15,507 research outputs found

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Labelled transition systems as a Stone space

    Get PDF
    A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.Comment: Changes since v2: Metadata updat

    Weighted Modal Transition Systems

    Get PDF
    Specification theories as a tool in model-driven development processes of component-based software systems have recently attracted a considerable attention. Current specification theories are however qualitative in nature, and therefore fragile in the sense that the inevitable approximation of systems by models, combined with the fundamental unpredictability of hardware platforms, makes it difficult to transfer conclusions about the behavior, based on models, to the actual system. Hence this approach is arguably unsuited for modern software systems. We propose here the first specification theory which allows to capture quantitative aspects during the refinement and implementation process, thus leveraging the problems of the qualitative setting. Our proposed quantitative specification framework uses weighted modal transition systems as a formal model of specifications. These are labeled transition systems with the additional feature that they can model optional behavior which may or may not be implemented by the system. Satisfaction and refinement is lifted from the well-known qualitative to our quantitative setting, by introducing a notion of distances between weighted modal transition systems. We show that quantitative versions of parallel composition as well as quotient (the dual to parallel composition) inherit the properties from the Boolean setting.Comment: Submitted to Formal Methods in System Desig

    Temporal Data Modeling and Reasoning for Information Systems

    Get PDF
    Temporal knowledge representation and reasoning is a major research field in Artificial Intelligence, in Database Systems, and in Web and Semantic Web research. The ability to model and process time and calendar data is essential for many applications like appointment scheduling, planning, Web services, temporal and active database systems, adaptive Web applications, and mobile computing applications. This article aims at three complementary goals. First, to provide with a general background in temporal data modeling and reasoning approaches. Second, to serve as an orientation guide for further specific reading. Third, to point to new application fields and research perspectives on temporal knowledge representation and reasoning in the Web and Semantic Web

    BeSpaceD: Towards a Tool Framework and Methodology for the Specification and Verification of Spatial Behavior of Distributed Software Component Systems

    Full text link
    In this report, we present work towards a framework for modeling and checking behavior of spatially distributed component systems. Design goals of our framework are the ability to model spatial behavior in a component oriented, simple and intuitive way, the possibility to automatically analyse and verify systems and integration possibilities with other modeling and verification tools. We present examples and the verification steps necessary to prove properties such as range coverage or the absence of collisions between components and technical details
    corecore