31,195 research outputs found

    Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    Get PDF
    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level

    Fine-grained traffic state estimation and visualisation

    No full text
    Tools for visualising the current traffic state are used by local authorities for strategic monitoring of the traffic network and by everyday users for planning their journey. Popular visualisations include those provided by Google Maps and by Inrix. Both employ a traffic lights colour-coding system, where roads on a map are coloured green if traffic is flowing normally and red or black if there is congestion. New sensor technology, especially from wireless sources, is allowing resolution down to lane level. A case study is reported in which a traffic micro-simulation test bed is used to generate high-resolution estimates. An interactive visualisation of the fine-grained traffic state is presented. The visualisation is demonstrated using Google Earth and affords the user a detailed three-dimensional view of the traffic state down to lane level in real time

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program
    • …
    corecore