476 research outputs found

    Internet of Things Based Technology for Smart Home System: A Generic Framework

    Get PDF
    Internet of Things (IoT) is a technology which enables computing devices, physical and virtual objects/devices to be connected to the internet so that users can control and monitor devices. The IoT offers huge potential for development of various applications namely: e-governance, environmental monitoring, military applications, infrastructure management, industrial applications, energy management, healthcare monitoring, home automation and transport systems. In this paper, the brief overview of existing frameworks for development of IoT applications, techniques to develop smart home applications using existing IoT frameworks, and a new generic framework for the development of IoTbasedsmart home system is presented. The proposed generic framework comprises various modules such as Auto-Configuration and Management, Communication Protocol, Auto-Monitoring and Control, and Objects Access Control. The architecture of the new generic framework and the functionality of various modules in the framework are also presented. The proposed generic framework is helpful for making every house as smart house to increase the comfort of inhabitants. Each of the components of generic framework is robust in nature in providing services at any time. The components of smart home system are designed to take care of various issues such as scalability, interoperability, device adaptability, security and privacy. The proposed generic framework is designed to work on all vendor boards and variants of Linux and Windows operating system

    Framework for intuitive user interaction with security in the smart home

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 99-104).This thesis presents IntuiSec, a framework for intuitive user interaction with Smart Home security. The design approach of IntuiSec is to introduce a layer of indirection between user-level intent and the system-level security infrastructure. This layer is implemented by a collection of distributed middleware and user-level tools. It encapsulates system-level security events and exposes only concepts and real-world metaphors that are intuitive to non-expert users. It also translates user intent to the appropriate system-level security actions. The IntuiSec framework presents the user with intuitive steps for setting up a secure home network, establishing trusted relationships between devices, and granting temporal, selective access for both home occupants and visitors to devices within the home. The middleware exposes APIs that allow other applications to present the user with meaningful visualizations of security-related parameters and concepts. I present the IntuiSec system design and an example proof-of-concept implementation, which demonstrates the user experience and provides more insight into the framework.by Saad Safer Shakhshir.M.Eng

    Smart aging : utilisation of machine learning and the Internet of Things for independent living

    Get PDF
    Smart aging utilises innovative approaches and technology to improve older adults’ quality of life, increasing their prospects of living independently. One of the major concerns the older adults to live independently is “serious fall”, as almost a third of people aged over 65 having a fall each year. Dementia, affecting nearly 9% of the same age group, poses another significant issue that needs to be identified as early as possible. Existing fall detection systems from the wearable sensors generate many false alarms; hence, a more accurate and secure system is necessary. Furthermore, there is a considerable gap to identify the onset of cognitive impairment using remote monitoring for self-assisted seniors living in their residences. Applying biometric security improves older adults’ confidence in using IoT and makes it easier for them to benefit from smart aging. Several publicly available datasets are pre-processed to extract distinctive features to address fall detection shortcomings, identify the onset of dementia system, and enable biometric security to wearable sensors. These key features are used with novel machine learning algorithms to train models for the fall detection system, identifying the onset of dementia system, and biometric authentication system. Applying a quantitative approach, these models are tested and analysed from the test dataset. The fall detection approach proposed in this work, in multimodal mode, can achieve an accuracy of 99% to detect a fall. Additionally, using 13 selected features, a system for detecting early signs of dementia is developed. This system has achieved an accuracy rate of 93% to identify a cognitive decline in the older adult, using only some selected aspects of their daily activities. Furthermore, the ML-based biometric authentication system uses physiological signals, such as ECG and Photoplethysmogram, in a fusion mode to identify and authenticate a person, resulting in enhancement of their privacy and security in a smart aging environment. The benefits offered by the fall detection system, early detection and identifying the signs of dementia, and the biometric authentication system, can improve the quality of life for the seniors who prefer to live independently or by themselves

    Comprehensive Survey: Biometric User Authentication Application, Evaluation, and Discussion

    Full text link
    This paper conducts an extensive review of biometric user authentication literature, addressing three primary research questions: (1) commonly used biometric traits and their suitability for specific applications, (2) performance factors such as security, convenience, and robustness, and potential countermeasures against cyberattacks, and (3) factors affecting biometric system accuracy and po-tential improvements. Our analysis delves into physiological and behavioral traits, exploring their pros and cons. We discuss factors influencing biometric system effectiveness and highlight areas for enhancement. Our study differs from previous surveys by extensively examining biometric traits, exploring various application domains, and analyzing measures to mitigate cyberattacks. This paper aims to inform researchers and practitioners about the biometric authentication landscape and guide future advancements

    Developing a Systematic Process for Mobile Surveying and Analysis of WLAN security

    Get PDF
    Wireless Local Area Network (WLAN), familiarly known as Wi-Fi, is one of the most used wireless networking technologies. WLANs have rapidly grown in popularity since the release of the original IEEE 802.11 WLAN standard in 1997. We are using our beloved wireless internet connection for everything and are connecting more and more devices into our wireless networks in every form imaginable. As the number of wireless network devices keeps increasing, so does the importance of wireless network security. During its now over twenty-year life cycle, a multitude of various security measures and protocols have been introduced into WLAN connections to keep our wireless communication secure. The most notable security measures presented in the 802.11 standard have been the encryption protocols Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). Both encryption protocols have had their share of flaws and vulnerabilities, some of them so severe that the use of WEP and the first generation of the WPA protocol have been deemed irredeemably broken and unfit to be used for WLAN encryption. Even though the aforementioned encryption protocols have been long since deemed fatally broken and insecure, research shows that both can still be found in use today. The purpose of this Master’s Thesis is to develop a process for surveying wireless local area networks and to survey the current state of WLAN security in Finland. The goal has been to develop a WLAN surveying process that would at the same time be efficient, scalable, and easily replicable. The purpose of the survey is to determine to what extent are the deprecated encryption protocols used in Finland. Furthermore, we want to find out in what state is WLAN security currently in Finland by observing the use of other WLAN security practices. The survey process presented in this work is based on a WLAN scanning method called Wardriving. Despite its intimidating name, wardriving is simply a form of passive wireless network scanning. Passive wireless network scanning is used for collecting information about the surrounding wireless networks by listening to the messages broadcasted by wireless network devices. To collect our research data, we conducted wardriving surveys on three separate occasions between the spring of 2019 and early spring of 2020, in a typical medium-sized Finnish city. Our survey results show that 2.2% out of the located networks used insecure encryption protocols and 9.2% of the located networks did not use any encryption protocol. While the percentage of insecure networks is moderately low, we observed during our study that private consumers are reluctant to change the factory-set default settings of their wireless network devices, possibly exposing them to other security threats

    Smart home technology for aging

    Get PDF
    The majority of the growing population, in the US and the rest of the world requires some degree of formal and or informal care either due to the loss of function or failing health as a result of aging and most of them suffer from chronic disorders. The cost and burden of caring for elders is steadily increasing. This thesis focuses on providing the analysis of the technologies with which a Smart Home is built to improve the quality of life of the elderly. A great deal of emphasis is given to the sensor technologies that are the back bone of these Smart Homes. In addition to the Analysis of these technologies a survey of commercial sensor products and products in research that are concerned with monitoring the health of the occupants of the Smart Home is presented. A brief analysis on the communication technologies which form the communication infrastructure for the Smart Home is also illustrated. Finally, System Architecture for the Smart Home is proposed describing the functionality and users of the system. The feasibility of the system is also discussed. A scenario measuring the blood glucose level of the occupant in a Smart Home is presented as to support the system architecture presented

    Security issues and defences for Internet of Things

    Get PDF
    The Internet of Things (IoT) aims at linking billions of devices using the internet and other heterogeneous networks to share information. However, the issues of security in IoT environments are more challenging than with ordinary Internet. A vast number of devices are exposed to the attackers, and some of those devices contain sensitive personal and confidential data. For example, the sensitive flows of data such as autonomous vehicles, patient life support devices, traffic data in smart cities are extremely concerned by researchers from the security field. The IoT architecture needs to handle security and privacy requirements such as provision of authentication, access control, privacy and confidentiality. This thesis presents the architecture of IoT and its security issues. Additionally, we introduce the concept of blockchain technology, and the role of blockchain in different security aspects of IoT is discussed through a literature review. In case study of Mirai, we explain how snort and iptables based approach can be used to prevent IoT botnet from finding IoT devices by port scanning
    • …
    corecore