5 research outputs found

    Robust H-2 static output feedback design starting from a parameter-dependent state feedback controller for time-invariant discrete-time polytopic systems

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)This paper investigates the problem of computing robust H-2 static output feedback controllers for discrete-time uncertain linear systems with time-invariant parameters lying in polytopic domains. A two stages design procedure based on linear matrix inequalities is proposed as the main contribution. First, a parameter-dependent state feedback controller is synthesized and the resulting gains are used as an input condition for the second stage, which designs the desired robust static output feedback controller with an H-2 guaranteed cost. The conditions are based on parameter-dependent Lyapunov functions and, differently from most of existing approaches, can also cope with uncertainties in the output control matrix. Numerical examples, including a mass spring system, illustrate the advantages of the proposed procedure when compared with other methods available in the literature. Copyright (C) 2009 John Wiley & Sons, Ltd.321113Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Fixed-structure H-2 controller design for polytopic systems via LMIs

    Get PDF
    In this paper a new approach for fixed-structure H2 controller design in terms of solutions to a set of linear matrix inequalities are given. Both discrete- and continuous-time single-input single-output (SISO) time- invariant systems are considered. Then the results are extended to systems with polytopic uncertainty. The presented methods are based on an inner convex approximation of the non-convex set of fixed-structure H2 controllers. The designed procedures initialized either with a stable polynomial or with a stabilizing controller. An iterative procedure for robust controller design is given that converges to a suboptimal solution. The monotonic decreasing of the upper bound on the H2 norm is established theoretically for both nominal and robust controller design

    Fixed-structure Control of LTI Systems with Polytopic-type Uncertainty:Application to Inverter-interfaced Microgrids

    Get PDF
    This thesis focuses on the development of robust control solutions for linear time-invariant interconnected systems affected by polytopic-type uncertainty. The main issues involved in the control of such systems, e.g. sensor and actuator placement, control configuration selection, and robust fixed-structure control design are included. The problem of fixed-structure control is intrinsically nonconvex and hence computationally intractable. Nevertheless, the problem has attracted considerable attention due to the great importance of fixed-structure controllers in practice. In this thesis, necessary and sufficient conditions for fixed-structure H_inf control of polytopic systems with a single uncertain parameter in terms of a finite number of bilinear matrix inequalities (BMIs) are developed. Increasing the number of uncertain parameters leads to sufficient BMI conditions, where the number of decision variables grows polynomially. Convex approximations of robust fixed-order and fixed-structure controller design which rely on the concept of strictly positive realness (SPRness) of transfer functions in state space setting are presented. Such approximations are based on the use of slack matrices whose duty is to decouple the product of unknown matrices. Several algorithms for determination and update of the slack matrices are given. It is shown that the problem of sensor and actuator placement in the polytopic interconnected systems can be formulated as an optimization problem by minimizing cardinality of some pattern matrices, while satisfying a guaranteed level of H_inf performance. The control configuration design is achieved by solving a convex optimization problem whose solution delivers a trade-off curve that starts with a centralized controller and ends with a decentralized or a distributed controller. The proposed approaches are applied to inverter-interfaced microgrids which consist of distributed generation (DG) units. To this end, two important control problems associated with the microgrids are considered: (i) Current control of grid-connected voltage-source converters with L/LCL filters and (ii) Voltage control of islanded microgrids. The proposed control strategies are able to independently regulate the direct and quadrature (dq) components of the converter currents and voltages at the point of common couplings (PCC) in a fully decoupled manner and provide satisfactory dynamic responses. The important problem of plug-and-play (PnP) capability of DGs in the microgrids is also studied. It is shown that an inverter-interfaced microgrid consisting of multi DGs under PnP functionality can be cast as a system with polytopic-type uncertainty. By virtue of this novel description and use of the results from theory of robust control, the stability of the microgrid system under PnP operation of DGs is preserved. Extensive case studies, based on time-domain simulations in MATLAB/SimPowerSystems Toolbox, are carried out to evaluate the performance of the proposed controllers under various test scenarios, e.g., load change, voltage and current tracking. Real-time hardware-in-the-loop case studies, using RT-LAB real-time platform of OPAL-RT Technologies, are also conducted to validate the performance of the designed controllers and demonstrate their insensitivity to hardware implementation issues, e.g., noise and PWM non-idealities. The simulation and experimental results demonstrate satisfactory performance of the designed controllers

    Output feedback sliding mode control for time delay systems

    Get PDF
    This Thesis considers Sliding Mode Control (SMC) for linear systems subjected to uncertainties and delays using output feedback. Delay is a natural phenomenon in many practical systems, the effect of delay can be the potential cause -of performance deterioration or even instability. To achieve better control performance, SMC with output feedback is considered for its inherent robustness feature and practicality for implementation. In highlighting the main results, firstly a novel output feedback SMC design is presented which formulates the problem into Linear Matrix Inequalities (LMIs). The efficiency of the design is compared with the the existing literature in pole assignment. eigenstructure assignment and other LMI methods, which either require more constraints on system structures or are computationally less tractable. For systems with timevarying Slate delay, the method is extended to incorporate the delay effect in the controUer synthesis. Both sliding surface and controller design are formulated as LMI problems. For systems with input/output delays and disturbances. the robustness of SMC is degraded with arbitrarily small delay appearing in the high frequency switching component of the controller. To solve the problem singular perturbation method is used to achieve bounded performance which is proportional to the magnitudes of delay, disturbance and switching gain. The applied research has produced two practical implementation studies. Firstly it relates to the pointing control of an autonomous vehicle subjected to external disturbances and friction resulting from the motion of the vehicle crossing rough terrain. The second implementation concerns the attitude control of a flexible spacecraft with respect to roil, pitch and yaw attitude angles
    corecore