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SUMMARY

This paper investigates the problem of computing robust H2 static output feedback controllers for
discrete-time uncertain linear systems with time-invariant parameters lying in polytopic domains. A two
stages design procedure based on linear matrix inequalities is proposed as the main contribution. First, a
parameter-dependent state feedback controller is synthesized and the resulting gains are used as an input
condition for the second stage, which designs the desired robust static output feedback controller with an
H2 guaranteed cost. The conditions are based on parameter-dependent Lyapunov functions and, differently
from most of existing approaches, can also cope with uncertainties in the output control matrix. Numerical
examples, including a mass–spring system, illustrate the advantages of the proposed procedure when
compared with other methods available in the literature. Copyright � 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Static output feedback design is a classic problem in control theory [1]. The implementation, in
practice, is simpler than in the state feedback case, but the computation of the output gain is
a non-convex problem. Several optimization techniques have been proposed in the last decades
to solve the problem, mainly based on Lyapunov functions whose existence provides the output
feedback gain [2–9].

In general, these methods are the extensions of state feedback control strategies that have a
convex parameterization for the controller [10]. These parameterizations, obtained by means of
change of variables, provide only sufficient conditions in the output feedback case. Approaches
that neither use change of variables nor are based on Lyapunov functions can be found in [11, 12].

The situation is more involved in the case of linear systems with uncertain parameters. Moreover,
the use of quadratic stability (i.e. the same Lyapunov function guaranteeing stability) is already
a source of conservativeness [7, 8]. Within the class of methods that use parameter-dependent
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Lyapunov functions to reduce the conservatism is worth mentioning [13–16]. Moreover, differently
from most of the methods, the approaches of [13, 15, 16] can also cope with uncertainties affecting
the output matrix.

The problem to be dealt with in this paper is the design of H2 robust static output feedback for
discrete-time linear systems affected by time-invariant parameters belonging to a polytope. Similar
to the approaches in [8, 13, 15], a two stages linear matrix inequalities (LMIs) based procedure is
proposed. The main novelty with respect to the previous works is that in the first stage, instead
of a robust gain, a parameter-dependent state feedback controller is designed. The resulting gains
that compose the state feedback controller are then used as the input matrices for the second stage,
which synthesizes the desired H2 robust output feedback gain. A feasible solution in the second
stage provides an affine parameter-dependent Lyapunov function that certifies the closed-loop
stability for both the static output feedback and the parameter-dependent state feedback control
laws. As shown by means of numerical examples, this class of functions can provide robust static
output feedback stabilizing controllers when other methods available in the literature fail. Some
strategies to improve the associated H2 guaranteed costs are also discussed.

2. PRELIMINARIES

Consider the discrete-time time-invariant linear system described by

x(k+1) = A(�)x(k)+ B1(�)w(k)+ B2(�)u(k),

z(k) = C1(�)x(k)+ D2(�)u(k),

y(k) = C2(�)x(k),

(1)

where x(k)∈Rn is the state vector, w(k)∈Rr the exogenous input, u(k)∈Rm the control input,
z(k)∈Rp the controlled output and y(k)∈Rq is the measured output. The system matrices
A(�)∈Rn×n , B1(�)∈Rn×r , B2(�)∈Rn×m , C1(�)∈Rp×n , C2(�)∈Rq×n and D2(�)∈Rp×m are not
precisely known and belong to the polytope

D= {(A, B1, B2,C1,C2, D2)(�) : (A, B1, B2,C1,C2, D2)(�)

=
N∑

i=1
�i (A, B1, B2,C1,C2, D2)i ,�∈�N },

where �= (�1,�2, . . . ,�N )′ is the vector of time-invariant uncertain parameters lying in the unit
simplex �N given by

�N =
{
�∈RN :

N∑
i=1

�i =1,�i�0, i =1, . . . , N

}
. (2)

This uncertainty model is largely used in the literature and it is also known as polytopic
model. Matrices Ai , B1i , B2i , C1i , C2i and D2i are known as the vertices of the system and are
given a priori.

The problem investigated in this paper is to determine a static gain K associated with the output
feedback control law u = K y such that the closed-loop system is robustly stable for all �∈�N
with a prescribed H2 guaranteed cost.

For the open-loop system, the transfer function from the input vector w to the controlled output
vector z is denoted by

Hwz(�)=C1(�)(�I− A(�))−1 B1(�),

where � is the time-shift operator. In a stable single-input single-output system, the H2 norm can
be interpreted as the root mean-square response of the system when the input is a white noise or
as the energy of the impulse response of the system [17]. Using observability and controllability
Gramians, the H2 norm of system (1) can be characterized in the state space representation through
robust LMIs, as shown in the following lemma [18].
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ROBUST H2 STATIC OUTPUT FEEDBACK DESIGN 3

Lemma 1
Assume that the matrix A(�) is Schur stable. The inequality ‖Hwz(�)‖2

2<�2 holds for all �∈�N
if and only if there exists a symmetric positive-definite parameter-dependent matrix P(�)∈Rn×n

such that

trace(W (�)) < �2, (3a)

B1(�)′ P(�)B1(�)−W (�) < 0, (3b)

A(�)′ P(�)A(�)− P(�)+C1(�)′C1(�) < 0, (3c)

hold for all �∈�N with 0�W (�)=W (�)′ ∈Rr×r . Or, equivalently, by duality,

trace(W (�)) < �2, (4a)

C1(�)P(�)C1(�)′−W (�) < 0, (4b)

A(�)P(�)A(�)′− P(�)+ B1(�)B1(�)′ < 0, (4c)

hold for all �∈�N with 0�W (�)=W (�)′ ∈Rp×p.

The minimum value of � under the conditions of Lemma 1 is the worst-case H2 norm (or the
optimal guaranteed cost) of system (1). The robust LMIs of Lemma 1 are explored in the sequel
for state and output feedback design by considering particular structures for the matrices P(�) and
W (�), yielding finite-dimensional LMI relaxations.

3. MAIN RESULTS

First, an LMI condition that provides a state feedback parameter-dependent gain is presented.

Theorem 1
If there exist symmetric matrices Pi∈Rn×n , Wi∈Rp×p, matrices Gi∈Rn×n , Zi∈Rm×n , i=1, . . . , N ,
such that the following LMIs are satisfied:‡

trace(Wi )<�2, i =1, . . . , N , (5)[
Wi C1i Gi + D2i Zi

� Gi +G ′
i − Pi

]
>0, i =1, . . . , N , (6)

[
Wi +W j C1i G j +C1 j Gi + D2i Z j + D2 j Zi

� Gi +G j +Gi +G ′
j −(Pi + Pj )

]
>0, i =1, . . . , N −1, j = i +1, . . . , N , (7)

⎡
⎢⎢⎣

Pi Ai Gi + B2i Zi B1i

� Gi +G ′
i − Pi 0

� � I

⎤
⎥⎥⎦>0, i =1, . . . , N , (8)

⎡
⎢⎢⎣

Pi + Pj Ai G j + A j Gi + B2i Z j + B2 j Zi B1i + B1 j

� Gi +G j +G ′
i +G ′

j −(Pi + Pj ) 0

� � 2I

⎤
⎥⎥⎦>0,

i =1, . . . , N −1, j = i +1, . . . , N , (9)

‡The symbol � means symmetric blocks in the LMIs.
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then the parameter-dependent state feedback control law u = Z (�)G(�)−1x , with

Z (�)=
N∑

i=1
�i Zi , G(�)=

N∑
i=1

�i Gi , �∈�,

stabilizes system (1) with a guaranteed H2 performance bounded by � for all �∈�.

Proof
Using the technique of de Oliveira et al. [19] to deal with products of parameter-dependent matrices,
multiply (5) by �i , (6) and (8) by �2

i and sum for i =1, . . . , N . Multiply (7) and (9) by �i� j , and
sum for i =1, . . . , N −1, j = i +1, . . . , N . Summing the results one has

trace(W (�))<�2, (10)[
W (�) Ccl(�)G(�)

� G(�)+G(�)′− P(�)

]
>0, (11)

⎡
⎢⎢⎣

P(�) Acl(�)G(�) B1(�)

� G(�)+G(�)′− P(�) 0

� � I

⎤
⎥⎥⎦>0, (12)

with Acl(�)= A(�)+ B2(�)Z (�)G(�)−1 and Ccl(�)=C1(�)+D2(�)Z (�)G(�)−1. Multiply (11) on
the left by [I −Ccl(�)] and on the right by the transpose, to obtain

Ccl(�)P(�)Ccl(�)′−W (�)<0. (13)

Now apply the Schur complement in (12) to obtain[
P(�)−B1(�)B1(�)′ Acl(�)G(�)

� G(�)+G(�)′−P(�)

]
>0. (14)

Multiply (14) on the left by [I − Acl(�)] and on the right by the transpose to obtain

Acl(�)P(�)Acl(�)′− P(�)+ B1(�)B1(�)′<0. (15)

Inequalities (10), (13) and (15) guarantee (4) and, consequently, the parameter-dependent control
law u=Z (�)G(�)−1x stabilizes system (1) with an H2 guaranteed cost bounded by � for all
�∈�N . �

The optimal value of � such that the conditions in Theorem 1 hold can be obtained through the
following convex optimization problem:

�� =min� (16)

s.t. (5)–(9) hold.

Note that �� in (16) is suboptimal with respect to the global optimum of Lemma 1 due to the
particular structures imposed to P(�) and W (�) and to the sufficient polynomial positivity test
proposed. As discussed in [19], the relaxation of Theorem 1 has shown to be efficient and has
a polynomial increase in the complexity with respect to the dimensions of the system. Observe
also that the gain Z (�)G(�)−1 (i.e. matrices Zi and Gi , i =1, . . . , N ) was obtained using a convex
state feedback parametrization for (4a). Different gains, probably yielding distinct upper bounds �,
could be obtained from convex conditions based on (3) as well.

If a robust gain (parameter-independent) is desired, the following corollary can be used.

Corollary 1
If there exist symmetric matrices Pi ∈Rn×n , Wi ∈Rp×p, i =1, . . . , N and matrices G ∈Rn×n , Z ∈
Rm×n , such that the LMIs (5), (6) and (8) are feasible with Gi =G, Zi = Z , i =1, . . . , N , then the
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robust control law u = ZG−1x stabilizes system (1) with an H2 guaranteed performance bounded
by �.

Proof
Similar to the proof of Theorem 1. �

The condition of Corollary 1, originally published in [20, Theorem 9], is used in the numerical
experiments section for comparison. In what follows, the main contribution of the paper is presented,
that is, LMI relaxations for the design of a static output feedback gain, using the state feedback gain
matrices Zi and Gi , i =1, . . . , N synthesized through the conditions of Theorem 1 as a starting point.

Theorem 2
Let Zi and Gi , i =1, . . . , N , be the solution matrices of Theorem 1. If there exist symmetric matrices
Pi ∈Rn×n , matrices Fi ∈Rn×n , Hi ∈Rp×p, i =1, . . . , N , and matrices R ∈Rm×m , L ∈Rm×q such
that the following LMIs are verified:

trace(Wi )<�2, i =1, . . . , N , (17)

B ′
1i Pi B1i −Wi<0, i =1, . . . , N , (18)

B ′
1i Pj B1i + B ′

1i Pi B1 j + B ′
1 j Pi B1i −2Wi −W j<0, i =1, . . . , N , j �= i, j =1, . . . , N , (19)

B ′
1i Pj B1�+ B ′

1� Pj B1i + B ′
1 j Pi B1�+ B ′

1� Pi B1 j + B ′
1i P�B1 j + B ′

1 j P�B1i −2(Wi +W j +W�)<0,

i =1, . . . , N −2, j = i +1, . . . , N −1, �= j +1, . . . , N , (20)

⎡
⎢⎢⎢⎣
−G ′

i Pi Gi G ′
i A′

i Fi+Z ′
i B ′

2i Fi G ′
i C

′
1i Hi+Z ′

i D′
2i Hi G ′

i C
′
2i L ′−Z ′

i R′

� Pi−Fi−F ′
i 0 F ′

i B2i

� � I−Hi−H ′
i H ′

i D2i

� � � −R−R′

⎤
⎥⎥⎥⎦<0, i=1, . . . , N , (21)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G ′
i Pi G j G ′

i A′
i Fj +G ′

j A′
i Fi +G ′

i A′
j Fi G ′

i C
′
1i H j +G ′

j C
′
1i Hi (G ′

i C
′
2i +G ′

i C
′
2 j

−G ′
j Pi Gi −G ′

i Pj Gi +Z ′
i B ′

i Fj +Z ′
j B ′

i Fi +Z ′
i B ′

j Fi +G ′
i C

′
1 j Hi + Z ′

i D′
2i H j +G ′

j C
′
2i )L ′

2Pi + Pj −2Fi − Fj +Z ′
j D′

2i Hi + Z ′
i D′

2 j Hi −(2Z ′
i + Z ′

j )R′

� −2F ′
i − F ′

j 0 F ′
i Bi + F ′

i B j + F ′
j Bi

� � 3I−2Hi −Hj −2H ′
i −H ′

j H ′
i D2i +H ′

i D2 j

� � � +H ′
j D2i

−3R−3R′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0,

i =1, . . . , N , j �= i, j =1, . . . , N , (22)

⎡
⎢⎢⎢⎣

�11 �12 �13 �14

� �22 0 �24

� � �33 �34

� � � −6R−6R′

⎤
⎥⎥⎥⎦<0,

i =1, . . . , N −2,

j = i +1, . . . , N −1,

�= j +1, . . . , N ,

(23)

with

�11 = −(G ′
j Pi G�+G ′

� Pi G j +G ′
i Pj G�+G ′

� Pj Gi +G ′
i P�G j +G ′

j P�Gi ),

�12 = G ′
j A′

i F�+G ′
� A′

i Fj +G ′
i A′

j F�+G ′
� A′

j Fi

+G ′
i A′

�Fj +G ′
j A′

�Fi + Z ′
j B ′

2i F�+ Z ′
�B ′

2i Fj + Z ′
i B ′

2 j F�+ Z ′
�B ′

2 j Fi + Z ′
i B ′

2�Fj + Z ′
j B ′

2�Fi ,

Copyright � 2009 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:1–13
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�13 = G ′
j C

′
1i H�+G ′

�C ′
1i H j +G ′

i C
′
1 j H�+G ′

�C ′
1 j Hi +G ′

i C
′
1�Hj +G ′

j C
′
1�Hi + Z ′

j D′
2i H�

+Z ′
�D′

2i H j + Z ′
i D′

2 j H�+ Z ′
�D′

2 j Hi + Z ′
i D′

2�Hj + Z ′
j D′

2�Hi ,

�14 = (G ′
i C

′
2 j +G ′

j C
′
2i +G ′

i C
′
2�+G ′

�C ′
2i +G ′

j C
′
2�+G ′

�C ′
2 j )L ′−2(Z ′

i + Z ′
j + Z ′

�)R′,

�22 = 2(Pi + Pj + P�− Fi − F ′
i − Fj − F ′

j − F�− F ′
�),

�24 = F ′
i B2 j+F ′

j B2i+F ′
i B2�+F ′

�B2i+F ′
j B2�+F ′

�B2 j ,

�33 = 6I−2(Hi + Hj + H�+ H ′
i + H ′

j + H ′
�),

�34 = H ′
i D2 j + H ′

j D2i + H ′
i D2�+ H ′

�D2i + H ′
j D2�+ H ′

�D2 j ,

then the robust static output feedback control gain K = R−1L stabilizes system (1) with an H2
guaranteed performance bounded by �.

Proof
Using the technique of de Oliveira et al. [19] to deal with triple products of parameter-dependent
matrices, multiply (17) by �i , (18) and (21) by �3

i and sum for i=1, . . . , N . Multiply (19) and (22)
by �2

i � j and sum for i=1, . . . , N , j �= i , j=1, . . . , N . Multiply (20) and (23) by �i� j�k and sum
for i=1, . . . , N−2, j=i+1, . . . , N −1, k = j +1, . . . , N . Adding the results yields

trace(W (�)) < �2, (24)

B1(�)′ P(�)B1(�)−W (�) < 0, (25)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−G(�)′ P(�)G(�) G(�)′ A(�)′F(�) G(�)′C1(�)′H (�)

+Z (�)′B2(�)′F(�) +Z (�)′D2(�)′H (�) G(�)′C2(�)′L ′− Z (�)′ R′

� P(�)− F(�)− F(�)′ 0 F(�)′B2(�)

� � I− H (�)− H (�)′ H (�)′D2(�)

� � � −R− R′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

<0.

(26)

Multiply (26) on the right by R1(�) and on the left by R1(�)′, with

R1(�)=

⎡
⎢⎢⎢⎢⎣

G(�)−1 0 0 0

� I 0 0

� � I 0

� � � I

⎤
⎥⎥⎥⎥⎦ ,

to obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A(�)′F(�) C1(�)′H (�) C2(�)′L ′
−P(�) +G(�)−1′

Z (�)′B2(�)′F(�) +G(�)−1′
Z (�)′D2(�)′H (�) −G(�)−1′

Z (�)′ R′

� P(�)−F(�)−F(�)′ 0 F(�)′B2(�)

� � I−H (�)−H (�)′ H (�)′D2(�)

� � � −R− R′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
<0.

(27)
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Multiply (27) on the left by R2(�) and on the right by R2(�)′, with

R2(�)=

⎡
⎢⎢⎣

I 0 0 S(�)′

0 I 0 0

0 0 I 0

⎤
⎥⎥⎦ ,

and S(�)= R−1LC(�)− Z (�)G(�)−1, to obtain⎡
⎢⎢⎣

−P(�) Acl(�)′F(�) Ccl(�)′H (�)

� P(�)− F(�)− F(�)′ 0

� � I− H (�)− H (�)′

⎤
⎥⎥⎦<0, (28)

with

Acl(�) = A(�)+ B2(�)R−1LC2(�),

Ccl(�) = C1(�)+ D2(�)R−1LC2(�).

Multiply (28) on the left by [I Acl(�)′ Ccl(�)′] and on the right by the transpose, to obtain

Acl(�)′(�)P(�)Acl(�)− P(�)+Ccl(�)′Ccl(�)<0, (29)

which, together with (24) and (25), guarantee that (3a) holds for all �∈�N and, consequently, the
closed-loop system Acl(�) is robustly stable with an H2 guaranteed cost bounded by �. �

The novelty of Theorem 2 is the possibility of synthesizing a robust static output feedback gain
starting from a parameter-dependent state feedback gain. A feasible solution yields the desired
robust gain and a parameter-dependent Lyapunov function that certifies simultaneously the closed-
loop matrix stabilized with a parameter-dependent state feedback gain and with a robust static
output feedback gain. The ability to search for such a Lyapunov function is, to the best of the
authors’ knowledge, being explored by the first time. Note that similar methods presented in
[8, 13, 15] require a robust state feedback gain as the starting point.

An immediate byproduct of Theorem 2 is also the possibility of designing robust state feedback
gains, as presented by the next corollary.

Corollary 2
Let Zi and Gi , i =1, . . . , N , be the solution matrices of Theorem 1. If there exist symmetric matrices
Pi ∈Rn×n , matrices Fi ∈Rn×n , Hi ∈Rp×p, i =1, . . . , N , and matrices R ∈Rm×m , L ∈Rm×n such
that the LMIs (17)–(23) are verified with Ci = In , i =1, . . . , N , then the robust state feedback
control gain K = R−1L stabilizes system (1) with an H2 guaranteed performance bounded by �.

Proof
Follows the same steps of the proof of Theorem 2. �

If the objective is to design a robust state feedback gain, the conditions of Corollary 2 can be
used as an alternative when the conditions from [20] fail.

The justification for this fact is that both approaches are only sufficient, presenting different
levels of conservativeness. The particular characteristic of proposed conditions is that if no feasible
solution is found in the second stage, the method can be performed again by choosing different
stabilizing parameter-dependent state feedback gains. Note that both Theorem 1 and Corollary 2
only require that the matrices Zi and Gi , i =1, . . . , N , must be associated with a stabilizing
parameter-dependent state feedback gain and not necessarily with a prescribed H2 guaranteed cost.
Other performance requirements associated with the state feedback design as the H∞ norm, pole
location, real positivity, larger bounds for the prescribed H2 guaranteed cost, or dual conditions
based on (4a), could be used to generate the gains, but nothing can be said with respect to the best
possible output feedback H2 guaranteed cost obtained by Theorem 2 or Corollary 2 in the second

Copyright � 2009 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:1–13
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8 H. R. MOREIRA, R. C. L. F. OLIVEIRA AND P. L. D. PERES

stage. For instance, one could use the conditions of Theorem 1 only considering the stabilization
problem, selecting the first two blocks of LMIs (8) and (9).

4. NUMERICAL EXPERIMENTS

The numerical complexity associated with an optimization problem based on LMIs can be estimated
from the number V of scalar variables and the number L of LMI rows. All the experiments have
been performed in an Athlon 64 X2 6000+ (3.0 GHz), 2 GB RAM (800 MHz), Linux (Ubuntu
9.04), using SeDuMi [21] and Yalmip [22] under Matlab 7.0.1.

Example I

Consider the system (1) with n =2, N =2 and the following matrices:

[A1 A2] =
[

0.4 0.7 0.9 0.6

0.7 0.4 −0.7 −1.3

]
, B11 = B12 =

[
0.7

0.6

]
, [B21 B22]=

[
0.5 0.4

2.1 0.2

]
,

C11 = C12 = [1.3 0], C21 =C22 = [1 0], D21 =0.8, D22 =−0.9.

The aim is to design a robust stabilizing state feedback gain. Using the conditions of Corollary
1 (similar to [20, Theorem 9]) it is not possible to find a feasible solution. However, using the
conditions of Theorem 1, a parameter-dependent state feedback gain K (�)= Z (�)G(�)−1 that
stabilizes the system (�=2.6594,V =21, L =26,Time=0.06s) can be computed. The matrices
that compose the gain are

[Z1 Z2] = [−0.9948 −1.4455 −0.3619 1.8595],

[G1 G2] =
[

2.8616 −0.9005 3.0302 −1.7254

0.1574 4.6547 −1.7254 3.0528

]
.

Using these matrices as input parameters for the conditions of Corollary 2, the following robust
state feedback gain was obtained (�=3.7117,V =20, L =28,Time=0.09s):

K = [−0.4387 0.2801].

Figure 1 shows the eigenvalues of the close-loop system Acl(�)= A(�)+ B2(�)K computed through
an exhaustive grid on the space of the parameters. The maximum eigenvalue is given by |�max|=
0.8984, which proves that the synthesized robust state feedback gain does stabilize the system.
This example shows that there may exist uncertain linear systems where the LMI conditions from
[20] fail but the proposed approach can find a feasible solution for the design of a robust state
feedback gain.

Example II

This example considers system (1) with n =3, N =2 and the following matrices:

[A1 A2] =

⎡
⎢⎣

−0.2 0.3 0.1 1.2 0.2 −0.9

0.3 0.5 −0.4 −0.1 −0.7 1.1

0.4 −0.5 0.7 1.2 0.4 0.1

⎤
⎥⎦ , B1i=

⎡
⎢⎣

0.6

0.9

0.4

⎤
⎥⎦ , B2i=

⎡
⎢⎣

0.9

−1.2

0.4

⎤
⎥⎦ ,

D2i = −1.3, C1i=

⎡
⎢⎣

−0.6

−1.0

0.1

⎤
⎥⎦

′

, i=1,2, C21=

⎡
⎢⎣

0.1

−0.5

0.5

⎤
⎥⎦

′

, C22=

⎡
⎢⎣

0.7

0.5

−0.5

⎤
⎥⎦

′

.
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Figure 1. Eigenvalues for the closed-loop system in Example I.

The aim is to control this system by means of a robust output feedback gain. As the output
control matrix C2(�) is affected by uncertainties, the approach of [20, Section 4.2] cannot be
used. Moreover, the conditions of Corollary 1 do not find a feasible solution. As an immediate
consequence, the method of Mehdi et al. [15], which needs an initial robust state feedback gain,
cannot be applied. On the other hand, Theorem 1 provides a parameter-dependent state-feedback
gain, making possible the use of Theorem 2. For comparison purposes, the LMI conditions from
[16, Theorem 4] were also implemented. The results are shown in Table I, with the associated
numerical complexities.

As can be seen, the conditions of Theorem 2 stabilized the system with the robust output
feedback gain K =−1.0231 and presented an H2 guaranteed cost less conservative than the one
from [16]. The computational time of the proposed approach is slightly greater since the elapsed
times of both Theorem 1 and Theorem 2 must be considered, yielding 0.26 s.

Example III

An application with practical appealing is investigated in this example. The system represents a
mechanical system (borrowed from [23]) with two-mass–spring and whose graphical illustration
is depicted in Figure 2. The transfer function to be considered is from the input force d applied to
mass m1 to the error signal e= x2 (position of mass m2). The following discrete-time equation is
obtained using Euler’s first-order approximation for the derivative and a sampling time of 0.1 s:

x(k+1) = Ax(k)+ Bu(k),

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.1 0

0 1 0 0.1

−0.1(k1 +k2)

m1

0.1k2

m1
1− 0.1c0

m1
0

0.1k2

m2

−0.1k2

m2
0 1− 0.1c0

m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0.1

m1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The masses and the stiffness of the second spring are assumed to be constant as m1 =2, m2 =1,
k2 =0.5. The friction forces f1 and f2 are associated with the viscous friction coefficient c0. The
stiffness of the first spring and the viscous friction coefficient are assumed to be uncertain and
belonging to the ranges

1�k1�4, 1�c0�4.

Copyright � 2009 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:1–13
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Figure 2. Mass–spring system.

Table I. Comparison in the output feedback design of Example II.

Method � K V L Time (s)

[16, Theorem 4] 3.0702 −1.1348 141 64 0.25
Theorem 1 1.4548 — 39 35 0.19
Theorem 2 1.5713 −1.0231 35 36 0.07

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

2.5

3

3.5

Figure 3. H2 guaranteed costs provided by Theorem 2 using state feedback controllers designed by
Theorem 1 with H2 prescribed bounds given in the range �∈ [0.47 2.0].

Evaluating the dynamic matrix at the extreme values of the parameters, one obtain a polytope of
N =4 vertices. The other system matrices are given by:

C1i = [0 1 0 0], B1i = [0 0.1 0.1 0]′, C2i =
[

0 0 1 0

0 0 0 1

]
, D2i =0, i =1, . . . , N .

The third and fourth states, which are the velocities of masses m1 and m2, respectively, are
the only states available for feedback and the aim is to compute a static output feedback gain
minimizing the H2 norm of the closed-loop system. As the output control matrix C2(�) is not
affected by uncertainties, the method from [20, Theorem 9] can be adapted to cope with the
output feedback design and it is used in the numerical comparisons. With respect to the proposed
conditions, the conditions of Theorem 2 are tested using the relaxations of Theorem 1 with H2
prescribed bounds given in the range �∈ [0.47 2]. The results, depicted in Figure 3, show that the
more relaxed the H2 upper bound used in Theorem 1, the less conservative the H2 guaranteed
cost obtained by Theorem 2.
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Table II. Comparison in the design of Example III.

Method � V L Time (s)

[16, Theorem 4] — 803 268 6.59
[20, Theorem 9] — 59 60 0.12

Theorem 1 0.47 124 144 0.09
Theorem 2 3.1251 112 220 0.57

Theorem 1 2.00 124 144 0.11
Theorem 2 0.6770 112 220 0.34

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

x1(t )
x2(t)
x3(t )
x4(t )

Time (s)

S
ta

te
s

Figure 4. Trajectories of states for original continuous-time system investigated in
Example III using the gain (30).

For numerical complexity comparison purposes, the results obtained by the methods [16,
Theorem 4], [20, Theorem 9] and Theorem 2 using two initial state feedback controllers (for
�=0.47 and �=2.00 in Theorem 1) are shown in Table II.

As can be seen, the other methods available in the literature are not capable to provide a
stabilizing controller. On the other hand, the proposed approach stabilizes the system and presents
flexibility in the search for less conservative H2 guaranteed costs. For illustration, the designed
output feedback gain that yields an upper bound for the H2 normal equal to �=0.6770 is given by

K = [−18.5369 5.3400]. (30)

Finally, the original continuous-time system was simulated with the gain (30) and initial condition
x(0)= [2 −2 1 −1]′. The results are shown in Figure 4. The trajectories of the states converging
to zero also guarantee that the Euler discretization (sampling time Ts =0.1s) employed in this
example was reliable.

Example IV

The aim of this example is to evaluate the level of conservativeness of the proposed approach
when compared with the methods [15, 16] by means of a statistical analysis for the robust output
feedback stabilization problem. The comparison is similar to the one presented in [15], where
uncertain linear systems of different dimensions were considered.

A database of 100 polytopes§ (A(�), B2(�), C2(�)) that can be stabilized by static output feedback
for the dimensions

n ={3,6}, m={1,2,3}, p={1,2,3}, N={3,4}, (31)

§Available for download in www.dt.fee.unicamp.br/∼ricfow/robust.htm.
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Table III. Positive evaluations and computational times (in seconds) presented by the
methods [15, 16] and Theorem 2 in the statistical analysis of Example IV for uncertain systems

with the dimensions given in (31).

N =3 N =4

Dong and Mehdi Dong and Mehdi
n m p Yang [16] Time et al. [15] Time T2 Time Yang [16] Time et al. [15] Time T2 Time

1 4 12.4 75 5.3 92 7.4 0 35.0 69 5.7 96 10.3
1 2 0 10.9 61 5.0 90 7.5 0 31.3 58 5.3 92 10.6

3 0 10.7 64 4.9 89 7.4 0 28.3 53 4.9 92 10.4

1 4 12.0 62 6.6 77 8.4 0 35.3 56 6.6 74 12.4
3 2 2 0 10.8 52 6.3 67 8.4 0 30.7 47 5.7 75 12.3

3 0 11.0 52 5.8 74 8.4 0 29.0 36 5.3 64 12.6

1 2 12.3 48 7.1 44 9.4 1 35.5 51 7.9 53 14.8
3 2 0 11.1 43 7.0 54 9.4 0 30.4 39 7.1 52 14.7

3 0 10.7 36 6.7 49 9.5 0 27.3 26 6.2 39 14.4
1 1 275.4 62 11.2 90 24.8 0 1587.0 53 12.8 87 49.7

1 2 0 246.6 49 10.3 79 25.4 0 1353.8 36 10.3 79 50.9
3 0 234.4 44 9.4 76 25.0 0 1231.9 37 10.0 76 47.8

1 2 279.1 47 13.4 67 29.3 0 1575.9 34 14.2 62 60.6
6 2 2 0 251.1 30 12.2 59 29.0 0 1349.9 26 11.6 49 7.4

3 0 238.8 11 9.0 46 30.2 0 1225.7 6 8.1 33 51.3

1 1 277.8 22 17.7 47 33.3 0 1570.6 24 19.1 52 69.4
3 2 0 254.0 15 13.9 39 33.7 0 1351.4 10 11.0 25 63.0

3 0 235.5 10 10.7 31 32.4 0 1213.3 4 7.2 9 46.6

is generated. Similar to [15], the system matrices are randomly generated such that A(�) is
unstable and there exists a gain K such that A(�)+ B2(�)K C2(�) is stable, using an exhaustive grid
procedure. The methods are applied and the number of positive evaluations and the computational
times are stored. The details of how the methods are applied are briefly summarized in the sequel:

• Proposed: First, Theorem 1 is applied considering only the first two blocks of LMIs (8) and
(9). Then the resulting gains are used as input conditions of Theorem 2 considering the LMIs
(21)–(23) removing the third columns and the third rows. The computational time is the total
time to solve the LMIs in both stages.

• Mehdi et al. [15]: First, an initial stabilizing robust state feedback controller is obtained using
[24, Theorem 3]. Then, the stabilizing gain is used as initial condition in [15, Theorem 4.1].
The computational time is the total time to solve the LMIs in both stages.

• Dong and Yang [16]: The similarity transformations required by Dong and Yang [16,
Theorem 1] are obtained following the suggestion given in [16, Equation (4)], i.e. Ti =
[C ′

2i (C2i C ′
2i )

−1 C⊥
2i ].

The results are shown in Table III. The approach of Dong and Yang [16] showed to be the
most conservative and more expensive from a computational point of view. With the increase in
the dimensions, the proposed approach found approximately the double of feasible solutions when
compared with [15]. With respect to the computational burden, however, the proposed approach
is always costlier than [15].

5. CONCLUSION

A new strategy to design H2 robust static output feedback controllers for discrete-time linear
systems with time-invariant parameters was proposed. The novelty relies on the fact that first, a
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parameter-dependent state feedback controller is designed and then, the resulting gains are used
as an input condition for the design of the robust output feedback gain. Numerical examples,
including a physical system shows different situations where the proposed approach outperforms
the other methods available in the literature. A statistical analysis also indicates that, in general,
the proposed approach is less conservative than the other methods.
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