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Abstract. The discrete-time periodic matrix equations are encountered in periodic
state feedback problems and model reduction of periodic descriptor systems. The aim
of this paper is to compute the generalized reflexive solutions of the general coupled
discrete-time periodic matrix equations. We introduce a gradient-based iterative (GI)
algorithm for finding the generalized reflexive solutions of the general coupled discrete-
time periodic matrix equations. It is shown that the introduced GI algorithm always
converges to the generalized reflexive solutions for any initial generalized reflexive
matrices. Finally, two numerical examples are investigated to confirm the efficiency
of GI algorithm.
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1 Introduction

Let us begin with some notations and definitions. The symbols AT , tr(A)
and ‖A‖ will stand for the transpose, the trace and the Frobenius norm of
a matrix A ∈ Rm×n, respectively. For a matrix A ∈ Rm×n, the so-called
stretching function vec(A) is defined by vec(A) = (aT1 , a

T
2 , ..., a

T
n )T , where

ak is the k-th column of A. The notation A ⊗ B represents the Kronecker
product of matrices A and B. A matrix P ∈ Rn×n is called a generalized
reflection matrix if P = PT and P 2 = I. Throughout, we always suppose
that P,Q ∈ Rn×n are given generalized reflection matrices. If A = PAQ then
A ∈ Rn×n is called a generalized reflexive matrix with respect to (P,Q) [5].
The symbol Rn×nr (P,Q) denotes the set of n× n generalized reflexive matrices
with respect to (P,Q). Obviously every matrix A ∈ Rn×n is also a generalized
reflexive matrix with respect to (I, I). In [5], three important applications of
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the generalized reflexive matrices were proposed.
The linear systems and linear matrix equations have several applications in
several problems of applied mathematics and engineering [6,26,29,32,33]. For
example, the stability of discrete-time linear periodic system

x(k + 1) = Akx(k) +Bku(k), ∀k ∈ Z

is closely related with the following discrete-time periodic Lyapunov matrix
equations [3, 35]

AkPkA
T
k − Pk+1 = −BkBTk , ∀k ∈ Z (1.1)

and
ATk Pk+1Ak − Pk = −Qk, ∀k ∈ Z. (1.2)

In the model reduction and stability analysis of the linear periodic time-varying
descriptor systems

Eixi+1 = Aixi +Biui, yi = Cixi, ∀i ∈ Z

we need to solve the following generalized projected periodic discrete-time al-
gebraic Lyapunov matrix equations [2, 6, 27] AiXiA

T
i − EiXi+1E

T
i = Ql(i)BiB

T
i Ql(i)

T ,

Xi = Qr(i)GiQr(i)
T .

(1.3)

The applications of linear matrix equations have motivated both mathemati-
cians and engineers to construct methods catering to solve linear matrix equa-
tions [1,4,6,7,8,9,19,23,25]. Based on Smith iterations [24], iterative methods
were developed for periodic standard Lyapunov matrix equations and projected
generalized Lyapunov matrix equations [27,28]. Kressner introduced new vari-
ants of the squared Smith iteration and Krylov subspace based methods for the
approximate solution of discrete-time periodic Lyapunov matrix equations [20].
In [17], Granat et al. presented novel recursive blocked algorithms for solv-
ing various periodic triangular matrix equations. In this paper, we propose a
GI algorithm to find the generalized reflexive solutions of the general coupled
discrete-time periodic matrix equations{

A1,iXiB1,i + C1,iXi+1D1,i = E1,i,
A2,iXiB2,i + C2,iXi+1D2,i = E2,i,

(1.4)

for i = 1, 2, ..., where the coefficient matrices A1,i, C1,i ∈ Rp1×n, A2,i, C2,i ∈
Rp2×n, B1,i, D1,i ∈ Rn×q1 , B2,i, D2,i ∈ Rn×q2 , E1,i ∈ Rp1×q1 , E2,i ∈ Rp2×q2 and
the generalized reflexive solutions Xi ∈ Rn×nr (P,Q) are periodic with period θ,
i.e., A1,i+θ = A1,i, A2,i+θ = A2,i, C1,i+θ = C1,i, C2,i+θ = C2,i, D1,i+θ = D1,i,
D2,i+θ = D2,i, E1,i+θ = E1,i, E2,i+θ = E2,i and Xi+θ = Xi. It is worth men-
tioning that the generalized reflexive solutions of the general coupled discrete-
time periodic matrix equations (1.4) have not been dealt with yet. Meanwhile
the general coupled discrete-time periodic matrix equations (1.4) contain vari-
ous linear discrete-time periodic matrix equations as special cases such as (1.1),
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(1.2) and (1.3).
The remaining parts of this paper are organized as follows. In Section 2, first
a GI algorithm is proposed for solving (1.4) over the generalized reflexive ma-
trices. Then by analysis of convergence we prove that the proposed algorithm
consistently converges to the generalized reflexive solutions for any initial gen-
eralized reflexive matrices. Theoretical results are verified on the relevant nu-
merical examples in Section 3. Section 4 ends this paper with a brief conclusion.

2 Main results

In this section, first we obtain the conditions for solvability of (1.4) over
the generalized reflexive matrices. Then a GI algorithm and its convergence
analysis are given.
It is easily shown that the general coupled discrete-time periodic matrix equa-
tions (1.4) over the generalized reflexive matrixes are equivalent to the following
general coupled matrix equations

A1XB1 + C1XD1 = E1,
A2XB2 + C2XD2 = E2,
A1PXQB1 + C1PXQD1 = E1,
A2PXQB2 + C2PXQD2 = E2,

(2.1)

where

Aj =


0 · · · 0 Aj,1
Aj,2 0

. . .
...

0 Aj,θ 0

 , Bj =


0 Bj,2 0
...

. . .

0 Bj,θ
Bj,1 0 · · · 0

 ,

Cj = diag
(
Cj,1, Cj,2, ..., Cj,θ

)
,Dj = diag

(
Dj,1, Dj,2, ..., Dj,θ

)
,

Ej = diag
(
Ej,1, Ej,2, ..., Ej,θ

)
, X = diag

(
X2, X3, ..., Xθ, X1

)
,

P = diag
(
P, P, ..., P

)
, Q = diag

(
Q,Q, ..., Q

)
,

for j = 1, 2. By using Kronecker product and vectorization operator, the gen-
eral coupled matrix equations (2.1) can be transformed into the linear system
Ax = b with the following parameters:

A =


BT1 ⊗A1 +DT1 ⊗ C1
BT2 ⊗A2 +DT2 ⊗ C2

BT1 Q⊗A1P +DT1 Q⊗ C1P
BT2 Q⊗A2P +DT2 Q⊗ C2P

 , x = vec(X ), b =


vec(E1)
vec(E2)
vec(E1)
vec(E2)

 . (2.2)

By applying (2.2), we can present the following lemma.

Lemma 1. The general coupled discrete-time periodic matrix equations (1.4)
have a unique generalized reflexive solution group (X1, X2, ..., Xθ) if and only
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if rank((A, b)) = rank(A) and A has a full column rank; in this case, the
homogenous general coupled discrete-time periodic matrix equations{

A1,iXiB1,i + C1,iXi+1D1,i = 0,
A2,iXiB2,i + C2,iXi+1D2,i = 0,

i = 1, 2, ...

have a unique generalized reflexive solution group (X1, X2, ..., Xθ) = 0.

Obviously the size of the coefficient matrices of the general coupled matrix
equations (2.1) and the linear system (2.2) is large. When the size of coefficient
matrices is large, the iterative methods such as [10, 18, 22] will consume more
computer time and memory space. Also in this case, the obtained solutions
are not accurate enough. To overcome the complications, we directly extend
the GI algorithm to solve (1.4) over the generalized reflexive matrices. One of
the famous method for solving the linear system Ax = b is the GI algorithm
[12,13,14] as follows:

x(k+1) = x(k) + δAT (b−Ax(k)), 0 < δ <
2

‖A‖2
. (2.3)

In recent years the GI algorithms have gained much attention for solving linear
matrix equations [14,15,16]. In [11,12,13], Ding and Chen proposed the GI al-
gorithms for solving matrix equations. Zhou et al. constructed a GI algorithm
to approximate the solutions to the coupled linear matrix equations [34]. By
defining a relaxation parameter, Niu et al. proposed a relaxed GI algorithm for
solving Sylvester matrix equations [21]. Different from the GI algorithm pre-
sented in [11] and the relaxed GI algorithm given in [21], Wang et al. introduced
a modified GI algorithm for solving Sylvester matrix equations [30]. In [31],
Wang and Liao obtained the optimal convergence factor of the GI algorithm
for linear matrix equations. Based on the (2.1), (2.2) and (2.3), we present the
following GI algorithm for solving (1.4) over the generalized reflexive matrices:

Algorithm 1. (GI algorithm to solve (1.4) over the generalized reflexive
matrices)

Step 1 Choose the initial generalized reflexive matrices Xi(1) ∈ Rn×nr (P,Q)
for i = 1, 2, ..., θ and a parameter δ > 0;

Step 2 Set Xθ+1(1) = X1(1), X0(1) = Xθ(1), Cj,0 = Cj,θ and Dj,0 = Dj,θ

for j = 1, 2;

Step 3 Compute

Rj,i(1) = Ej,i −Aj,iXi(1)Bj,i − Cj,iXi+1(1)Dj,i, i = 1, 2, ..., θ, j = 1, 2,

and set Rj,0(1) = Rj,θ(1) for j = 1, 2;

Step 4 For k = 1, 2, ..., compute

Xi(k+1) = Xi(k)+
δ

2

[
AT1,iR1,i(k)BT1,i+A

T
2,iR2,i(k)BT2,i+C

T
1,i−1R1,i−1(k)DT

1,i−1
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+CT2,i−1R2,i−1(k)DT
2,i−1 + PAT1,iR1,i(k)BT1,iQ+ PAT2,iR2,i(k)BT2,iQ

+PCT1,i−1R1,i−1(k)DT
1,i−1Q+ PCT2,i−1R2,i−1(k)DT

2,i−1Q
]
, i = 1, 2, ..., θ,

Xθ+1(k + 1) = X1(k + 1), X0(k + 1) = Xθ(k + 1),

Rj,i(k+1)=Ej,i−Aj,iXi(k+1)Bj,i−Cj,iXi+1(k+1)Dj,i, i=1, 2, . . . , θ, j=1, 2,

Rj,0(k + 1) = Rj,θ(k + 1), j = 1, 2.

Stopping criterion. To check convergence, we use the stopping criterion√√√√ θ∑
i=1

(
‖R1,i(k)‖2 + ‖R2,i(k)‖2

)
≤ tol,

where tol is a chosen fixed threshold.

Remark 1. From the above algorithm, we can easily see that Xi(k)∈Rn×nr (P,Q)
for i = 1, 2, . . . , θ.

In the following theorem, we proceed to prove the convergence of Algorithm 1
to the generalized reflexive solutions of (1.4).

Theorem 1. Suppose that the general coupled discrete-time periodic matrix
equations (1.4) have a unique generalized reflexive solution group (X∗1 , X

∗
2 ,

. . . , X∗θ ). If the parameter δ satisfies the inequality

0 < δ <
2∑θ

i=1

(∥∥∥A1,iB1,i

∥∥∥2+
∥∥∥C1,iD1,i

∥∥∥2+
∥∥∥A2,iB2,i

∥∥∥2+
∥∥∥C2,iD2,i

∥∥∥2) , (2.4)

then for any initial generalized reflexive matrix group (X1(1), X2(1), ..., Xθ(1)),
the iterative solution group (X1(k), X2(k), ..., Xθ(k)) generated by Algorithm 1
converges to the generalized reflexive group (X∗1 , X

∗
2 , ..., X

∗
θ ), that is

lim
k→∞

Xi(k) = X∗i , for i = 1, 2, ..., θ.

Proof. To prove this theorem, first we define the error matrices in the k-th
iteration of Algorithm 1 as

X̃i(k) = Xi(k)−X∗i , for i = 1, 2, ..., θ.

By using the error matrices, we can obtain the residual matrices in the k-th
iteration as the following form

Rj,i(k) = −Aj,iX̃i(k)Bj,i − Cj,iX̃i+1(k)Dj,i, for i = 1, 2, ..., θ, j = 1, 2.

This implies that

X̃i(k + 1) = X̃i(k)− δ

2

[
AT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,i
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+AT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,i

+CT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1

+CT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1

+PAT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,iQ

+PAT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,iQ

+PCT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1Q

+PCT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1Q
]
. (2.5)

For i = 1, 2, ..., θ, by applying (2.5) we can obtain

‖X̃i(k + 1)‖2 = tr
(
X̃i(k + 1)T X̃i(k + 1)

)
= ‖X̃i(k)‖2 − δtr

(
X̃i(k)TAT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,i

+X̃i(k)TAT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,i

+X̃i(k)TCT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1

+X̃i(k)TCT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1

+X̃i(k)TPAT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,iQ

+X̃i(k)TPAT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,iQ

+X̃i(k)TPCT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1Q

+X̃i(k)TPCT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1Q
)

+
δ2

4

∥∥∥AT1,i(A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,i

+AT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,i

+CT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1

+CT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1

+PAT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,iQ

+PAT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,iQ
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+PCT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1Q

+PCT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1Q
∥∥∥2

= ‖X̃i(k)‖2 − 2δtr
(
A1,iX̃i(k)B1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)T
+A2,iX̃i(k)B2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)T
+C1,i−1X̃i(k)D1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)T
+C2,i−1X̃i(k)D2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)T)
+δ2

∥∥∥AT1,i(A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,i

+CT1,i−1

(
A1,i−1X̃i−1(k)B1,i−1 + C1,i−1X̃i(k)D1,i−1

)
DT

1,i−1

+AT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,i

+CT2,i−1

(
A2,i−1X̃i−1(k)B2,i−1 + C2,i−1X̃i(k)D2,i−1

)
DT

2,i−1

∥∥∥2
= ‖X̃i(k)‖2 − 2δtr

(
A1,iX̃i(k)B1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)T
+A2,iX̃i(k)B2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)T
+C1,iX̃i+1(k)D1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)T
+C2,iX̃i+1(k)D2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)T)
+δ2

∥∥∥AT1,i(A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
BT1,i

+CT1,i

(
A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

)
DT

1,i

+AT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
BT2,i

+CT2,i

(
A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

)
DT

2,i

∥∥∥2
≤ ‖X̃i(k)‖2 − 2δ

(∥∥∥A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

∥∥∥2
+
∥∥∥A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

∥∥∥2)
+δ2

(∥∥∥A1,iB1,i

∥∥∥2 +
∥∥∥C1,iD1,i

∥∥∥2 +
∥∥∥A2,iB2,i

∥∥∥2 +
∥∥∥C2,iD2,i

∥∥∥2)
×
(∥∥∥A1,iX̃i(k)B1,i+C1,iX̃i+1(k)D1,i

∥∥∥2+
∥∥∥A2,iX̃i(k)B2,i+C2,iX̃i+1(k)D2,i

∥∥∥2).
Math. Model. Anal., 21(4):533–549, 2016.
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By defining the nonnegative definite function Z(k) as follows

Z(k) =

θ∑
i=1

‖X̃i(k)‖2

we have

Z(k + 1) =

θ∑
i=1

‖X̃i(k + 1)‖2

≤
θ∑
i=1

‖X̃i(k)‖2 − 2δ

θ∑
i=1

(∥∥∥A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

∥∥∥2
+
∥∥∥A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

∥∥∥2)
+δ2

θ∑
i=1

(∥∥∥A1,iB1,i

∥∥∥2 +
∥∥∥C1,iD1,i

∥∥∥2 +
∥∥∥A2,iB2,i

∥∥∥2 +
∥∥∥C2,iD2,i

∥∥∥2)

×
θ∑
i=1

(∥∥∥A1,iX̃i(k)B1,i + C1,iX̃i+1(k)D1,i

∥∥∥2
+
∥∥∥A2,iX̃i(k)B2,i + C2,iX̃i+1(k)D2,i

∥∥∥2)
≤ Z(0)− δ

[
2− δ

θ∑
i=1

(∥∥∥A1,iB1,i

∥∥∥2 +
∥∥∥C1,iD1,i

∥∥∥2 +
∥∥∥A2,iB2,i

∥∥∥2 +
∥∥∥C2,iD2,i

∥∥∥2)]

×
k∑
r=1

θ∑
i=1

(∥∥∥A1,iX̃i(r)B1,i + C1,iX̃i+1(r)D1,i

∥∥∥2
+
∥∥∥A2,iX̃i(r)B2,i + C2,iX̃i+1(r)D2,i

∥∥∥2).
If the convergence factor δ is chosen to satisfy in (2.4) then we can conclude
that

∞∑
r=1

θ∑
i=1

(∥∥∥A1,iX̃i(r)B1,i + C1,iX̃i+1(r)D1,i

∥∥∥2
+
∥∥∥A2,iX̃i(r)B2,i + C2,iX̃i+1(r)D2,i

∥∥∥2) <∞.
It follows from the necessary condition of the above series convergence that

lim
r→∞

θ∑
i=1

(∥∥∥A1,iX̃i(r)B1,i + C1,iX̃i+1(r)D1,i

∥∥∥2

+
∥∥∥A2,iX̃i(r)B2,i + C2,iX̃i+1(r)D2,i

∥∥∥2) = 0.
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Hence we deduce that

lim
r→∞

(
A1,iX̃i(r)B1,i + C1,iX̃i+1(r)D1,i

)
= 0, for i = 1, 2, ..., θ

and

lim
r→∞

(
A2,iX̃i(r)B2,i + C2,iX̃i+1(r)D2,i

)
= 0, for i = 1, 2, ..., θ.

Now according to Lemma 1, it can be obtained that

lim
r→∞

X̃i(r) = 0, for i = 1, 2, ..., θ.

This finishes the proof of Theorem 1. ut

3 Numerical examples

In this section, two numerical examples are proposed for the validation of
the proposed method. We performed our computations using Matlab software
on a Pentium IV.

Example 1. We consider the discrete-time periodic matrix equations

AiXi +Xi+1Bi = Ci, i = 1, 2, 3

over the generalized reflexive matrices X1, X2, X3 ∈ R5×5
r (P,Q) where

A1 =


2.6756 0.3840 0.6085 0.0576 0.0841

0 2.4508 0.0158 0.3676 0.4544
0 0 2.2324 0.6315 0.4418
0 0 0 2.0784 0.3533
0 0 0 0 2.9943

 ,

A2 =


−3.2475 0.5915 0 0 0
0.3400 −3.7362 0.2644 0 0
0.3142 0.0381 −3.2519 0.6649 0
0.3651 0.4586 0.8729 −2.7797 0.8903
0.3932 0.8699 0.2379 0.0099 −2.9985

 ,

A3 =


−7.4617 0.9200 0.1939 0.5488 0.6273
0.0099 −6.6666 0.9048 0.9316 0.6991
0.4199 0.3678 −7.2374 0.3352 0.3972

0.75370.6208 0.6318 −6.4845 0.4136
0.7939 0.7313 0.2344 0.3919 −6.4036

 ,

B1 =


9.1529 0.7621 0.6154 0.4057 0.0579
0.2311 9.2033 0.7919 0.9355 0.3529
0.6068 0.0185 9.4470 0.9169 0.8132
0.4860 0.8214 0.7382 8.7898 0.0099
0.8913 0.4447 0.1763 0.8936 8.3285

 ,
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B2 =


8.8962 0.6979 0 0 0
0.6822 9.3352 0.8998 0 0
0.3028 0.8600 9.0740 0.2897 0
0.5417 0.8537 0.6449 8.5403 0.5681
0.1509 0.5936 0.8180 0.5341 9.3587

 ,

B3 =


8.5536 0.2259 0 0 0
0.4235 8.2233 0.3798 0 0
0.5155 0.7604 8.0513 0.0592 0
0.3340 0.5298 0.6808 8.2317 0.0150
0.4329 0.6405 0.4611 0.0503 8.3431

 ,

C1 =


4.7707 11.0062 2.2473 14.7423 37.2686
40.4523 3.4924 15.8879 3.2050 1.6293
3.1070 19.8112 3.2951 23.4979 16.1410
10.5080 1.1985 7.9500 1.4258 0.9173
3.0847 28.6604 3.8242 26.0354 17.0594

 ,

C2 =


5.4803 17.7438 9.5312 17.6358 59.4288
54.2694 8.1642 18.1172 1.5983 1.7068
5.7146 30.8417 8.6997 30.0182 28.3407
17.0218 6.4641 11.3355 4.4598 4.2447
9.4985 44.6355 10.9847 33.1244 30.2029

 ,

C3 =


9.2292 −2.9557 4.4280 −7.0361 −37.8309
−32.3081 7.3022 −10.3963 6.7477 5.2847

4.4957 −13.3424 2.7645 −18.3820 −12.0716
−3.6924 5.6008 −4.7002 5.8530 9.0744
7.5784 −18.1886 3.9682 −16.2704 −7.4623


and

P =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

 , Q =


−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 .

By applying Algorithm 1 with the initial generalized reflexive matrices X1(1)
= X2(1) = X3(1) = 0 and several values of parameter δ, we obtain results
presented in Figure 1 where

r(k) = log10

(√√√√ 3∑
i=1

‖Ci −AiXi(k)−Xi+1(k)Bi‖2
)
.

After 125 iterations, we obtain the generalized reflexive solutions of the discrete
time periodic matrix equations as follows:

X∗1 =


0 0.3757 0 0.4919 1.8847

1.9034 0 0.6286 0 0
0 0.8185 0 1.0121 0.8036

0.4947 0 0.3500 0 0
0 1.2219 0 1.0828 0.8231

 ∈ R5×5
r (P,Q),
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Figure 1. The residuals for Example 1

X∗2 =


0 0.7514 0 0.9838 3.7693

3.8068 0 1.2571 0 0
0 1.6371 0 2.0242 1.6072

0.9893 0 0.7001 0 0
0 2.4438 0 2.1657 1.6463

 ∈ R5×5
r (P,Q),

X∗3 =


0 1.5029 0 1.9677 7.5386

7.6135 0 2.5142 0 0
0 3.2742 0 4.0484 3.2144

1.9786 0 1.4002 0 0
0 4.8875 0 4.3314 3.2925

 ∈ R5×5
r (P,Q).

The results show that Algorithm 1 can quickly obtain the solutions of the
discrete-time periodic matrix equations.

Example 2. We study the coupled discrete-time periodic matrix equations{
Xi +AiXi+1Bi = Ci,
DiXiEi +Xi+1 = Fi,

i = 1, 2, 3

with the following parameters

A1 =


8.6756 0.3840 0.6085 0.0576 0.0841

0 8.4508 0.0158 0.3676 0.4544
0 0 8.2324 0.6315 0.4418
0 0 0 8.0784 0.3533
0 0 0 0 8.9943

 ,

A2 =


7.1271 0.5915 0 0 0
0.3400 6.9757 0.2644 0 0
0.3142 0.0381 6.5725 0.6649 0
0.3651 0.4586 0.8729 7.5205 0.8903
0.3932 0.8699 0.2379 0.0099 7.4683

 ,
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A3 =


−5.4617 0.9200 0.1939 0.5488 0.6273
0.0099 −4.6666 0.9048 0.9316 0.6991
0.4199 0.3678 −5.2374 0.3352 0.3972
0.7537 0.6208 0.6318 −4.4845 0.4136
0.7939 0.7313 0.2344 0.3919 −4.4036

 ,

B1 =


3.2526 −0.7621 −0.6154 −0.4057 −0.0579
−0.2311 4.2903 −0.7919 −0.9355 −0.3529
−0.6068 −0.0185 3.6033 −0.9169 −0.8132
−0.4860 −0.8214 −0.7382 3.9692 −0.0099
−0.8913 −0.4447 −0.1763 −0.8936 4.0508

 ,

B2 =


9.7027 0.6979 0.4966 0.6602 0.7271

0 9.9568 0.8998 0.3420 0.3093
0 0 9.2523 0.2897 0.8385
0 0 0 9.1991 0.5681
0 0 0 0 9.9883

 ,

B3 =


8.5536 0.2259 0 0 0
0.4235 8.2233 0.3798 0 0
0.5155 0.7604 8.0513 0.0592 0
0.3340 0.5298 0.6808 8.2317 0.0150
0.4329 0.6405 0.4611 0.0503 8.3431

 ,

D1 =


3.9317 −0.5711 −0.4319 −0.9159 −0.7327
−0.5485 3.7974 −0.6343 −0.6020 −0.4222
−0.2618 −0.9623 3.9515 −0.2536 −0.9614
−0.5973 −0.7505 −0.0839 3.7528 −0.0721
−0.0493 −0.7400 −0.9455 −0.5134 3.9206

 ,

D2 =


3.6206 0.1614 0.8121 0.3756 0.9566

0 3.4906 0.6101 0.1662 0.1472
0 0 3.6084 0.8332 0.8699
0 0 0 3.4648 0.7694
0 0 0 0 3.4116

 ,

D3 =


−7.2833 0.1122 0 0 0
0.3941 −6.8592 0.2816 0 0
0.5030 0.4668 −7.3344 0.9028 0
0.7220 0.0147 0.7085 −7.4818 0.5208
0.3062 0.6641 0.7839 0.8045 −6.6376

 ,

E1 =


10.1171 −0.9327 −0.2093 −0.3193 −0.1998

0 10.9492 −0.4551 −0.3749 −0.0495
0 0 10.9331 −0.8678 −0.5667
0 0 0 10.2905 −0.1219
0 0 0 0 10.0954

 ,

E2 =


−3.0278 −0.8194 0 0 0
−0.2882 −3.6955 −0.7536 0 0
−0.8167 −0.5602 −4.3628 −0.1834 0
−0.9855 −0.2440 −0.2141 −3.9130 −0.6773
−0.0174 −0.8220 −0.6021 −0.1703 −4.8245

 ,
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E3 =


−10.8912 0 0 0 0

0 −10.5019 0 0 0
0 0 −10.1112 0 0
0 0 0 −10.5195 0
0 0 0 0 −10.5216

 ,

C1 = 103


−0.2241 −0.2708 0.2276 1.0767 0.0841
0.9796 0.0200 −0.2286 −0.1756 −0.0375
−0.2072 −0.0106 0.8505 −0.0594 0.1004
0.3911 0.8389 −0.2531 −0.2562 −0.0840
0.4749 0.4448 −0.1961 −0.1827 −0.0544

 ,

C2 = 103


0.3894 0.0856 1.7398 4.7341 1.1657
4.6264 1.0147 0.5306 0.6037 0.4854
0.2283 0.3661 3.9528 1.3614 1.7330
2.9085 4.4464 1.1209 0.7294 0.6241
3.0508 2.4571 0.5878 0.5811 0.4184

 ,

C3 =


168.0550 37.2777 −298.8015 −717.0216 −94.5945
−482.8643 58.0143 121.2561 33.3031 35.8865

52.3395 −13.3380 −592.5257 −106.8510 −179.0708
−158.3376 −374.7244 111.1639 131.8542 40.3635
−152.6549 −162.7658 72.9395 123.7053 25.5157

 ,

F1 =


−233.8164 −182.3232 229.7091 727.3289 67.2928
601.4525 −65.0355 −158.1209 −132.0087 −45.6560
−267.8252 −112.8876 699.5537 90.0978 161.7304
179.6600 522.0632 −81.1046 −129.9805 −19.9160
185.4702 213.6419 −177.5114 −48.7498 −41.4132

 ,

F2 =


−282.2199 −206.4360 −351.0661 −472.2401 −202.9035
−333.6208 −195.0378 −105.5166 −24.2335 −31.2039
−216.4398 −247.9265 −482.4659 −126.7748 −165.6702
−202.4713 −378.4970 −76.5490 0 0
−155.3920 −199.6648 −36.9034 0 0

 ,

F3 = 103


−0.0829 −0.0115 1.9069 5.4131 0.7457
5.0859 0.7071 −0.2809 −0.3410 −0.0962
−0.6546 −0.5434 4.5224 0.9083 1.4102
2.3706 3.9606 −0.6364 −0.6582 −0.2144
1.6942 1.4985 −0.5756 −0.3633 −0.1869


and

P =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

 , Q =


−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

We apply Algorithm 1 with the initial matrices X1(1) = X2(1) = X3(1) = 0
and several values of parameter δ to solve the coupled discrete-time periodic
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matrix equations. Figure 2 shows the performance of Algorithm 1 with the
residuals

r(k) = log10

(√√√√ 3∑
i=1

[‖Ci−Xi(k)−AiXi+1(k)Bi‖2+‖Fi−DiXi(k)Ei−Xi+1(k)‖2]

)
.
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Figure 2. The residuals for Example 2

After 315 iterations, Algorithm 1 can compute the generalized reflexive so-
lutions of the coupled discrete-time periodic matrix equations by the following:

X∗1 =


0 0 6.4515 17.6055 2.4249

16.9630 2.4456 0 0 0
0 0 15.6354 4.1373 4.7196

7.8725 13.0642 0 0 0
8.4808 7.1767 0 0 0

 ∈ R5×5
r (P,Q),

X∗2 =


0 0 12.9031 35.2109 4.8498

33.9259 4.8911 0 0 0
0 0 31.2709 8.2746 9.4392

15.7451 26.1284 0 0 0
16.9616 14.3533 0 0 0

 ∈ R5×5
r (P,Q),

X∗3 =


0 0 25.8061 70.4219 9.6997

67.8519 9.7822 0 0 0
0 0 62.5417 16.5491 18.8784

31.4902 52.2568 0 0 0
33.9232 28.7066 0 0 0

 ∈ R5×5
r (P,Q).

From Figure 2, we can see that Algorithm 1 is effective to solve discrete-time
periodic matrix equations.
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4 Conclusions

In this paper, the generalized reflexive solutions of general coupled discrete-
time periodic matrix equations (1.4) were studied. We proposed a gradient
based iterative method to solve (1.4) over the generalized reflexive matrices.
It was proven that the iterative solution converges to the generalized reflexive
solutions for any initial generalized reflexive matrices. The numerical examples
demonstrated the potential of this method in solving (1.4) over the generalized
reflexive matrices.
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