234 research outputs found

    Enhancing Cardiovascular Disease Prediction Based on AI and IoT Concepts

    Get PDF
    One-third of all deaths worldwide yearly are attributable to cardiovascular disease (CVD). In contrast to the 7% of the wealthy who experience premature death, 43% of the poor do. Lifestyle diseases like obesity and diabetes are to blame. The importance of early identification of heart disease was demonstrated, and premature mortality was kept to a minimum. Combining clinical and biochemical data is essential for the early diagnosis of heart illness. Numerous IoT-enabled wearable healthcare applications have been created and released in recent years. Although the ability of wearable devices to share patient health data is expanding, it remains challenging to predict and identify health problems. Security, data storage, and patient monitoring are all part of the system. Artificial intelligence (AI) therapies may one day change the face of cardiology by providing doctors with cutting-edge data analysis and therapeutic decision-making resources. As the volume and complexity of data continue to increase, AI tools like machine learning (ML) and deep learning (DL) can assist medical professionals in learning more. Suppose we want to provide medical care to the elderly and those with chronic illnesses in the comfort of their own homes. In that case, we must upgrade our communication and information technology systems. The implemented DNN model's accuracy is amazing at 95.34 % and can yield other noteworthy outcomes when used to identify CVDs. We discuss and suggest the most suitable AI-IoT models for early CVD prediction and detection to reduce computational costs and increase time efficiency

    CDPS-IoT: Cardiovascular Disease Prediction System Based on IoT using Machine Learning

    Get PDF
    Internet of Things, Machine learning, and Cloud computing are the emerging domains of information communication and technology. These techniques can help to save the life of millions in the medical assisted environment and can be utilized in health-care system where health expertise is less available. Fast food consumption increased from the past few decades, which makes up cholesterol, diabetes, and many more problems that affect the heart and other organs of the body. Changing lifestyle is another parameter that results in health issues including cardio-vascular diseases. Affirming to the World Health Organization, the cardiovascular diseases, or heart diseases lead to more death than any other disease globally. The objective of this research is to analyze the available data pertaining to cardiovascular diseases for prediction of heart diseases at an earlier stage to prevent it from occurring. The dataset of heart disease patients was taken from Jammu and Kashmir, India and stored over the cloud. Stored data is then pre-processed and further analyzed using machine learning techniques for the prediction of heart diseases. The analysis of the dataset using numerous machines learning techniques like Random Forest, Decision Tree, Naive based, K-nearest neighbors, and Support Vector Machine revealed the performance metrics (F1 Score, Precision and Recall) for all the techniques which shows that Naive Bayes is better without parameter tuning while Random Forest algorithm proved as the best technique with hyperparameter tuning. In this paper, the proposed model is developed in such a systematic way that the clinical data can be obtained through the use of IoT with the help of available medical sensors to predict cardiovascular diseases on a real-time basis

    A Survey to Identify an Efficient Classification Algorithm for Heart Disease Prediction

    Get PDF
    Classification is one of the prominent data mining techniques. The objective of the classification algorithms is to place the data in the appropriate class. Data mining plays a vital role in medical diagnosis. The aim of this paper is to identify an efficient classification algorithm for cardiovascular disease prediction. The efficiency of each classification algorithm is expressed using two parameters namely accuracy and Root Mean Square Error (RMSE). From our experimental analysis, we infer that iterative classifier optimizer algorithm results in higher accuracy

    A Survey to Identify an Efficient Classification Algorithm for Heart Disease Prediction

    Get PDF
    Classification is one of the prominent data mining techniques. The objective of the classification algorithms is to place the data in the appropriate class. Data mining plays a vital role in medical diagnosis. The aim of this paper is to identify an efficient classification algorithm for cardiovascular disease prediction. The efficiency of each classification algorithm is expressed using two parameters namely accuracy and Root Mean Square Error (RMSE). From our experimental analysis, we infer that iterative classifier optimizer algorithm results in higher accuracy

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity

    Get PDF
    Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings

    A Comparison Analysis of Machine Learning Algorithms on Cardiovascular Disease Prediction

    Get PDF
    People nowadays are engrossed in their daily routines, concentrating on their jobs and other responsibilities while ignoring their health. Because of their hurried lifestyles and disregard for their health, the number of people becoming ill grows daily. Furthermore, most of the population suffers from a disease such as cardiovascular disease. Cardiovascular disease kills 35% of the world's population, according to W.H.O. A person's life can be saved if a heart disease diagnosis is made early enough. Still, it can also be lost if the diagnosis is constructed incorrectly. Therefore, predicting heart disease will become increasingly relevant in the medical sector. The volume of data collected by the medical industry or hospitals, on the other hand, can be overwhelming at times. Time-series forecasting and processing using machine learning algorithms can help healthcare practitioners become more efficient. In this study, we discussed heart disease and its risk factors and machine learning techniques and compared various heart disease prediction algorithms. Predicting and assessing heart problems is the goal of this research
    corecore