7 research outputs found

    Real-time Emergency Response through Performant IoT Architectures

    Get PDF
    International audienceThis paper describes the design of an Internet of Things (IoT) system for building evacuation. There are two main design decisions for such systems: i) specifying the platform on which the IoT intelligent components should be located; and ii) establishing the level of collaboration among the components. For safety-critical systems, such as evacuation, real-time performance and evacuation time are critical. The approach aims to minimize computational and evacuation delays and uses Queuing Network (QN) models. The approach was tested, by computer simulation, on a real exhibition venue in Alan Turing Building, Italy, that has 34 sets of IoT sensors and actuators. Experiments were performed that tested the effect of segmenting the physical space into different sized virtual cubes. Experiments were also conducted concerning the distribution of the software architecture. The results show that using centralized architectural pattern with a segmentation of the space into large cubes is the only practical solution

    Internet-of-Things Architectures for Secure Cyber-Physical Spaces: the VISOR Experience Report

    Get PDF
    Internet of things (IoT) technologies are becoming a more and more widespread part of civilian life in common urban spaces, which are rapidly turning into cyber-physical spaces. Simultaneously, the fear of terrorism and crime in such public spaces is ever-increasing. Due to the resulting increased demand for security, video-based IoT surveillance systems have become an important area for research. Considering the large number of devices involved in the illicit recognition task, we conducted a field study in a Dutch Easter music festival in a national interest project called VISOR to select the most appropriate device configuration in terms of performance and results. We iteratively architected solutions for the security of cyber-physical spaces using IoT devices. We tested the performance of multiple federated devices encompassing drones, closed-circuit television, smart phone cameras, and smart glasses to detect real-case scenarios of potentially malicious activities such as mosh-pits and pick-pocketing. Our results pave the way to select optimal IoT architecture configurations -- i.e., a mix of CCTV, drones, smart glasses, and camera phones in our case -- to make safer cyber-physical spaces' a reality

    Proceedings of Abstracts 12th International Conference on Air Quality Science and Application

    Get PDF
    © 2020 The Author(s). This an open access work distributed under the terms of the Creative Commons Attribution Licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Final Published versio

    An IoT Software Architecture for an Evacuable Building Architecture

    Get PDF
    This paper presents a computational component designed to improve and evaluate emergency handling plans. In real-time, the component operates as the core of an Internet of Things (IoT) infrastructure aimed at crowd monitoring and optimum evacuation paths planning. In this case, a software architecture facilitates achieving the minimum time necessary to evacuate people from a building. In design-time, the component helps discovering the optimal building dimensions for a safe emergency evacuation, even before (re-) construction of a building. The space and time dimension are discretized according to metrics and models in literature. The component formulates and solves a linearized, time-indexed flow problem on a network that represents feasible movements of people at a suitable frequency. The CPU time to solve the model is compliant with real-time use. The application of the model to a real location with real data testifies the model capability to optimize the safety standards by small changes in the building dimensions, and guarantees an optimal emergency evacuation performance
    corecore