105 research outputs found

    Finite iterative algorithms for solving generalized coupled Sylvester systems – Part I: One-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions

    Get PDF
    AbstractThe generalized coupled Sylvester systems play a fundamental role in wide applications in several areas, such as stability theory, control theory, perturbation analysis, and some other fields of pure and applied mathematics. The iterative method is an important way to solve the generalized coupled Sylvester systems. In this two-part article, finite iterative methods are proposed for solving one-sided (or two-sided) and generalized coupled Sylvester matrix equations and the corresponding optimal approximation problem over generalized reflexive solutions (or reflexive solutions). In part I, an iterative algorithm is constructed to solve one-sided and coupled Sylvester matrix equations (AY−ZB,CY−ZD)=(E,F) over generalized reflexive matrices Y and Z. When the matrix equations are consistent, for any initial generalized reflexive matrix pair [Y1,Z1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solution pair can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair [Y^,Z^] to a given matrix pair [Y0,Z0] in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair [Y∼∗,Z∼∗] of two new corresponding generalized coupled Sylvester matrix equations (AY∼-Z∼B,CY∼-Z∼D)=(E∼,F∼), where E∼=E-AY0+Z0B,F∼=F-CY0+Z0D. Several numerical examples are given to show the effectiveness of the presented iterative algorithm

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm

    Gradient based iterative solutions for general linear matrix equations

    Get PDF
    AbstractIn this paper, we present a gradient based iterative algorithm for solving general linear matrix equations by extending the Jacobi iteration and by applying the hierarchical identification principle. Convergence analysis indicates that the iterative solutions always converge fast to the exact solutions for any initial values and small condition numbers of the associated matrices. Two numerical examples are provided to show that the proposed algorithm is effective

    Positive Definite Solutions of the Nonlinear Matrix Equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I

    Get PDF
    This paper is concerned with the positive definite solutions to the matrix equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I where XX is the unknown and AA is a given complex matrix. By introducing and studying a matrix operator on complex matrices, it is shown that the existence of positive definite solutions of this class of nonlinear matrix equations is equivalent to the existence of positive definite solutions of the nonlinear matrix equation W+BTW1B=IW+B^{\mathrm{T}}W^{-1}B=I which has been extensively studied in the literature, where BB is a real matrix and is uniquely determined by A.A. It is also shown that if the considered nonlinear matrix equation has a positive definite solution, then it has the maximal and minimal solutions. Bounds of the positive definite solutions are also established in terms of matrix AA. Finally some sufficient conditions and necessary conditions for the existence of positive definite solutions of the equations are also proposed

    Gradient Based Iterative Algorithm to Solve General Coupled Discrete-Time Periodic Matrix Equations over Generalized Reflexive Matrices

    Get PDF
    The discrete-time periodic matrix equations are encountered in periodic state feedback problems and model reduction of periodic descriptor systems. The aim of this paper is to compute the generalized reflexive solutions of the general coupled discrete-time periodic matrix equations. We introduce a gradient-based iterative (GI) algorithm for finding the generalized reflexive solutions of the general coupled discretetime periodic matrix equations. It is shown that the introduced GI algorithm always converges to the generalized reflexive solutions for any initial generalized reflexive matrices. Finally, two numerical examples are investigated to confirm the efficiency of GI algorithm

    A gradient-based iterative algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems

    Get PDF
    In this paper, a new gradient-based iterative algorithm is proposed to solve the coupled Lyapunov matrix equations associated with continuous-time Markovian jump linear systems. A necessary and sufficient condition is established for the proposed gradient-based iterative algorithm to be convergent. In addition, the optimal value of the tunable parameter achieving the fastest convergence rate of the proposed algorithm is given explicitly. Finally, some numerical simulations are given to validate the obtained theoretical results

    LSMR Iterative Method for General Coupled Matrix Equations

    Get PDF
    By extending the idea of LSMR method, we present an iterative method to solve the general coupled matrix equations ∑k=1qAikXkBik=Ci, i=1,2,…,p, (including the generalized (coupled) Lyapunov and Sylvester matrix equations as special cases) over some constrained matrix groups (X1,X2,…,Xq), such as symmetric, generalized bisymmetric, and (R,S)-symmetric matrix groups. By this iterative method, for any initial matrix group (X1(0),X2(0),…,Xq(0)), a solution group (X1*,X2*,…,Xq*) can be obtained within finite iteration steps in absence of round-off errors, and the minimum Frobenius norm solution or the minimum Frobenius norm least-squares solution group can be derived when an appropriate initial iterative matrix group is chosen. In addition, the optimal approximation solution group to a given matrix group (X¯1,X¯2,…,X¯q) in the Frobenius norm can be obtained by finding the least Frobenius norm solution group of new general coupled matrix equations. Finally, numerical examples are given to illustrate the effectiveness of the presented method

    An iterative Newton\u27s method for output-feedback LQR design for large-scale systems with guaranteed convergence

    Get PDF
    The paper proposes a novel iterative output-feedback control design procedure, with necessary and sufficient stability conditions, for linear time-invariant systems within the linear quadratic regulator (LQR) framework. The proposed iterative method has a guaranteed convergence from an initial Lyapunov matrix, obtained for any stabilizing state-feedback gain, to a stabilizing output-feedback solution. Another contribution of the proposed method is that it is computationally much more tractable then algorithms in the literature, since it solves only a Lyapunov equation at each iteration step. Therefore, the proposed algorithm succeed in high dimensional problems where other, state-of-the-art methods fails. Finally, numerical examples illustrate the effectiveness of the proposed method
    corecore