UWEHelpers;

-- INCLUDE Configuration Header HERE

entrypoint rule CreateList()
{
 to beanEl : XML!Element
 (
 name <- 'bean',
 parent <- beansNode
),
 idAttr : XML!Attribute

 385

Model Driven Software Engineering for Web Applications

 (
 name <- 'id',
 value <- 'processActivities',
 parent <- beanEl
),
 classAttr : XML!Attribute
 (
 name <- 'class',
 value <- 'uwe.runtime.ListBean',
 parent <- beanEl
),
 rootNode : XML!Root
 (
 children <- Sequence { beansNode },
 documentName <- 'process-conf.xml'
),
 beansNode : XML!Element
 (
 name <- 'beans'
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'list', UWE!ProcessActivity.allInstances());
 thisModule.beansNode <- beansNode;
 }
}

rule ProcessActivity2Conf extends NamedElement2Conf
{
 from el : UWE!ProcessActivity
 using
 {
 inputParameterNode : UWE!ActivityParameterNode =
 el.node->select(n | n.oclIsTypeOf(UWE!ActivityParameterNode) and
 n.incoming->size() = 0)->asSequence()->first();
 outputParameterNode : UWE!ActivityParameterNode =
 let ns : Set(UWE!ActivityParameterNode) =
 el.node->select(n | n.oclIsTypeOf(UWE!ActivityParameterNode) and
 n.outgoing->size() = 0) in if ns->size() = 0 then OclUndefined else
 ns->asSequence()->first() endif;
 entryNode : UWE!NavigationNode = let ns : Set(UWE!NavigationNode) =
 UWE!NavigationNode.allInstances()->select(n | n.ownedAttribute->exists(p |
 p.type = el.owner and if p.association.oclIsUndefined() then false else
 p.association.oclIsTypeOf(UWE!ProcessLink) endif)) in
 if ns->size() = 0 then OclUndefined else ns->asSequence()->first() endif;
 exitNode : UWE!NavigationNode = let ns : Set(UWE!NavigationNode) =

 386

Model Driven Software Engineering for Web Applications

 el.owner.ownedAttribute->select(p |
 if p.association.oclIsUndefined() then false else p.association.oclIsTypeOf(
 UWE!ProcessLink) endif)->collect(p |
 p.type)->select(n | n.oclIsKindOf(UWE!NavigationNode)) in
 if ns->size() = 0 then OclUndefined else ns->asSequence()->first() endif;
 }
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.ProcessActivity',
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'processClass', el.owner.qualifiedId());
 if(not entryNode.oclIsUndefined())
 {
 thisModule.CreateConfProperty(beanEl, 'entryNode',
 (let ps : Sequence(UWE!Property) = entryNode.containingPropertyPath() in
 if ps->isEmpty() then entryNode else ps->first().class_ endif).qualifiedId());
 }
 if(not exitNode.oclIsUndefined())
 {
 thisModule.CreateConfProperty(beanEl, 'exitNode', exitNode.qualifiedId());
 }
 thisModule.CreateConfProperty(beanEl, 'activityNodes',
 el.node->including(el.node->select(n | n.oclIsKindOf(UWE!Action))->
 collect(a | a.output)->flatten())->flatten()->
 including(el.node->select(n | n.oclIsKindOf(UWE!Action))->collect(a | a.input)->
 flatten())->flatten());
 thisModule.CreateConfProperty(beanEl, 'activityEdges', el.edge);
 if(not inputParameterNode.oclIsUndefined())
 {
 thisModule.CreateConfProperty(beanEl, 'inputParameterNode', inputParameterNode);
 }
 if(not outputParameterNode.oclIsUndefined())
 {
 thisModule.CreateConfProperty(beanEl, 'outputParameterNode',
 outputParameterNode);
 }
 }
}

rule ActivityNode2Conf extends NamedElement2Conf
{

 387

Model Driven Software Engineering for Web Applications

 from el : UWE!ActivityNode
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.' + el.strippedTypeName(),
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 }
}

rule Pin2Conf extends ActivityNode2Conf
{
 from el : UWE!Pin (el.owner.oclIsKindOf(UWE!Action))
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.owner.owner);
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 }
}

rule DecisionNodeOrMergeNode2Conf extends ActivityNode2Conf
{
 from el : UWE!ControlNode (el.oclIsTypeOf(UWE!DecisionNode)
 or el.oclIsTypeOf(UWE!MergeNode))
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.DecisionMergeNode',
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 }
}

 388

Model Driven Software Engineering for Web Applications

rule ForkNodeOrJoinNode2Conf extends ActivityNode2Conf
{
 from el : UWE!ControlNode (el.oclIsTypeOf(UWE!ForkNode) or
 el.oclIsTypeOf(UWE!JoinNode))
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.ForkJoinNode',
 parent <- beanEl
)
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 }
}

rule CallOperationAction2Conf extends ActivityNode2Conf
{
 from el : UWE!CallOperationAction
 do
 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'methodName', el.operation.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 thisModule.CreateConfProperty(beanEl, 'target', el.target);
 thisModule.CreateConfProperty(beanEl, 'input', el.input);
 thisModule.CreateConfProperty(beanEl, 'output', el.output);
 }
}

rule UserAction2Conf extends ActivityNode2Conf
{
 from el : UWE!UserAction
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.UserAction',
 parent <- beanEl
)
 do

 389

Model Driven Software Engineering for Web Applications

 {
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'processClass', el.processClass.qualifiedId());
 thisModule.CreateConfProperty(beanEl, 'incoming', el.incoming);
 thisModule.CreateConfProperty(beanEl, 'outgoing', el.outgoing);
 thisModule.CreateConfProperty(beanEl, 'input', el.input);
 thisModule.CreateConfProperty(beanEl, 'output', el.output);
 }
}

rule ActivityEdge2Conf extends NamedElement2Conf
{
 from el : UWE!ActivityEdge
 to classAttr : XML!Attribute
 (
 name <- 'class',
 value <- thisModule.processPackageName + '.' + el.strippedTypeName(),
 parent <- beanEl
)
 do
 {
 if(el.guard.oclIsKindOf(UWE!OpaqueExpression))
 {
 thisModule.CreateConfProperty(beanEl, 'guard', el.guard.body);
 }
 thisModule.CreateConfProperty(beanEl, 'name', el.name);
 thisModule.CreateConfProperty(beanEl, 'activity', el.activity);
 thisModule.CreateConfProperty(beanEl, 'source', el.source);
 thisModule.CreateConfProperty(beanEl, 'target', el.target);
 }
}

B.4.6 Transformation Presentation2JSP

module Presentation2JSP;
create OUT : JSP from IN : UWE;

uses strings;
uses UWEHelpers;

helper context String def : formatTypeName() : String =
 self.regexReplaceAll('([a-z])([A-Z])', '$1 $2');

helper def : translateELExpr(expr : String, prefixExpr : String) : String =

 390

Model Driven Software Engineering for Web Applications

 expr.regexReplaceAll('[{]', '{' + prefixExpr + '.');

helper def : createJSTLCOutExpr(expr : String) : String =
 '<c:out value=\'${' + expr + '}\' />';

helper def : createRawJSTLCOutExpr(expr : String) : String =
 '<c:out value=\'' + expr + '\' />';

helper def : createJSTLURLExpr(viewName : String, objIDExpr : String) : String =
 '<c:url value=\'' + viewName + '.uwe\'><c:param name=\'objID\' value=\'${' +
 objIDExpr + '}\' /></c:url>';

helper context UWE!Class def : elPath() : Sequence(String) =
 self.containingPropertyPath()->iterate(pp; res : Sequence(String) = Sequence {} |
 if pp.navigationProperty.oclIsKindOf(UWE!NavigationProperty) then
 if pp.navigationProperty.contentProperties->size() = 1 then
 let pname : String = pp.navigationProperty.contentProperties->first().name in
 if pname.oclIsUndefined() or pname = '' then res else res->including(pname) endif
 else res endif
 else res endif
);

helper context UWE!Class def : elExpression() : String =
 self.elPath()->prepend('self')->iterate(s; res : String = '' |
 if res = '' then s else res + '.' + s endif);

helper context UWE!Class def : elExpressionIt() : String =
 self.elPath()->prepend('self')->iterate(s; res : String = '' |
 if res = '' then s else res + '_' + s endif) + '_it';

-- RULES

lazy rule RootPresentationClass2JSP
{
 from pc : UWE!PresentationClass
 to bodyNode : JSP!Element
 (
 name <- 'body',
 children <- Sequence { jspIncludeDirective3 }
),
 jsp : JSP!Root
 (
 children <- Sequence { jspPageLanguageDirective, jspIncludeDirective1, htmlNode },
 documentName <- pc.node.qualifiedId() + '.jsp'
),
 jspPageLanguageDirective : JSP!JSPDirective

 391

Model Driven Software Engineering for Web Applications

 (
 name <- 'page',
 value <- 'language="java"'
),
 jspIncludeDirective1 : JSP!JSPDirective
 (
 name <- 'include',
 value <- 'file="/WEB-INF/jsp/include.jspf"'
),
 htmlNode : JSP!Element
 (
 name <- 'html',
 children <- Sequence { headNode, jspIncludeDirective2, bodyNode }
),
 headNode : JSP!Element
 (
 name <- 'head',
 children <- Sequence { titleNode }
),
 titleNode : JSP!Element
 (
 name <- 'title',
 children <- Sequence { titleTextNode }
),
 titleTextNode : JSP!TextNode
 (
 value <- pc.name.formatTypeName()
),
 jspIncludeDirective2 : JSP!JSPDirective
 (
 name <- 'include',
 value <- 'file="/WEB-INF/jsp/style.jspf"'
),
 jspIncludeDirective3 : JSP!JSPDirective
 (
 name <- 'include',
 value <- 'file="/WEB-INF/jsp/header.jspf"'
)
}

rule PresentationClass2JSP
{
 from pc : UWE!PresentationClass
 to pcBody : JSP!Element
 (
 name <- 'div',

 392

Model Driven Software Engineering for Web Applications

 children <- Sequence { cssClassAttr, cssStyleAttr, captionNode, pc.ownedAttribute },
 parent <- if pc.containingClass().oclIsUndefined() then
 thisModule.RootPresentationClass2JSP(pc) else OclUndefined endif
),
 cssClassAttr : JSP!Attribute
 (
 name <- 'class',
 value <- if pc.cssClass.oclIsUndefined() then '' else pc.cssClass endif
),
 cssStyleAttr : JSP!Attribute
 (
 name <- 'style',
 value <- if pc.cssStyle.oclIsUndefined() then '' else pc.cssStyle endif
),
 captionNode : JSP!Element
 (
 name <- 'h' + (pc.containingPropertyPath()->size() + 2).toString(),
 children <- Sequence { captionTextNode }
),
 captionTextNode : JSP!TextNode
 (
 value <- pc.name.formatTypeName()
)
}

rule PresentationClassForNavigationClass2JSP extends PresentationClass2JSP
{
 from pc : UWE!PresentationClass (pc.node.oclIsKindOf(UWE!NavigationClass))
 using
 {
 staticProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!StaticElement));
 attributeProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!OutputElement));
 anchorProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!Anchor));
 pcProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!PresentationClass));
 }
 to pcBody : JSP!Element
 (
 children <- Sequence { captionNode, staticProperties, tableNode, anchorDivNodes,
 pcProperties }->flatten()
),
 tableNode : JSP!Element
 (

 393

Model Driven Software Engineering for Web Applications

 name <- 'table',
 children <- trNodes
),
 trNodes : distinct JSP!Element foreach (p in attributeProperties)
 (
 name <- 'tr'
),
 col1Nodes : distinct JSP!Element foreach (p in attributeProperties)
 (
 name <- 'td',
 parent <- trNodes,
 children <- labelNodes
),
 labelNodes : distinct JSP!TextNode foreach (p in attributeProperties)
 (
 value <- p.type.name.formatTypeName() + ':'
),
 col2Nodes : distinct JSP!Element foreach (p in attributeProperties)
 (
 name <- 'td',
 parent <- trNodes,
 children <- p
),
 anchorDivNodes : distinct JSP!Element foreach (p in anchorProperties)
 (
 name <- 'div',
 children <- p
)
}

rule PresentationClassForProcessClass2JSP extends PresentationClass2JSP
{
 from pc : UWE!PresentationClass (pc.node.oclIsTypeOf(UWE!ProcessClass))
 using
 {
 staticProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!StaticElement));
 processProperties : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.navigationProperty.oclIsKindOf(UWE!ProcessProperty));
 }
 to pcBody : JSP!Element
 (
 children <- Sequence { captionNode, subCaptionNode, staticProperties, formNode }->
 flatten()
),
 captionNode : JSP!Element

 394

Model Driven Software Engineering for Web Applications

 (
 name <- 'h2',
 children <- Sequence { captionTextNode }
),
 captionTextNode : JSP!TextNode
 (
 value <- let c : UWE!Class = pc.node.containingClass() in
 if c.oclIsUndefined() then '' else c.name.formatTypeName() endif
),
 subCaptionNode : JSP!Element
 (
 name <- 'h3',
 children <- Sequence { subCaptionTextNode }
),
 subCaptionTextNode : JSP!TextNode
 (
 value <- pc.name.formatTypeName()
),
 formNode : JSP!Element
 (
 name <- 'form',
 children <- Sequence { actionAttr, methodAttr, tableNode, pNode, sbNode, rbNode }
),
 actionAttr : JSP!Attribute
 (
 name <- 'action',
 value <- '__processinput__.uwe'
),
 methodAttr : JSP!Attribute
 (
 name <- 'method',
 value <- 'post'
),
 tableNode : JSP!Element
 (
 name <- 'table',
 children <- trNodes
),
 trNodes : distinct JSP!Element foreach (p in processProperties)
 (
 name <- 'tr'
),
 col1Nodes : distinct JSP!Element foreach (p in processProperties)
 (
 name <- 'td',
 parent <- trNodes,

 395

Model Driven Software Engineering for Web Applications

 children <- labelNodes
),
 labelNodes : distinct JSP!TextNode foreach (p in processProperties)
 (
 value <- p.type.name.formatTypeName() + ':'
),
 col2Nodes : distinct JSP!Element foreach (p in processProperties)
 (
 name <- 'td',
 parent <- trNodes,
 children <- p
),
 pNode : JSP!Element
 (
 name <- 'p'
),
 sbNode : JSP!Element
 (
 name <- 'input',
 children <- Sequence { sbTypeAttr, sbValueAttr }
),
 sbTypeAttr : JSP!Attribute
 (
 name <- 'type',
 value <- 'submit'
),
 sbValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- 'Submit'
),
 rbNode : JSP!Element
 (
 name <- 'input',
 children <- Sequence { rbTypeAttr, rbValueAttr }
),
 rbTypeAttr : JSP!Attribute
 (
 name <- 'type',
 value <- 'reset'
),
 rbValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- 'Reset'
)

 396

Model Driven Software Engineering for Web Applications

}

rule PresentationClassForIndex2JSP extends PresentationClass2JSP
{
 from pc : UWE!PresentationClass (pc.node.oclIsTypeOf(UWE!Index))
 using
 {
 anchorProperty : Sequence(UWE!PresentationProperty) = pc.ownedAttribute->
 select(pp | pp.type.oclIsKindOf(UWE!Anchor))->first();
 elExpression : String = pc.elExpression();
 elExpressionIt : String = pc.elExpressionIt();
 target : UWE!NavigationNode = let outLinks : Set(UWE!Link) = pc.node.outLinks() in
 if outLinks->size() <> 1 then OclUndefined else
 outLinks->asSequence()->first().target()
 endif;
 }
 to pcBody : JSP!Element
 (
 children <- Sequence { captionNode, ulNode }
),
 ulNode : JSP!Element
 (
 name <- 'ul',
 children <- Sequence { forEachNode }
),
 forEachNode : JSP!Element
 (
 name <- 'c:forEach',
 children <- Sequence { itemsAttr, varAttr, liNode }
),
 itemsAttr : JSP!Attribute
 (
 name <- 'items',
 value <- '${' + elExpression + '}'
),
 varAttr : JSP!Attribute
 (
 name <- 'var',
 value <- elExpressionIt
),
 liNode : JSP!Element
 (
 name <- 'li',
 children <- Sequence { anchorProperty }
)
}

 397

Model Driven Software Engineering for Web Applications

rule PresentationProperty2JSP
{
 from pp : UWE!PresentationProperty (not pp.class_.oclIsUndefined())
 to spanNode : JSP!Element
 (
 name <- 'span',
 children <- Sequence { pp.type }
)
}

rule UIElement2JSP
{
 from ui : UWE!UIElement
 to uiBody : JSP!Element
 (
 name <- 'span',
 children <- Sequence { cssClassAttr, cssStyleAttr }
),
 cssClassAttr : JSP!Attribute
 (
 name <- 'class',
 value <- if ui.cssClass.oclIsUndefined() then '' else ui.cssClass endif
),
 cssStyleAttr : JSP!Attribute
 (
 name <- 'style',
 value <- if ui.cssStyle.oclIsUndefined() then '' else ui.cssStyle endif
)
}

rule Anchor2JSP extends UIElement2JSP
{
 from ui : UWE!Anchor
 using
 {
 presentationProperty : UWE!PresentationProperty = ui.containingProperty();
 navigationProperty : UWE!NavigationProperty = if presentationProperty.
 navigationProperty.oclIsTypeOf(UWE!NavigationProperty) then
 presentationProperty.navigationProperty else OclUndefined endif;
 contentProperty : UWE!Property = if navigationProperty.oclIsUndefined() then OclUndefined
 else if navigationProperty.contentProperties->isEmpty() then OclUndefined else
 navigationProperty.contentProperties->first() endif
 endif;
 link : UWE!Link = if presentationProperty.class_.node.
 oclIsKindOf(UWE!AccessPrimitive) then

 398

Model Driven Software Engineering for Web Applications

 presentationProperty.class_.node.outLinks()->first()
 else if navigationProperty.oclIsUndefined() then OclUndefined else
 navigationProperty.association endif endif;
 target : UWE!NavigationNode = if link.oclIsUndefined() then OclUndefined
 else link.target() endif;
 elExpression : String = if presentationProperty.class_.node.
 oclIsKindOf(UWE!AccessPrimitive) then
 ui.elExpressionIt() else ui.elExpression() endif;
 }
 to uiBody : JSP!Element
 (
 children <- Sequence { cssClassAttr, cssStyleAttr, cIfNode }
),
 cIfNode : JSP!Element
 (
 name <- 'c:if',
 children <- Sequence { cIfTestAttr, cSetNode, aNode }
),
 cIfTestAttr : JSP!Attribute
 (
 name <- 'test',
 value <- '${not empty ' + elExpression + if link.oclIsUndefined() then '' else
 if link.guard.oclIsUndefined() then '' else ' and (' + link.guard + ')' endif
 endif + '}'
),
 cSetNode : JSP!Element
 (
 name <- 'c:set',
 children <- Sequence { cSetVarAttr, cSetScopeAttr, cSetValueAttr }
),
 cSetVarAttr : JSP!Attribute
 (
 name <- 'var',
 value <- 'obj'
),
 cSetScopeAttr : JSP!Attribute
 (
 name <- 'scope',
 value <- 'request'
),
 cSetValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '${' + elExpression + '}'
),
 aNode : JSP!Element

 399

Model Driven Software Engineering for Web Applications

 (
 name <- 'a',
 children <- Sequence { hrefAttr, anchorTextNode }
),
 hrefAttr : JSP!Attribute
 (
 name <- 'href',
 value <- if target.oclIsUndefined() then '' else
 target.qualifiedId() + '.uwe?objID=<%= objID(request) %>'
 endif
),
 anchorTextNode : JSP!TextNode
 (
 value <- if ui.format.oclIsUndefined() or ui.format = '' then ui.name.formatTypeName() else
 thisModule.createRawJSTLCOutExpr(thisModule.translateELExpr(
 ui.format, elExpression))
 endif
)
}

rule Text2JSP extends UIElement2JSP
{
 from ui : UWE!Text
 using
 {
 presentationProperty : UWE!PresentationProperty = ui.containingProperty();
 navigationProperty : UWE!NavigationProperty = if presentationProperty.navigationProperty.
 oclIsTypeOf(UWE!NavigationProperty) then
 presentationProperty.navigationProperty else OclUndefined endif;
 contentProperty : UWE!Property = if navigationProperty.oclIsUndefined() then OclUndefined
 else if navigationProperty.contentProperties->isEmpty() then OclUndefined else
 navigationProperty.contentProperties->first() endif
 endif;
 elExpression : String = if contentProperty.oclIsUndefined() then '' else
 if presentationProperty.class_.node.oclIsKindOf(UWE!AccessPrimitive)
 then 'self_it' else 'self' endif +
 '.' + contentProperty.name
 endif;
 }
 to uiBody : JSP!Element
 (
 children <- Sequence { cssClassAttr, cssStyleAttr, cOutEl }
),
 cOutEl : JSP!Element
 (
 name <- 'c:out',

 400

Model Driven Software Engineering for Web Applications

 children <- Sequence { valueAttr }
),
 valueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '${' + elExpression + '}'
)
}

rule Image2JSP extends UIElement2JSP
{
 from ui : UWE!Image
 using
 {
 presentationProperty : UWE!PresentationProperty = ui.containingProperty();
 navigationProperty : UWE!NavigationProperty = if presentationProperty.navigationProperty.
 oclIsTypeOf(UWE!NavigationProperty) then
 presentationProperty.navigationProperty else OclUndefined endif;
 contentProperty : UWE!Property = if navigationProperty.oclIsUndefined() then OclUndefined
 else if navigationProperty.contentProperties->isEmpty() then OclUndefined else
 navigationProperty.contentProperties->first() endif
 endif;
 elExpression : String = if contentProperty.oclIsUndefined() then '' else
 if presentationProperty.class_.node.oclIsKindOf(UWE!AccessPrimitive) then 'self_it'
 else 'self' endif + '.' + contentProperty.name endif;
 }
 to uiBody : JSP!Element
 (
 name <- 'img',
 children <- Sequence { cssClassAttr, cssStyleAttr, srcAttr }
),
 srcAttr : JSP!Attribute
 (
 name <- 'src',
 value <- if ui.url.oclIsUndefined() then '' else ui.url + '/' endif +
 thisModule.createRawJSTLCOutExpr('${' + elExpression + '}')
)
}

rule TextInput2JSP extends UIElement2JSP
{
 from ui : UWE!TextInput
 using
 {
 processProperty : UWE!ProcessProperty = let p : UWE!Property =
 ui.containingProperty().navigationProperty in

 401

Model Driven Software Engineering for Web Applications

 if p.oclIsTypeOf(UWE!ProcessProperty) then p else OclUndefined endif;
 editProperty : UWE!Property = if processProperty.oclIsUndefined() then OclUndefined
 else processProperty.editProperty endif;
 }
 to uiBody : JSP!Element
 (
 name <- 'input',
 children <- Sequence { cssClassAttr, cssStyleAttr, typeAttr, nameAttr, valueAttr }
),
 typeAttr : JSP!Attribute
 (
 name <- 'type',
 value <- 'text'
),
 nameAttr : JSP!Attribute
 (
 name <- 'name',
 value <- '__' + processProperty.name
),
 valueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- if editProperty.oclIsUndefined() then '' else
 thisModule.createJSTLCOutExpr('self.' + editProperty.name)
 endif
)
}

rule EnumerationInput2JSP extends UIElement2JSP
{
 from ui : UWE!EnumerationInput
 using
 {
 processProperty : UWE!ProcessProperty = let p : UWE!Property =
 ui.containingProperty().navigationProperty in
 if p.oclIsTypeOf(UWE!ProcessProperty) then p else OclUndefined endif;
 enumLiterals : Sequence(UWE!EnumerationLiteral) = let p : UWE!Property =
 if processProperty.editProperty.oclIsUndefined() then processProperty else
 processProperty.editProperty endif in
 if p.type.oclIsKindOf(UWE!Enumeration) then p.type.ownedLiteral else Sequence {}
 endif;
 }
 to uiBody : JSP!Element
 (
 name <- 'select',
 children <- Sequence { cssClassAttr, cssStyleAttr, nameAttr, optionNodes }

 402

Model Driven Software Engineering for Web Applications

),
 nameAttr : JSP!Attribute
 (
 name <- 'name',
 value <- '__' + processProperty.name
),
 optionNodes : distinct JSP!Element foreach (el in enumLiterals)
 (
 name <- 'option',
 children <- optionValues->iterate(e; res : Sequence(OclAny) = Sequence { Sequence {
 optionValues->at(enumLiterals->indexOf(el)), optionTextValues->
 at(enumLiterals->indexOf(el)) } } |
 if optionValues->indexOf(e) < enumLiterals->indexOf(el)
 then res.prepend(Sequence {}) else res endif)
),
 optionValues : distinct JSP!Attribute foreach (el in enumLiterals)
 (
 name <- 'value',
 value <- el.name
),
 optionTextValues : distinct JSP!TextNode foreach (el in enumLiterals)
 (
 value <- el.name.firstToUpper().formatTypeName()
)
}

rule Selection2JSP extends UIElement2JSP
{
 from ui : UWE!Selection
 using
 {
 processProperty : UWE!ProcessProperty = let p : UWE!Property =
 ui.containingProperty().navigationProperty in
 if p.oclIsTypeOf(UWE!ProcessProperty) then p else OclUndefined endif;
 elExpression : String = 'self.' + if processProperty.rangeExpression.oclIsUndefined() then
 processProperty.name else processProperty.rangeExpression endif;
 elExpressionIt : String = 'self_it';
 }
 to uiBody : JSP!Element
 (
 name <- 'select',
 children <- Sequence { cssClassAttr, cssStyleAttr, nameAttr }->union(
 if processProperty.lower = 0 then Sequence {
 thisModule.CreateNoneOptionNode(false), forEachNode }
 else Sequence { forEachNode } endif)
),

 403

Model Driven Software Engineering for Web Applications

 nameAttr : JSP!Attribute
 (
 name <- 'name',
 value <- '__' + processProperty.name
),
 forEachNode : JSP!Element
 (
 name <- 'c:forEach',
 children <- Sequence { itemsAttr, varAttr, cSetNode, chooseNode }
),
 itemsAttr : JSP!Attribute
 (
 name <- 'items',
 value <- '${' + elExpression + '}'
),
 varAttr : JSP!Attribute
 (
 name <- 'var',
 value <- elExpressionIt
),
 cSetNode : JSP!Element
 (
 name <- 'c:set',
 children <- Sequence { cSetVarAttr, cSetScopeAttr, cSetValueAttr }
),
 cSetVarAttr : JSP!Attribute
 (
 name <- 'var',
 value <- 'obj'
),
 cSetScopeAttr : JSP!Attribute
 (
 name <- 'scope',
 value <- 'request'
),
 cSetValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '${' + elExpressionIt + '}'
),
 chooseNode : JSP!Element
 (
 name <- 'c:choose',
 children <- Sequence { whenNode, otherwiseNode }
),
 whenNode : JSP!Element

 404

Model Driven Software Engineering for Web Applications

 (
 name <- 'c:when',
 children <- Sequence { whenTestAttr,
 thisModule.CreateOptionNode(true, thisModule.createRawJSTLCOutExpr(
 thisModule.translateELExpr(ui.format, elExpressionIt))) }
),
 whenTestAttr : JSP!Attribute
 (
 name <- 'test',
 value <- '${' +
 if processProperty.editProperty.oclIsUndefined() then 'false' else
 elExpressionIt + ' == self.' + processProperty.editProperty.name endif +
 '}'
),
 otherwiseNode : JSP!Element
 (
 name <- 'c:otherwise',
 children <- Sequence {
 thisModule.CreateOptionNode(false, thisModule.createRawJSTLCOutExpr(
 thisModule.translateELExpr(ui.format, elExpressionIt))) }
)
}

rule CreateOptionNode(selected : Boolean, text : String)
{
 to optionNode : JSP!Element
 (
 name <- 'option',
 children <- Sequence { optionValueAttr, optionTextNode }
),
 optionValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '$<%= objID(request) %>'
),
 optionTextNode : JSP!TextNode
 (
 value <- text
)
 do
 {
 if(selected)
 {
 thisModule.CreateSelectedAttribute().parent <- optionNode;
 }
 optionNode;

 405

Model Driven Software Engineering for Web Applications

 }
}

rule CreateNoneOptionNode(selected : Boolean)
{
 to optionNode : JSP!Element
 (
 name <- 'option',
 children <- Sequence { optionValueAttr, optionTextNode }
),
 optionValueAttr : JSP!Attribute
 (
 name <- 'value',
 value <- '$null'
),
 optionTextNode : JSP!TextNode
 (
 value <- '--- none ---'
)
 do
 {
 if(selected)
 {
 thisModule.CreateSelectedAttribute().parent <- optionNode;
 }
 optionNode;
 }
}

rule CreateSelectedAttribute()
{
 to selAttr : JSP!Attribute
 (
 name <- 'selected',
 value <- 'selected'
)
 do
 {
 selAttr;
 }
}

rule StaticText2JSP extends UIElement2JSP
{
 from ui : UWE!StaticText
 to uiBody : JSP!Element

 406

Model Driven Software Engineering for Web Applications

 (
 name <- 'p',
 children <- Sequence { cssClassAttr, cssStyleAttr, textNode }
),
 textNode : JSP!TextNode
 (
 value <- ui.text
)
}

rule StaticImage2JSP extends UIElement2JSP
{
 from ui : UWE!StaticImage
 to uiBody : JSP!Element
 (
 name <- 'img',
 children <- Sequence { cssClassAttr, cssStyleAttr, srcAttr }
),
 srcAttr : JSP!Attribute
 (
 name <- 'src',
 value <- ui.url
)
}

 407

Model Driven Software Engineering for Web Applications

Curriculum Vitae

Andreas Kraus

geboren am 29. Januar 1974 in Starnberg

seit 02.2001 Promotion am Lehrstuhl für Programmierung und Softwaretechnik des
Departments für Informatik an der Ludwigs-Maximilians-Universität
München

 Thema der Doktorarbeit: Model Driven Software Engineering for Web
Applications

01.2000 Abschluß des Physikstudiums mit Note sehr gut

 Thema der Diplomarbeit: Getriebene nichtlineare nanomechanische Re-
sonatoren

11.1995 Vordiplom in Informatik

11.1995 Beginn des Informatikstudiums (Diplom) an der Ludwigs-Maximilians-
Universität München

05.1995 Vordiplom in Physik

11.1993 Beginn des Physikstudiums (Diplom) an der Ludwigs-Maximilians-
Universität München

07.1993 Abitur am Kurt-Huber-Gymnasium in Gräfelfing

 408

	1 INTRODUCTION
	1.1 Problem Statement
	1.2 Approach
	1.3 Introduction to the DANUBIA Case Study
	1.4 Organization of the Work
	2 MODEL DRIVEN SOFTWARE ENGINEERING
	2.1 Model Driven Architecture (MDA)
	2.1.1 Model Types
	2.1.1.1 Computation Independent Models (CIM)
	2.1.1.2 Platform Independent Models (PIM)
	2.1.1.3 Platform Specific Models (PSM)
	2.1.1.4 Platform Models (PM)

	2.1.2 Transformation Types
	2.1.2.1 Model Type Transformations
	2.1.2.2 Model Instance Transformations

	2.2 Object Management Group Meta Architecture
	2.2.1 Metamodel Layering
	2.2.2 Meta Object Facility (MOF)
	2.2.3 Unified Modeling Language (UML)
	2.2.4 UML Extensions

	2.3 Transformation Approaches
	2.3.1 Classification
	2.3.1.1 Hard-Coded Transformations
	2.3.1.2 Model-To-Code Approaches
	2.3.1.3 Direct-Manipulation Approaches
	2.3.1.4 Relational Approaches
	2.3.1.5 Graph-Transformation-Based Approaches
	2.3.1.6 Structure-Driven Approaches
	2.3.1.7 Hybrid Approaches
	2.3.1.8 Other Model-To-Model Approaches
	2.3.1.9 Discussion

	2.3.2 Query/Views/Transformations (QVT)
	2.3.2.1 Declarative Rules (Relations)
	2.3.2.2 Imperative Rules (Operational Mappings)
	2.3.2.3 Tools

	2.3.3 Atlas Transformation Language (ATL)
	2.3.3.1 Modules
	2.3.3.1.1 Matched Rules
	2.3.3.1.2 Lazy Rules
	2.3.3.1.3 Called Rules
	2.3.3.1.4 Entrypoint and Endpoint Rules
	2.3.3.1.5 Rule Inheritance

	2.3.3.2 Queries
	2.3.3.3 Refining Mode
	2.3.3.4 Tools

	2.3.4 Transformation Modularization
	2.3.5 Discussion

	3 MODEL DRIVEN WEB ENGINEERING
	3.1 Elaborationist versus Translationist Approach
	3.2 Separation of Concerns
	3.3 Transformation Environment
	3.4 Related Work
	3.4.1 UML-based Web Engineering (UWE)
	3.4.1.1 ArgoUWE
	3.4.1.2 UWEXML
	3.4.1.3 Transformation Techniques and Model Driven Process

	3.4.2 WebSA
	3.4.3 MIDAS
	3.4.4 WebML
	3.4.5 OOWS
	3.4.6 HyperDE
	3.4.7 Moreno et al.
	3.4.8 Muller et al.
	3.4.9 W2000

	4 PLATFORM INDEPENDENT ANALYSIS AND DESIGN
	4.1 General Techniques
	4.1.1 Checking Well-Formedness of Models
	4.1.2 Transformation Traces
	4.1.3 Expression Language

	4.2 Requirements
	4.2.1 Metamodel
	4.2.2 Analysis Content: Example
	4.2.3 Web Use Cases: Example

	4.3 Content
	4.3.1 Metamodel
	4.3.2 Transformation Requirements2Content
	4.3.3 Manual Refinement

	4.4 Navigation
	4.4.1 Metamodel
	4.4.2 Navigation Space
	4.4.2.1 Transformation RequirementsAndContent2Navigation
	4.4.2.2 Manual Refinement

	4.4.3 Addition of Indices
	4.4.3.1 Transformation AddIndices
	4.4.3.2 Manual Refinement

	4.4.4 Addition of Menus
	4.4.4.1 Transformation AddMenus
	4.4.4.2 Manual Refinement

	4.5 Process
	4.5.1 Process Integration
	4.5.1.1 Metamodel
	4.5.1.2 Tranformation ProcessIntegration
	4.5.1.3 Manual Refinement

	4.5.2 Process Data and Flow
	4.5.2.1 Metamodel
	4.5.2.2 Transformation CreateProcessDataAndFlow
	4.5.2.3 Manual Refinement

	4.6 Presentation
	4.6.1 Metamodel
	4.6.2 Transformation NavigationAndProcess2Presentation
	4.6.3 Manual Refinement

	4.7 Transition to the Platform Specific Implementation

	5 PLATFORM SPECIFIC IMPLEMENTATION
	5.1 Generic Platform
	5.1.1 Spring Framework
	5.1.2 Runtime Environment
	5.1.3 Configuration
	5.1.3.1 XML Metamodel
	5.1.3.2 Transformation Rules
	5.1.3.3 Serialization to Code

	5.2 Content via JavaBeans
	5.2.1 Java Metamodel
	5.2.2 Example
	5.2.3 Transformation Content2JavaBeans
	5.2.4 Serialization to Code

	5.3 Content via RMI
	5.3.1 Example
	5.3.2 Transformation Content2RMIInterfaces

	5.4 Navigation
	5.4.1 Example
	5.4.2 Transformation Navigation2Conf

	5.5 Process
	5.5.1 Process Runtime Environment: The Web Process Engine
	5.5.2 Example
	5.5.3 Transformation Process2Conf

	5.6 Presentation
	5.6.1 JSP Metamodel
	5.6.2 Example
	5.6.3 Transformation Presentation2JSP
	5.6.4 Serialization to Code

	6 CASE STUDY
	6.1 Platform Independent Analysis and Design
	6.1.1 Requirements
	6.1.1.1 Analysis Content
	6.1.1.2 Web Use Cases

	6.1.2 Content
	6.1.2.1 Results of Transformation Requirements2Content
	6.1.2.2 Manual Refinement

	6.1.3 Navigation
	6.1.3.1 Navigation Space
	6.1.3.1.1 Results of Transformation RequirementsAndContent2Navigation
	6.1.3.1.2 Manual Refinement

	6.1.3.2 Addition of Indices
	6.1.3.2.1 Results of Transformation AddIndices
	6.1.3.2.2 Manual Refinement

	6.1.3.3 Addition of Menus
	6.1.3.3.1 Results of Transformation AddMenus
	6.1.3.3.2 Manual Refinement

	6.1.4 Process
	6.1.4.1 Process Integration
	6.1.4.1.1 Results of Transformation ProcessIntegration
	6.1.4.1.2 Manual Refinement

	6.1.4.2 Process Data and Flow
	6.1.4.2.1 Results of Transformation CreateProcessDataAndFlow
	6.1.4.2.2 Manual Refinement

	6.1.5 Presentation
	6.1.5.1 Results of Transformation NavigationAndProcess2Presentation
	6.1.5.2 Manual Refinement

	6.2 Platform Specific Implementation
	6.2.1 Content
	6.2.1.1 Results of Transformation Content2JavaBeans
	6.2.1.2 Manual Refinement

	6.2.2 Navigation
	6.2.2.1 Results of Transformation Navigation2Conf
	6.2.2.2 Manual Refinement

	6.2.3 Process
	6.2.3.1 Results of Transformation Process2Conf
	6.2.3.2 Manual Refinement

	6.2.4 Presentation
	6.2.4.1 Results of Transformation Presentation2JSP
	6.2.4.2 Manual Refinement

	6.3 Evaluation

	7 CONCLUSION
	7.1 Results
	7.2 Limitations
	7.3 Future Research

	8 TABLE OF FIGURES
	9 REFERENCES
	A UML PROFILE
	A.1 Tabular Overview
	A.2 Trace
	A.3 Requirements
	A.4 Navigation
	A.5 Process
	A.6 Presentation

	B ATL TRANSFORMATIONS
	B.1 Transformation Environment Setup
	B.2 Metamodels
	B.2.1 UWE Metamodel
	B.2.1.1 KM3 Metamodel
	B.2.1.2 Constraint Checking Query

	B.2.2 Java Metamodel
	B.2.2.1 KM3 Metamodel
	B.2.2.2 Constraint Checking Query
	B.2.2.3 Serialization Query

	B.2.3 XML Metamodel
	B.2.3.1 KM3 Metamodel
	B.2.3.2 Constraint Checking Query
	B.2.3.3 Serialization Query

	B.2.4 JSP Metamodel
	B.2.4.1 KM3 Metamodel
	B.2.4.2 Constraint Checking Query
	B.2.4.3 Serialization Query

	B.3 PIM2PIM Transformations
	B.3.1 Refinement Header
	B.3.2 Trace Header
	B.3.3 Transformation Requirements2Content
	B.3.4 Transformation RequirementsAndContent2Navigation
	B.3.5 Transformation AddIndices
	B.3.6 Transformation AddMenus
	B.3.7 Transformation ProcessIntegration
	B.3.8 Transformation CreateProcessDataAndFlow
	B.3.9 Transformation NavigationAndProcess2Presentation

	B.4 PIM2PSM Transformations
	B.4.1 Configuration Header
	B.4.2 Transformation Content2JavaBeans
	B.4.3 Transformation Content2RMIInterfaces
	B.4.4 Transformation Navigation2Conf
	B.4.5 Transformation Process2Conf
	B.4.6 Transformation Presentation2JSP

