citation and similar papers at core.ac.uk

provided by Universid
" AR YV e L kT L LWl o - B WS LY A B = Tl AW Ll Td i i vl

@ Archivo

Institutional Repository

This document is published in:

International Journal of Software Engineering and
Knowledge Engineering 21 (2011) 5, pp. 621-645

DOI: 10.1142/50218194011005426

© 2011. World Scientific Publishing Company

https://core.ac.uk/display/29406887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN OCL-BASED APPROACH TO DERIVE
CONSTRAINT TEST CASES FOR
DATABASE APPLICATIONS

DOLORES CUADRAT, HARITH AL-JUMAILY?,
ELENA CASTRO$ and MANUEL VELASCOY

Computer Science Department
Carlos III University of Madrid
Awv. Universidad 30, 28911 LEGANES, Madrid, Spain
tdeuadra@inf.ucdm.es
thaljumai@inf.uc3m.es
Secastro@inf.uc3m.es
Yvelasco@ia.ucsm.es

Abstract: The development of database applications in most CASE tools has been insufficient
because most of these tools do not provide the software necessary to validate these appli-cations.
Validation means ensuring whether a given application fulfils the user require-ments. We suggest
validation of database applications by using the functional testing technique, which is a fundamental
black-box testing technique for checking the software without being concerned about its
implementation and structure. Our main contribu-tion to this work is in providing a MDA approach
for deriving testing software from the OCL specification of the integrity constraints. This testing
software is used to validate the database applications, which are used to enforce these constraints.
The generated testing software includes three components: validation queries, test cases and initial
data inserted before the testing process. Our approach is implemented as an add-in tool in Rational
Rose called OCL2TestSW.

Keywords: Functional testing software; software validation; equivalence class testing; MDA;
CASE tools.

1. Introduction

The introduction of the MDA approach (Model-Driven Architecture) [1] in Software
Engineering has provided good support and consolidation for automatic code gener-
ation. MDA focuses on using models to cover the life cycle of software development.
MDA is suitably used to solve the interoperability problem between heterogeneities
systems with different implementation platforms.

However, a limitation of MDA is that it does not provide a way to validate
the software. Thus, our approach focuses on deriving test cases from the specifica-
tions of OCL clauses in a class diagram. These test cases are used to ensure that
the database applications employed to enforce these specifications fulfill the user
requirements.

In the context of databases, MDA is a very ambitious task and would help
make database developers’ jobs easier. MDA is adopted in many Computer Assisted
Software Engineering (CASE) tools to transform conceptual models into logical
models. These tools aim to assist database developers in different design phases.
Most of these tools generate applications from the specification of a given schema
and its constraints. However, these tools ignore one of the fundamental issues in
the software development field, software validation, which aims to ensure that the
generated database application fulfils the user requirements exactly.

The validation of generated applications is one of the most important areas
in software engineering; this validation checks if the requirements are reflected
in the generated applications. Thus, software testing is carried out not only to
detect errors but also to show that a program performs its intended functions cor-
rectly, as well as to increase confidence that a program is doing what it is supposed
to do [15].

A database application consists of a database and a set of operations that modi-
fies and interacts with the former. Database applications are defined in [2] as opera-
tions which are developed by integrating domain-specific language such as SQL with
general-purpose programming languages. Our research group is interested in making
this development task easier through the automatic transformation of Object Con-
straints Language (OCL) specification into enforcement mechanisms. The OCL is
used to specify integrity constraints in the UML class diagram. In the development
task we have detected that automatic generation of database applications should
be tested to ensure the correctness of the constraints’ transformation.

Accordingly, in this paper we present an approach to generate testing software to
ensure the correctness of the generated applications. This approach is implemented
as an add-in tool in Rational Rose called OCL2TestSW.

The MDA is used in our approach to transform OCL specifications to test soft-
ware which consists of three mechanisms: test cases, validation queries, and initial
data. The functional testing software approach, also called black-box testing, is
used. The main objective of this type of testing is to ensure that the tested appli-
cations fulfill the user requirements without being concerned about implementation
and structure.

The rest of this work is organized as follows. In Sec. 2, related works are pre-
sented. In Sec. 3, the MDA adaptation for our approach is explained. Section 4,
explains how the OCL2TestSW tool is designed and implemented. Section 5 shows
the evaluation results of our approach and discusses obtained results. In Sec. 6,
some conclusions and future works are presented.

2. Related Works

Our work deals with database CASE tools to generate testing software components
from the specification of UML/OCL constraints associated with a database schema.
These components will be used in the validation of the database applications which
are used to enforce these constraints. Thus, in this section we are interested in
studying some CASE tools that have been widely used in database development
and some interesting works related to software validation.

In the past decade, diverse attempts have been made to resolve the database-
development problem, one of which is the use of database CASE tools. The main
contribution of these tools is that they provide automatic processes to carry out all
phases supported in a database methodology. In fact, the current state of these tools
shows that they provide automatic and graphical user interfaces to reduce manual
work and to make decision-making easier. One of the most important phases that
should be supported by these tools is the transformation of integrity constraints
into enforcement mechanisms. Some CASE tools such as ArgoUML [3], MetaEdit+
[4], Objecteering/SQL [5], OCL22SQL [6], Rational Enterprise [7], and Visual Case
Tool [8] support this type of enforcement mechanisms. However, the total sup-
port of development software is missing in these tools because none of the men-
tioned tools support any way of validating the generated applications. Because of
this, tool support is needed to reduce the development, testing and maintenance
effort [9].

Although testing generated software by a CASE tool could be contradictory,
in general, the CASE tools for the development of databases generate a subset
of very simple specifications which must be extended by the designer, or when the
specifications that they generate do not work when they are run in a specific DBMS
(the SQL code is compiled but it does not work). This is one of the main reasons
for our proposal: to show designers that the diagram of classes along with their
constraints in OCL is transformed into a correct code.

In recent years a wide range of traditional software testing techniques have been
proposed, although relatively little effort has been spent on the testing and anal-
ysis of database applications [10]. In [11], the issues which make testing database
applications different from other types of software have been identified, and a tool
has been developed for populating a database with meaningful data which satisfies
constraints. The cited work considers only the constraints which can be expressed
in the database schema by using SQL’s Data Definition Language. Our work agrees
with the issues in testing database applications presented in the cited work. Never-
theless, the difference between the two works is that in our work the testing software
is derived from the constraints which are expressed in a UML class diagram. These
constraints can be a basic type such as (primary key, foreign key, and unique key)
and a specification of OCL clauses. Our approach joins the UML in aspects that
have been widely accepted and supported by many CASE tools in the software
validation field.

In [12], static analysis techniques (also called white-box techniques) have been
used to extract useful information in a web database application. Static analysis
testing is a fundamental structural technique that depends on software structure
and implementation. That is, the white-box approach has been used to construct
an application graph which systematically generates selected paths based on that
graph. Each path represents a possible scenario of the use of the application. A
test case is organized as an XML file and is automatically executed. In [2, 10,
13], the white-box testing technique is also applied to validate a database applica-
tion. The main objective is to validate all possible paths in the execution flow
of a program. By means of these paths, all the program statements are exe-
cuted and examined at least once. In [24], a white box method for automatic
generation of database instances is proposed. The input of this method con-
sists of an SQL statement, database schema, and assertions to define the user
requirements. The output is a set of constraints to validate the desired database
instances.

Applying black-box techniques could be more simple and practical, especially
when there are an enormous number of interactions with a database. An exam-
ple of the difficulty in applying white-box techniques is the case of the validation
of active database applications. Each trigger has an independent structure, but
in execution time it is very difficult to detect all possible paths to be validated.
Thus, using the equivalence-class testing technique could make the validation of
database applications easier. The equivalence-class testing is a fundamental tech-
nique for functional testing which checks software without being concerned about
its implementation and structure [14]. In this type of testing, the tester’s respon-
sibility is to provide input or initial data and to validate the output results. The
main objective is to check whether the tested software fulfills the user requirements
or not.

AGENDA [22] is another important work in this area. It is a tool that generates
and executes tests for state and transaction constraints. This means that it works
with a limited subset of integrity constraints. According to the presented results
it is not effective 100% of the time, and temporary tables and triggers need to be
created to check if the constraints are verified.

Our approach starts from the specification of constraints in the design phase,
which are then implemented according to the chosen database system (SQL Server,
Oracle, MySQL). Not only are the basic constraints of the relational DBMS con-
sidered (primary keys, unique or foreign key), but also those constraints which are
more complex and which can be implemented by triggers (see OCL2Trigger [19]).
The database and the generated constraints are tested with the tool presented in
this paper. The testing responsibility is to show that the OCL specifications mod-
eled in the UML classes diagram by the user are correctly transformed through the
tool OCL2Trigger.

The works related to database applications and software testing, in general, do
not consider the integrity constraints which are implemented inside the database.

They analyze the modification operations and the queries which are carried out by
external applications and they study if these operations leave the database in a
consistency state. Most of the analyzed works do not include testing in the design
phase, making it difficult to model both the applications and database.

Our approach is applied in the early phases of development and considers the
constraints inside the database (trying to remove the constraints validation from the
applications). Once the database is created in our approach, including tools such as
AGENDA would be a good complement for analyzing the set of applications and
thus achieve a robust database.

Another drawback is that some commercial CASE tools, focusing on the devel-
opment of databases, generate a code that is not correct. For example, ERWIN [25]
provides a set of triggers to validate constraints generated from the transformation
of a conceptual schema, such as the primary key in the relational tables, but they
cannot be run because the DBMS code is not correct. For this reason, the generated
code testing instills confidence in the designers for its use, and that is the principle
motivation behind this work.

3. MDA for Deriving Testing Software

The main objective of deriving testing software from the OCL specifications is to
ensure that the database applications used to enforce these specifications fulfill the
user requirements. The OCL specifications can be enforced by using many types of
applications such as SQL procedures, Java application, SQL triggers, Java triggers,
etc. There is a clear need for software techniques to test the complicated interaction
between applications and database [10]. Because of that, applying the functional
software testing approach (also called black-box testing) can help database devel-
opers to validate any type of application in an efficient way.

The tester chooses better test cases when their executions contribute a certain
confidence in detecting possible defects in the application [15]. For this reason, it is
advisable to obtain high coverage for all possible cases in software testing.

In this section, we will explain our approach for deriving functional testing
software from the OCL specifications according to the MDA framework. MDA aims
to achieve complete (semi-) automatic software development phases [1]. There are
three phases for adaptation of MDA to our approach (see Fig. 1).

The first one, called PIM, represents the logical view of the specification of
integrity constraints using OCL clauses in a class diagram. The second one, called
PSM, describes the technology used to build the necessary components of the test-
ing software. In this phase, the SQL notation is used to refer to the recent 2003
standard [16]. The standard SQL is used to describe these components because
we focus on testing relational database applications. The third phase is called
Testing Software which describes the software technology which can be applied
directly in a target commercial DBMS such as Oracle, DB2, and MS Server.
Two models are used to carry out the transformation rules between these phases

Class Diagram

PIM/UML oCL
I Transforming OCL
to SQL Testing
/ v \ v Software Model
P‘?e'\g/tigl_ Initial Testing Validation
Components Data Cases Queries
I Transforming SQL
Components to DBMS
M v Testing Software Model
Testing
Software Ms-sQL DB2 ORACLE

Fig. 1. Applying MDA to our approach.

automatically: Transforming OCL to SQL components Model, and Transforming
SQL components to DBMS testing software Model. In the following we present a
brief description of these models.

3.1. Transforming OCL to SQL testing software model

According to Fig. 1, each OCL constraint is transformed into three testing software
components. Each one of these components is related to an issue in testing database
application. These issues are defined in [11] as specifying database states, applying
test cases, and observing database state after test execution. In [2], these issues are
defined as test cases generation, test data preparation and test outcomes validation.
According to these issues, the testing software components are defined in our work
as initial data to be inserted before the testing is begun, test cases to be applied for
testing applications, and wvalidation queries to ensure the correctness of the tested
application. A detailed description for each one of these components is shown in
the next subsection.

3.1.1. Validation queries

The first step of our approach is the OCL clauses transformation into validation
SQL queries. These queries are used to check the correctness of the integrity con-
straints after each test case is run. Because the SQL queries syntax in commercial
DBMS depends on the particular characteristics of each system, we transform these
clauses into the standard SQL queries before the final commercial DBMS queries
are derived.

Integrity constraints, also called semantic constraints or user constraints, are
used to define the business rules of the universe of discourse in a systematic manner.

Database modifications are rejected whenever the database final state does not
fulfill these constraints. Currently the OCL2TestSW tool considers OCL invariants
specification although the MDA framework can be adopted to transform any type
of OCL constraints. In future work, our proposal will include other types of OCL
expressions such as pre- and post-conditions. An invariant constraint is an OCL
expression that can be associated with a class, a type or interface in a UML class
diagram [1]. Tt must be true for all instances of element type at any time. The
OCL invariant constraints are also used to specify relationship constraints in a
class diagram such as multiplicity, generalization, etc., although these constraints
are already included in the diagram [17]. The formal definition of an OCL invariant
is shown in the following:

Context (A) inv (constraint_name):
(OCL_expression (self))

A is a class name. Self is an instance of a type (e.g. Company). The Context specifies
the class in which an OCL expression is defined. The OCL_expression is a logical
expression that describes a relationship between one or more atomic expressions.
An atomic expression contains no more than one operator. The OCL_expression is
mapped using the logical and mathematical operators of SQL. For example, the
mapping of mathematical operators (—, +, *,/) is performed directly. The logi-
cal operators (O) such as A (and), V (or), = (not) are mapped using counterpart
expressions of SQL. An OCL expression is used to specify a condition on objects,
so if this condition cannot be satisfied, we need to abort the transaction which
leads to inconsistency in the database state. For example, a business rule might be
“the number of employees of a company must always exceed 50”. This constraint
is transformed to a SQL query to detect whenever the violation has occurred. A
simple way to detect the violation of any constraint is applying the negation “—" of
the original constraint when the corresponding SQL query is implemented. If this
query returns results then it means that there is at least one instance that does not
fulfil the original constraint specification. For example, for the previous constraints,
if the number of employees of a company is equal to or less than 50, then it means
that the constraint is violated.

Relational Algebra notations are used in this paper to introduce abbreviations
to simplify and make the theoretical results of our approach more readable. How-
ever, in practice the transformation of an OCL expression into a SQL standard
expression is automatically performed. This transformation is a significant phase in
our approach because this expression restricts the attribute values and the rela-
tionships between them. Hence, we perform this transformation first, and then
proceed with the following phases of our approach. It is done according to the
OCL expressions syntax where each one of these expressions is transformed into
one SQL expression (p; = 07), where p is an OCL expression, o is a negation SQL
expression corresponding to @, and i is one of the following rules to specify the
mapping.

Rule(a) g; is defined on a target attribute in a class.
©a(Ax)= 01(AX)
The mapping: (self.x © Vi) = 0(4.-0w)

where self.x and © are substituted by the target attribute name and the counterpart
operator of SQL, respectively. V; is a basic type value (e.g. Boolean, Integer, Real
and String) which is substituted by the real value of the constraint, A is the context
relation of the constraint, the attribute x € A, and —© is the negation of the
original operator. For example, p,: “the age of an employee must be equal to or
more than 24”.

Context (EMP)
(self.age>= 24)

Rule(b) g; is defined on target attributes in one or more class.
ob(Ax, B.z) = o,(Ax, B.z)
The mapping: (self.x © self.B.z) = 04+ 0,.2) OR:
(self.x 61 V1> implies (self.B.z O, V2> = O((A.201V1)A(B.2=0,V3))

Here, “implies” can be mapped using the logical operator “AND” and the logical
negation is applied on ©s. This is because “implies” does not have a counterpart in
SQL.

Rule(c) g is defined to specify an aggregate function on target attributes in one
or more class.
pc(Ax, agg(B.z)) = o.(Ax, agg(B.z)) (agg = {MAX, MIN, AVG, COUNT,
etc.)
The mapping: (self.b.z -> agg() © self.x) = 042 0,,,(B.2)

For example, p.: “the total salary of employees must not exceed the department’s
budget”.

Context (EMP)
(alllnstances.salary -> SUM() <= self.Department.budget)

Rule(d) g; is defined to specify a navigation between two class.
pa(A.a, B.a) = g4(A.a, B.a)
The mapping: (self.navigation — > size() © V) = 0(count(B.a)-0V)

OCL allows navigating from the association class A itself to another class B to
specify objects which participate in that association. The arrowhead (— >) is added
to restrict the direction of the navigation. This constraint is true whenever an
instance of A does not have any association in B. For example, pq: “every department
has at least two employees”.

Context (DEPT)
(self.navigation -> size() >= 2)

Rule(e) g; is defined to specify ocllsKindOf property to determine whether A is
either the direct type or one of the subtypes.
pe(A.a, B.a, C.a) = oo 1otal(A.a, B.a, C.a)
= ae,Disjoint(A.a, B.a, Ca)

where A.a is a direct type instance, B.a and C.a are subtypes instance. This type
of constraint specifies a generalization relationship. Although there are four possi-
ble types of generalization: Disjoint-Total, Overlapping-Total, Disjoint-Partial, and
Overlapping-Partial [18], in this work only the Disjoint-Total constraint is consid-
ered because it needs more effort to be controlled than the other ones do.

(1) A Total-constraint of a generalization relationship specifies that an object of
the supertype must be a member of at least one of the subtypes.

(2) A Disjoint-constraint specifies that objects in a different subtype from the same
supertype are completely different.

The mapping: (self -> forAll (A.ajocllsKindOf(B.a) © ocllsKindOf(C.a)))
= Oe.Total = O(A.a~IN(np.a(B)ATc.a(C)))
= Oe.Disjoint = O(A.aIN(mp.o(B)Amc.o(C)))

3.1.2. Initial data

As in [11] and [12] we generate valid initial data specifically for testing, and an
isolated environment is needed to run the test cases. In this section we will describe
our approach to generate initial data from the specification of OCL constraints.
The standard SQL will be utilized to express the DML operations which are used
to insert the generated data in a database.

To insert valid initial data in a database it is necessary to satisfy the basic fun-
damentals of the database schema definition. These fundamentals are the attribute
domain values and the integrity constraints definition. When a class diagram in a
CASE tool is defined some basic constraints are defined too. For example, in a given
class diagram or an object model of Rational Rose CASE tool, basic constraints such
as IsUnique, IsPrimaryKey, ForeignKeyConstraint can be defined. In order to gener-
ate valid initial data we will take advantage of the database schema definition to
describe relations, attributes, and the basic integrity constraints. For the other types
of constraints we will use the OCL specifications which are defined in a given class
diagram.

To begin generation of initial data, the tester needs first to define the
attribute domain values. Formally, a domain is a set of atomic values, given
a set of domain (Di, Dy---Dy,) the Cartesian product of these domains is
DOM = {Dy x D3 x - -+ x Dy }. Each domain is specified using a data type. Accord-
ing to the standard SQL some basic data types such as INTEGER, NUMERIC, CHAR,
VARCHAR, DATE, etc., are used.

A relation R over the set (aj:dy, az:ds - - - an:dy) is a subset of the Cartesian prod-
uct DOM(R), where dy € D1,d; € Dy ---d, € D,. A database schema (SCH) is a set
of relations {Ry, Rz - - - Ry}

We agree with [12] that it will be easier for the human when it comes to checking
the test results, to work with meaningful values, rather than with randomly gen-
erated gibberish. Therefore, in our approach we use a semi-automated generation
approach which allows the tester to define and correct the domains of the attribute
values, as shown in the following processes.

3.1.2.1. Generating tuples according to the basic constraints

In this process, a definition text file called DEF_tablename is created for each rela-
tion in a data model to specify the following schema: {attribute.type.constraint list}
and {domain values}. The {attribute.type.constraint list} is a set of the attribute
names, data types such as (N: numerical, C: Character, D: Date, etc.) and the basic
constraints which are defined for each attribute. The {domain values} is a set of
domain values of these attributes. The attributes list and the constraints list of
a relation are generated automatically in our approach, while the tester needs to
manually edit a reduced sample of the domain values for each attribute in the
relation. The definition text file is automatically transformed to another text file
called TUP_tablename which contains all tuple values related to the same table. This
process is performed in the following steps:

(a) Create a definition text file: Let us consider A a relation, and
that the definition text file DEF_A contains the following information:
DEF_A = {a;.N.PK,a,.C, a35.C}, {*,(v1), (u1,uz)}. This means that relation A
contains three attributes {aj, ap, as}, a; is defined as a primary key (PK), while
there are not any more defined constraints on the attributes a, and as. The
attribute names and the basic constraints are generated automatically from
the data model definition.

(b) Add the domain values: The user needs to edit the file DEF_A in order to
define the domain values of these attributes. This can be done by any text
file editor. Let us consider that the domain values are {*, (v1), (u1, u2)}. The
(*) means that the primary key values of the relation will be generated in an
automatic manner. A specific function is used to calculate the values of these
keys dynamically. If no * is used, the tester can specify the values of these keys
in the file manually. The (v1) and (u, uz) are the domain values of as and as
respectively.

(¢c) Generating the file TUP_A: The DEF_A file is automatically transformed
into the TUP_A which can include all the tuple values of A. The TUP_A file
represents a reduced sample of the Cartesian product of the domain values
DOM of A. This sample may be no more than a few tuples added by the tester.
For example, let us consider TUP_A = {a;.PK, az,az}, {(1, v1, u1), (2, vi, u2)},

10

the {a1.PK, az, ag} represents the attribute name where a; is a primary key. The
{(1, v1,u1), (2, v1, uz)} represents the domain values DOM(A)={(v1) % (u1, u2)}.
Where (1, v1,u1) and (2, vq, ug) are two tuples for the relation A. 1 and 2 are
the generated primary key values. The same process is applied if a; is a unique
value. If DEF_A = {a;1.N.PK, a2.N.Unique, as.N.FK(B)}, {*, *, *}. Here, a; and
as have the same definition as the previous cases, while the definition of a
foreign key is used to create a relationship between the referencing relation
A and the referenced relation B. If DEF_B = {b;.N.PK}, {(u1, uz2)} then the
domain values file of A will contain the following information: TUP_A = {a;.PK,
ag, ag.FK (B)}, {(1, 1, Ul), (2, 2, UQ)}.

3.1.2.2. Validating the generated tuples according to the expression
rules {a, b, ¢, d, e}

Once the tuples are generated for each relation in a database schema, the next
process is to ensure automatically that these tuples do not fulfill the expression
rules {a, b, ¢, d, e} shown in Sec. 3.1.1 because these rules represent the negation
of the original constraints. If there is a tuple which fulfils its rule, this tuple should
not be inserted in the related relation. If such a tuple exists, a message will be sent
to the tester indicating that.

Let us consider that the constraint o contains one of the expression rules {a,
b, ¢, d, e} that is defined between the two relations A and B. The relations A and
B contain the following data: TUP_A = {a1.PK, az, asz}, {(p1.v1, u1), (p2, v2, u2)},
TUPB = {blpK, b2, b3FK (A)}, {(ql, W1, pl). (qg, Wo, pg)} The validation rules
are performed according to the following algorithms:

Validating initial data — Rule (a)

IF EXISTS 04(A.a2) {
FOR EACH ay.valueeTUP_A DO {
IF as.value = © V {Send a warning to the user}}}

i.e. all the related values v; and v, should not fulfill the expression a.value =0 V,
where V is the defined value in o,. If any tuple exists, a message will be sent to the
tester indicating that fact.

Validating initial data — Rule (b)

IF EXISTS O'b(A.aQ, BbQ){
FOR EACH a;.valuee TUP_A DO{
AssociationKey = aj.value
FOR EACH bs.valuee TUP_B AND bjs.value = AssociationKey DO {
IF as.value =©bsy.value {Send a warning to the user}

33

i.e. vi and v, should not fulfill the expression ajs.value =©b,.value, where wy and w;
are the related values to bs.value.

1"

Validating initial data — Rule (c)

IF EXISTS 0¢(A.az, B.by){
FOR EACH a;.valuee TUP_A DO {
AssociationKey = aj.value
FOR EACH bs.valuee TUP_B AND bjs.value = AssociationKey DO {
Calculate agg(bs.value)}
IF as.value —© agg(bs.value) {Send a warning to the user}

1

i.e. if agg(b2) be SUM(b2) then vi and vy should not fulfill the expression as.value
=0 SUM(bz.value) when bs.value = a;.value. i.e. if ag.value = v; then SUM (bs.value)
= wy, and if ag.value = vy then SUM (bz.value) = wo.

Validating initial data — Rule (d)

IF EXISTS o4(A.a1, B.b3) {
FOR EACH a;.valueeTUP_A DO {
AssociationKey = aj.value
FOR EACH bs.valueeTUP_B AND bjs.value = AssociationKey DO {
COUNT (bg.value) = COUNT (bgs.value) + 1}
IF COUNT (bs.value) =© V {Send a warning to the user}
1

i.e. COUNT(p;1) and COUNT(p2) into B should not fulfill the expression COUNT
(bs.value) =© V, where V is the defined value in oy.

Validating initial data — Rule (e)

To illustrate the validation of an expression of the rule (e) let us consider that A
is a direct type; B and C are the subtypes, where TUP_A = {a;.PK}, {(p1), (p2)},
TUP_B = {a1.FK (A)}, {(p1)}, and TUP_C = {a1.FK (A)}, {(p2)}. The validation
is done according to the following algorithms:

IF EXISTS oe(A.a1, B.ag, C.ap) {

FOR EACH a;.valuee TUP_A DO {

DirectTypeKey = aj.value

RelatedObj_B = FALSE
FOR EACH a;.valuee TUP_B AND aj.value = DirectTypeKey DO {
RelatedObj_.B = TRUE}

RelatedObj.C = FALSE
FOR EACH a;.valuee TUP_C AND aj.value = DirectTypeKey DO {
RelatedObj_.C = TRUE}

IF NOT RelatedObj_.B AND NOT RelatedObj_C {Send a warning to the user}

IF RelatedObj_B AND RelatedObj_C {Send a warning to the user}

1

i.e. the variables RelatedObj_B and RelatedObj_C are used to ensure that the Direct-
TypeKey in question has only one instance in B or C respectively. If there are any

12

DirectTypeKey appearances in the two related subtypes then this may violate the
disjoint of the constraint. While if DirectTypeKey does not appear either in B or in
C then this may violate the total of the constraint.

If any message is sent to the user to indicate an error in the domains, the user
must correct the error manually and then the validation process should be repeated
again. Once the validation process is successfully finished, the information in the
tuple files will be ready as parameters for the following transformation model which
converts these parameters into DML statements, taking the specific characteristics
of each DBMS into account.

3.1.3. Test cases

The functional testing design is based on the definition of the equivalence classes.
An equivalence class represents a set of valid or invalid states for certain input
conditions [14]. To apply our approach, we first need to specify these input condi-
tions. In database applications, input conditions can be divided into two classifica-
tions: critical events and the attribute values associated to these events. A critical
event is an operation that could violate one database constraint; these events are:
Insert, Delete, and Update. An event is used with its corresponding attribute values.
Although inserting a new tuple in a table means inserting all the defined attributes’
values of that table, in this section we consider only the attribute which is defined
in the RA expression of a constraint because it is the only attribute that can affect
the constraint.

According to the SQL expression rules (Sec. 3.1.1) critical events are specified.
For example, any expression belonging to type (a) has as critical events: the insertion
of one new tuple and the updates of the expression attributes. Table 1 shows the
critical events considered in this work. More information about critical events is
found in [19], which provides a complete approach for deriving active mechanisms
in Relational Databases from the specification of OCL clauses.

Three equivalence classes are defined for these events, one for each event. These
equivalence classes specify only the valid states of the input conditions because no
DBMS is able to execute any invalid state. It means that if there is any syntax error
in the specification of these events, the DBMS itself will reject this operation by
raising a compilation error.

As in the case of the critical events, the verification of attribute values of the
input conditions is also carried out by the DBMS itself. This means that the input
conditions must always be valid. For example, if we insert a tuple into a table, the
DBMS first verifies the correctness of the inserted tuple before placing it into the
corresponding table, or when a tuple is deleted from a table, the DBMS verifies
first that the deleted tuple exists in the corresponding table before deleting it.
Nevertheless, from the database semantics point of view, it is possible to identify
two types of input conditions, valid and invalid classes. For example, the insertion
of t1(x, y) into a table could be valid for the semantic, while the insertion of ta(x, z)

13

Table 1. The valid and invalid equivalence classes of the rules expression.

Valid Equivalence Classes

Invalid Equivalence Classes

Rule Critical Events Attribute Values Attribute Values

(a) Mins(Ax) @Axev (GIAx-6V
*) Upd(A.x) G)AxeV (OAx-6V

) Mins(Ax) (®A.xOB.z (9Ax-OB.z
(19ns(B.z) (DA xOB.z (DA x-OB.z
(13)Upd(A.x) () A xOB.z (15 A.x-OB.z
(10)Upd(B.z) (N AxOB.z (18) A.x-OB.z

(c) (19 ns(B.z) (29 A xOagg(B.z) (D A x-Oagg(B.z)
(22 Upd(A.x) (23) A xOagg(B.z) (24 A x-Oagg(B.z)
(2%)Upd(B.z) (26) A xOagg(B.z) (21) A.x—Oagg(B.z)
(28) Del(A.x) (29 A xOagg(B.z) (39) A.x-Oagg(B.z)
G Del(B.z) () A xOagg(B.z) (33) A.x—Oagg(B.z)

(d) (391ns(A.a) (3%) (count(B.a)OV) (38) (count(B.a)—OV)
(3N1ns(B.a) (38) (count(B.a)OV) (39) (count(B.a)-OV)
(49 Del(A.a) (1) (count(B.a)OV) (42) (count(B.a)-OV)
(43)Del(B.a) (44) (count(B.a)OV) (*#5) (count(B.a)-OV)
(4)Upd(B.a) (47) (count(B.a)OV) (48) (count(B.a)~OV)

(e) lns(A.a) G A.a IN(rg.4(B) A 7c.a GDA.a= IN(m 5 (B) A 7c.a(C))
(52 |ns(B.a) G)A.a= IN(mc.2(C)) GHAa IN(mc.(C))
(5%)Ins(C.a) (50 A.a— IN(7g_4(B)) G A.a IN(mc o (C))
(%8) Del(B.a) G A.a IN(mc..(C)) (60 A a= IN(mc o (C))
(61)Del(C.a) () A.a IN(7g.(B)) (63) A.a— IN(7g.5(B))

into the same table could be invalid for the semantic. In these two cases, the DBMS
accepts the insertion, but the difference is that the first case produces a correct
semantic while in the second a false semantic is produced.

In accordance with what we have stated above, Table 1 specifies one valid class
for each critical event and two equivalence classes for each attribute value: one valid
class when the attribute value fulfils the corresponding constraint and one invalid
class when the attribute value does not fulfill the constraint.

Once the valid and the invalid equivalence classes are defined, in the next step
the necessary tests cases, corresponding to each one of these classes, are derived.
A test case is defined as a combination of classes from different classifications. For
each test case, exactly one class of each classification is considered [20]. In addition
to that, to increase the confidence level in our approach we will increase the number
of these cases by generating a test case for each tuple in the context relation (the
relation in which the testing is performed).

In this work, we will focus on applying the invalid test cases because their
executions contribute a certain confidence in detecting possible defects in the
tested application. “Test cases representing unexpected and invalid nput condi-
tions seem to have a higher error-detection yield than do test cases for valid input
conditions” [15].

14

Let us consider that a relation A contains the following schema: TUP_A =
{a1.PK,...;an}, {(p1,---)s (P2s---)s--- (Pms---)}. It has n attributes and m tuples,
and aj is the primary key of A. The test cases which are defined on A are shown as
follows:

tk = {event(A.a;), Invalid(aj.value), (Vpj € A,j=1,...,m)}

where (tx) is an index number for each test case. The event(A.a;) is a critical event
which modifies an associated attribute in the table. This event can violate the
expression rules shown in the previous section. The Invalid(a;.value) is the associated
invalid attribute value for that event. As we previously stated, we apply the invalid
test cases only. The (Vp; € A,j=1,...,m) means that the test cases are applied for
each primary key value (i.e. for each tuple) in the relation A. According to standard
SQL for the Delete and the Update events we can define a condition (WHERE clause)
to limit the modified tuples. For example, using the condition (WHERE a; = pj)
limits the event only on the tuple which has p; as a primary key value. For the
Insert event no such condition is needed. Therefore, the test cases for insertion will
be applied only once for each relation, and we will use a new primary key value to
apply the insertions. The other attribute values of the inserted tuple are edited by
the user.

3.2. Transforming SQL components into DBMS testing
software model

Although most Relational DBMS use SQL components, there are some differences
between the specific characteristics of these DBMS. These differences make that
testing software of one system cannot be used directly with another system without
modification, although sometimes these differences are too small to be significant.
Once the standard SQL components are derived in the previous section, these com-
ponents are mapped to target DBMS testing software. The mapping is performed
directly, that is, each SQL component is mapped into one related component in a
target DBMS (1 to 1). As shown in the following processes:

3.2.1. Mapping standard SQL queries to target DBMS select statement

A standard SQL query is mapped to one Select statement of a target DBMS. To
do this mapping, DBMS Select templates are used. A select template is a generic
query template in which some values are established as parameters so that different
particular constraint situations can be derived by giving different values to the
parameters (Dominguez et al., 2002). There is one template function for each DBMS
and for each expression rule considered in this work. For each expression rule o the
execution of these templates is done according to the following algorithm:

For each o
Find all Para €0

15

As example, for the expression rule(®®(count(B.a) ©V), the corre-
sponding parameters Paras = (A, B, A.a, B.a, ©,V).

Choose a DBMS

Call DBMS.Select-o()

Run DBMS.Select-o(Paras)

Print Select

End For;

For example, here, we present the function OracleSelect-d(Paras) as a generic
template of the expression rule (d) to illustrate the transformation of the standard
SQL query into Oracle 11g [31]. The function is shown as follows:

Sub OracleSelect-d(Context_table, Related_table, PK, FK, Operator, Value, Select)
Select:= “SELECT * FROM Context_table
WHERE PK IN (SELECT FK FROM Related_table
GROUP BY FK HAVING COUNT(*) Operator Value);"
End OracleSelect-d;

where (Context_table, Related_table, PK, FK, Operator, and Value) are input param-
eters while Select is the output parameter which returns the generated Oracle
select statement. For the following constraint “every department has at least one
employee”, applying the expression rule (d) and the previous function template of
Oracle this constraint is transformed into the following select statement:

SELECT * FROM DEPT
WHERE deptno IN (SELECT deptno FROM EMP
GROUP BY deptno HAVING COUNT(*) < 1);

This select statement is used to validate the database state whenever a test case
contains one of the following critical events ((**)Insert(DEPT.deptno), *7Insert
(EMP.deptno), *°)Delete(DEPT.deptno), (**) Delete(EMP.deptno), (6)Update(EMP.
deptno)). If this statement returns any instance of DEPT, it means that there is at
least one instance of a department which does not have any related one in EMP
i.e. the previous constraint has been violated. All other templates are applied in the
same way as the previous one.

3.2.2. Mapping test cases into target DBMS DML statement

Once the test cases are calculated according to what has been stated in Sec. 3.1.3,
mapping the test case into standard DML statement is performed directly; that
is, each SQL statement is transformed into a related statement in a target DBMS
(1 to 1). Here, we are also using a template for each statement and for each DBMS.
The execution of these templates is done according to a similar algorithm which
has been shown in the case of mapping standard SQL queries to a target DBMS
Select statement.

16

The following function MServerUPD-c() is used for mapping the Update event
as a DML statement corresponding to the expression rule (c) using the MS SQL
Server.

Sub MServerUPD-a(Context_table, a, V, id, DML_Upd)
DML_Upd:= “UPDATE Context_table
SET a = V WHERE PK = Value;”
End MServerUPD;

The other invalid test cases of the expression rules are generated in the same
way as the previous one.

3.2.3. Mapping initial data into target DBMS insert statement

In this process the initial data which is generated in Sec. 3.1.2 is transformed into
Insert statements related to a target DBMS. This process seems to be very simple
since there are few tuples to be inserted. The tester can control the attribute values
of these tuples easier than if these tuples had been generated in a huge number.
For this reason we recommend that the tester applies the testing by dividing the
database schema in parts, with each one of these parts having a few relations and a
few test cases to be validated. As we will explain in the OCL2testSW tool section,
the interface of this tool allows the tester to choose one or more OCL specification
of the model to be transformed into test cases.

To illustrate the mapping let us consider the two Tables TUP_A = {al.PK,a2,a3},
{(pl.v1,ul),(p2,v2,u2)} and TUP.B = {bl.PKb2b3.FK (A)}, {(ql,wl,pl),
(92,w2,p2)}. These two tables A and B are associated with the keys b3=al. In
this case, if we want to generate Insert statements into the DB2 DBMS then the
function DB2InitalData(context_table) is called with the previous attribute names
and values.

INSERT INTO A (al,a2,a3
INSERT INTO A (al,a2,a3
INSERT INTO B (b1,b2,b3
INSERT INTO B (b1,b2,b3

VALUES (p1,v1,ul);
VALUES (p2,v2,u2);
VALUES (q1,wl,pl);
VALUES (q2,w2,p2);

~— —

~— —

4. OCL2TestSW Tool Design

Now that we have presented our approach we will explain how it has been imple-
mented as a tool. This tool is called OCL2TestSW, and it aims at carrying out the
necessary rules of the transformation models of our approach automatically. The
tool has been added to Rational Enterprise Edition [7], one of the most important
commercial CASE tools in the market. Like many tools, Rational Rose has the
potential for adding modules to support software development needs, so that we
used it as a platform to incorporate our tool. OCL2TestSW can be accessed from
the Rational Rose Tools menu. The architecture of the OCL2TestSW tool is shown
in Fig. 2. It consists of the following modules.

17

OCL2Test SW Interface

Testing Cases

Validations
SQL Queries

Initial Data

Transforming OCL to
SQL components
Model

OCL
Constraints
Specification

Transforming SQL to
DBMS testing
software Model

Applying
Testing
Software

Fig. 2. OCL2TestSW architecture.

4.1. OCL constraints specification module

To specify business rules in a UML class diagram as OCL clauses, the OCL2TestSW
tool uses a module for editing and checking OCL constraints. All OCL constraints
are plugged into the Rational Object Model in the corresponding classes. For editing
and checking OCL constraints that are used in this module, users can introduce the
integrity constraints of any class diagram as OCL clauses. To do that, the Oclarity
tool [21] is applied. It is an add-in for Rational Rose which offers a comprehensive
support for OCL editing and verifying. According to the current OCL 2.0 specifica-
tion, the Oclarity tool provides full syntactic and semantic checking. For example,
let us consider the constraint “Married people are aged > 18”. Figure 3 shows this
constraint in an OCL clause as well as the syntax verification.

4.2. OCL2Testsw interface

Before this interface is run, Rational Rose automatically maintains the mapping
between Rational Object Model and Rational Data Model where each class is
mapped into a Relational table. To generate the target DBMS testing software
the interface shown in Fig. 4 is implemented, which is able to detect the specified
OCL constraints in the Rational Object Model, and shows them in the list box
“Current OCL Constraints.” The detection of the specified OCL constraints in

—iolx
Code Edit

Analysiz result: 1 expressions, 0 warnings, 0 emars.

context Person inv Married people: acL .
zelf.wife->notEmpty () EHPIEEZION:

implies self.wife.age >= 18 = Ermors only ¢ |nclude all OCL-expressions
and self.nhusband->notEmpty ()
implies self.husband.age >= 18 clasz Person
i @ |rveariants

e @ b arried_people [from Class Logical Views::Person)

Fig. 3. Edit/Check constraints interface.

18

x

— Current OCL Congtraints—————————————— — Selected OCL Canstraint: —DBMS Typ

- Company inv MumberDfE mployees

Company ine i anagerE mployes & ORACLE 11g
Person inv Personlncome
il Person inv Persontge " 50L Server 2005

Perzon inv MarriedPeople
Drop | IBM DB2

— Compaonents Types
¥ \alidation Queies

Add Al | ¥ Testing Cases
[Iritial Data
Drop Al |

Create Testing Software |

LI LI Ok I Cancel |

" Generated Code ‘

Fig. 4. OCL2TestSW interface.

a given model is performed according to the following algorithm:

CurrentOClLset():= Empty; n=0;
Set AllClasses = RoseApp.CurrentModel.GetAllClasses();
For i =1 to AllClasses.Count
Set theClass = AllClasses.GetAt(i);
For j =1 to theClass.AllOperation.Count
Set theOperation = AllOperation.GetAt(j);
If theOperation.Stereotype = "inv" Then
CurrentOClLset(n + 1)= theOperation;
End if;
Next j;
Next i;

CurrentOCLset is a set of collection objects which represent the current OCL
constraints in a class diagram. This set is initiated to empty when the algorithm
is started. When it is finished, CurrentOCLset contains all the OCL constraints
included in the diagram. An OCL clause is represented in Rational Rose as an oper-
ation with a stereotype. According to our approach, all OCL clauses are assigned
to the stereotype <inv>>>. When CurrentOCLset is calculated a new set of chosen
OCL constraints, UserOCLset, is created since users can choose any constraints of
a class diagram to be enforced.

The list box “Selected OCL Constraints” of the interface shows the selected
constraints list. It contains one or more constraints. The “DBMS Types” shows
the target commercial database systems included in our approach (ORACLE 1l1g,
MS Server 2005, and DB2). The “Component Types” check box represents the
component types to be required, where the user can choose to generate one or more
types of these components.

19

For example, if the user chooses only the initial data option this means that
OCL2TestSW will generate only data to be inserted in a schema. This may be useful
in the case when the tester needs to correct the error of the domain values manually
and needs to repeat the validation process again. Once UserOCLset list is chosen,
a target DBMS is specified and the user can obtain the generated components by
clicking on the “Create Testing Software” button.

5. Evaluation Study

In this section, the applicability of our approach for testing database applications
will be shown. According to [26], the applicability is the ability of the approach to be
used, given measurable and objective results. For evaluating it, measurements such
as test effectiveness can be used. The experimental framework proposed in [26] will
be used to validate the test effectiveness presented in this proposal. The evaluation
consists of three steps, preparing code sample with known faults, performing the
experiment and collect data, and evaluating results. Next, these processes will be
explained in detail.

5.1. Prepare code sample with known faults

One point to keep in mind in this section is that the main objective of our
OCL2TestSW tool is to generate software components (initial data, test cases and
validation queries) from the specification of UML/OCL constraints associated with
a database schema. These test components are used to check that the applications,
which were implemented to fulfil these constraints, perform correctly its function.
For example, if a constraint (g;) is defined as “the age of an employee must be equal
to or more than 24”, then according to our approach, measures must be taken to
ensure that the application which was employed to enforce this constraint fulfils its
intent.

Now, having clarified this point, our aim is to ensure the ability of these com-
ponents to detect inconsistency in a database state when the application under test
is run. Inconsistency in a database states means that the application under test
includes faults. Here, we investigate a particular type of fault that leads to incon-
sistency in a database state when one of the defined OCL constraints is violated.
A fault is defined as a nonconformance to a constraint definition. This type of faults
is not captured by the database compiler.

To provide a realistic and suitable evaluation study, two real database applica-
tions have been selected: User Profile Database Application (UPDA) and Employees
Database Application (EDA). The selected database schemata consist of 36 and 21
OCL constraints respectively, which cover the five types of the constraint rules that
have been considered in the presented proposal (see Sec. 3.1.1). Although it might
seem redundant to use more than one constraint per type, we actually did because
we have taken into account the evaluation of real applications without any reduc-
tion. To enforce the defined constraints the UPDA uses a trigger system, while EDA

20

uses SQL in Java. It is very important to mention that we have copied the schemata
of the two databases without data and we used copies of the two applications. The
applications have been validated before the test, i.e. fulfil the user requirements.

Fault seeding is a technique originally proposed to estimate the quality of the
software [30]. Therefore, to seed a variety of faults we manually modified the source
codes of the two applications. For example, a fault that is seeded in the previous
constraint (pi) will convert the same constraint as follows “the age of an employee
must be less than 24”. Bearing this in mind, we seeded in each application one fault
per constraint (see Table 2).

5.2. Perform the experiment and collect data

Before the test is started, the initial data, test cases, and validation queries are
automatically generated according to the definition of the OCL constraints. First,
the initial data are inserted into the databases, and then the corresponding vali-
dation queries are run to validate the consistency of the databases. After ensuring
the consistency of the database states, the test can be started. The number of the
test cases (see Table 2) depends on the number of the tuples in each database. In
our approach, to increase the confidence level of the test, we generate an invalid
and valid test case for each tuple in the databases (see Sec. 3.1.3). Of course, the
tester can include in the test all the valid cases or part of them. In this case, a valid
test case does not produce an inconsistent database state, while an invalid test case
does produce an inconsistent database state. If an inconsistent state has not been
detected this means that the corresponding application has a faulty process. To
monitor the behavior of the valid test cases, approximately 20% of the total test
cases were used as valid cases of each application. When a test case produces an
inconsistency database state, this means that a faulty process is executed. So, the
test is organized in such a way that when a test case t; is run the corresponding
validation query q; is run after. If q; returns the results then we conclude that t;
executes a faulty process.

5.3. Ewvaluate results

After the test results have been collected, the effectiveness metrics are calculated.
The test effectiveness is defined in [11] as the number of faults the test technique
will find. In [27] the test effectiveness is the number of faults found per unit of size.

Table 2. Summary of the selected applications.

Number of Test Cases

Application ~ Number of Faults Invalid Valid
UPDA 36 103 25
EDA 22 58 18

21

In this evaluation we adopt the test effectiveness presented in [28] which defines it
as the ratio of faults found to the total number of faults. The effectiveness levels
of 100% are possible in our experiments when a complete detection is produced
of all the faults (available for study) [29]. Our experiments were performed on a
PC with Intel Core 2 CPU 1.83 GHz and 2.00 GB RAM. The operative system
was Windows XP, and ORACLE 11g was selected as a database environment of
the experiments. To calculate the test effectiveness, each application was executed
against all its corresponding test cases, the results are shown in Fig. 5. Each point in
this figure represents the test effectiveness when a new fault is detected, the dotted
curves represent the general tendency of the test effectiveness. In [28] a percentage
of 75% was suggested to be an acceptable baseline value of test effectiveness, while
in our experiments, the test effectiveness approximates to 100% after the use of
almost 90% of the total of test cases. This means that the invalid test cases are
distributed in proportion to the number of test cases, although the increase of the
effectiveness values at the starting of the test is more that at the end of the test.

In the two applications, the execution of 50% of the test cases has detected
almost 80% of the defined faults, while the execution of the 92% of the test cases
has detected all the defined faults. This is because when the test cases are generated
we give a priority to the invalid test cases then the valid cases. Although, we used
valid cases in the testing, the results have shown that these cases did not have a
role in the detection of the defined faults. i.e. with only the invalid test cases we
can reach complete testing.

100 e
B4 B
P e-
* o -1
7 o
. e
80 — R S ::;'"' """""""""""""""""""" i
'Y .
°\; ot
0 . W7
% 60 [--ooeeete e ittt ORI RERERE ERR f
2 vt
5 * .
g /9 ’,.
40 T .
- ¢
] Ly
[’0
" ;
7R e S IR SRCRR S s f
e
e -+ EDA
%
s ~---e--- UPDA
.
0 20 40 60 80 100 120 140

Number of Test Cases

Fig. 5. The test effectiveness study of our experiments.

22

In our approach, to guarantee the coverage of all the defined faults in the codes,
the database state must be consistent before a test case is executed. This is due to
the fact that if a test case is specified at the start of the test as an invalid or valid
case, this specification may be changed if the database state changes. Therefore,
when an invalid case is executed, the database state must be repaired before the
next test case is executed. The execution of the two experiments does not need to
spend a lot of time; 2.9, 5.1 min were needed for EDA and UPDA respectively.

Finally, it is worth highlighting the importance of deriving test cases from the
specification of the database constraints to efficiently detect faults of applications
which were generated from the same specification.

6. Conclusions

The database CASE tools have been developed to resolve the database-modeling
problem and to provide automatic code generation. Nevertheless, the validation of
the generated code is not supported by these tools, so that the generated code is
applied without any mechanism to ensure that it complies with the requirements
of the real world. Thus, in this work we suggest the validation of the enforcement
mechanisms by using the equivalence class test technique. It is a fundamental func-
tional testing technique for checking the software without being concerned about
its implementation and structure. In this type of testing the tester’s responsibility
is to provide input data and to validate the output results. The main objective is
to check whether the tested software fulfils the user’s requirements or not.

It is true that various studies have led to important results such as the creation
of the current commercial CASE tools and some research prototypes to sup-
port software testing. However, in the context of Relational Databases we con-
sider that current practice is below the appropriate. Therefore, to fill in some of
the gaps that the current CASE tools create during the development of Rela-
tional databases, we present the OCL2TestSW tool as a support to the theoretical
approach which follows the phases proposed in the MDA software development by
completely transforming the OCL specification into testing software. These phases
are as follows: specifying OCL constraints in the UML class diagram, transform-
ing the OCL constraints into standard SQL components, transforming the stan-
dard SQL components into target DBMS SQL queries. Thus, this work unites
the UML aspects that are widely accepted, and it is supported by many CASE
tools for aspects of Relational databases that have a wide presence in commercial
DBMS.

Our approach has some limitations which are explained as follows: (a) applying
MDA makes the transformation of any type of OCL constraints to test software
easier; currently the OCL2TestSW tool supports only the OCL invariant con-
straints. Other types of constraints such as pre-conditions, and post-conditions will
be included in future work; (b) Including complex OCL expressions in which many
relations are involved may turn out to be a difficult task to generate testing software.

23

This limitation could be solved by incorporating more transformation rules into our
approach to cover such expressions. The article represents a first effort to check
the viability of this approach through some of the most widely used constraints in
the conceptual model. (¢) Until now the generating task of initial data has been
considered an incomplete processing because the user must intervene to introduce
some type of data such as character type. Therefore, as a future work we would like
to incorporate a mechanism to generate these types of data. In addition, we will
adopt our tool to generate a huge volume of data in a totally automated way.

Although the tool is implemented using Rational Rose, our approach has been
developed taking into account the specification of language (OCL) version 2.0 which
meets the specifications of UML 2.0. The Rational Rose CASE tool has served to
check the feasibility of the proposal implementation with a significant subset of
constraints. One of our future objectives is to use more powerful tools such as
IBM Rational Software Architect [23] in which new types of OCL constraints are
introduced.

The approach could be considered a solution to motivate database developers
to use testing software for validating database applications. This approach makes it
easier to generate directly testing software from the specification of OCL constraints
in the conceptual schema. Moreover, when the integrity constraints of this schema
are modified, the testing software can also be automatically modified.

Acknowledgments

This work has been partially supported by the project Thuban: Natural Interaction
Platform for Virtual Attending in Real Environments (TIN2008-02711), and also
by the Spanish research projects: MA2VICMR: Improving the access, analysis and
visibility of the multilingual and multimedia information in web for the Region of
Madrid (S2009/TIC-1542).

References

1. OMG, 2007, Object Management Group, Inc., http: /www.omg.org/mda/

2. M. Y. Chan and S. C. Cheung, Testing database applications with SQL semantics, in
2nd International Symposium on Cooperative Database Systems for Advanced Appli-
cations (CODAS’99), Wollongong, Australia, 1999, pp. 363-374.

ArgoUML, 2007, http: //argouml.tigris.org/

MetaEdit+, 2007, http: /www.metacase.com/

Objecteering/UML, Objecteering/SQL Designer User Guide Version 5.2.2, 2007,
http: //depinfo.u-bourgogne.fr/docs/Objecteering522/SQLDesigner.pdf

OCL22SQL, Dresden OCL Toolkit, 2007, http: //dresden-ocl.sourceforge.net/
Rational Enterprise Edition, 2003, www-306.ibm.com/software/rational/

Visual Case Tool, 2007, http://visualcase.com/index.htm/

B. Verheecke and R. Straeten, Specifying and implementing the operational use of
constraints in object-oriented applications, Proc. of TOOLS Pacific 2002, 2002, p. 23.

U W

© 0N

24

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

G. M. Kapfhammer and M. L. Soffa, A family of test adequacy criteria for database-
driven applications, Software Engineering Notes 28 (2003) 98-107.

D. Chays, S. Dan, P. G. Frankl, F. Vokolos and E. J. Weyuker, A framework for
testing database applications, ACM SIGSOFT International Symposium on Software
Testing and Analysis, Portland, Oregon, 2000.

Y. Deng, P. G. Frankl and J. Wang, Testing web database applications, in Workshop
on Testing Analysis and Verification of Web Services (TAV-WEB), 2004, pp. 1-10.
H. W. R. Chan, S. W. Dietrich and S. D. Urban, On control flow testing of active
rules in a declarative object-oriented framework, Proc. of 3rd Intl. Workshop on Rules
in Database Systems (RIDS 97), Skovde, Sweden, 1997.

R. S. Pressman, Software Engineering: A Practitioner’s Approach (McGraw-Hill
Higher Education, 2005).

G. J. Myers, The Art of Software Testing, 2nd edn. (John Wiley & Sons, 2004).
ISO/IEC 9075 Standard, 2003, Information Technology — Database Languages —
SQL:2003 International Organization for Standardization.

J. Cabot and E. Teniente, Constraint support in MDA tools: A survey, in model driven
architecture — Foundations and applications, 2006, pp. 256—-267.

T. J. Teorey, Database Modeling € Design, Third Edition, Morgan Kaufmann Series
in Data Management Systems, 1999.

H. T. Al-Jumaily, D. Cuadra and P. Martinez, OCL2Trigger: Deriving active mech-
anisms for relational databases using model-driven architecture, Journal of Systems
and Software 81 (2008) 2299-2314.

E. Lehmann and J. Wegener, Test case design by means of the CTE XL, 8th Proc.
of European Int. Conf. on Software Testing, Analysis and Review (EuroSTAR 2000),
Copenhagen, Denmark, 2000.

EmPowerTec, 2006, http: /www.empowertec.de/products/rational-rose-ocl.htm/

D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos and E. J. Weyuker, An
AGENDA for testing relational database applications, Software Testing, Verification
and Reliability 14 (2004) 17-44.

IBM Rational Software Architect, http://www-01.ibm.com/software/awdtools/
architect /swarchitect /index.html.

Z. Jian, X. Chen, and S. C. Cheung, Automatic generation of database instances for
white-box testing, Proceedings of 25th International Computer Software and Applica-
tions Conference on Invigorating Software Development, 2001, pp. 161-165.
AllFusion® ERwin® Data Modeler http://www3.ca.com/Solutions/

S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson and D. Sundmark, A Framework for
Comparing Efficiency, Effectiveness and Applicability of Software Testing Techniques,
TAIC PART, 2006, pp. 159-170.

G. Giraudo and P. Tonella, Designing and conducting an empirical study on test
management automation, Empirical Software Engineering 8(1) (2003) 59-81.

Y. Chernak, Validating and improving test-case effectiveness, IEEE Software Archives
18(1) (2001).

V. Debroy and W. E. Wong, Are fault failure rates good estimators of adequate test set
size?, in Proceedings of the 9th International Conference on Quality Software (QSIC),
Jeju, Korea, August 2009.

H. Zhu, P. Hall and J. May, Software unit test coverage and adequacy, ACM Com-
puting Surveys 29(4) (1997) 366-427.

ORACLE 11g, http://www.oracle.com/index.html.

25

