31 research outputs found

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Kinematic Analysis of Multi-Fingered, Anthropomorphic Robotic Hands

    Get PDF
    The ability of stable grasping and fine manipulation with the multi-fingered robot hand with required precision and dexterity is playing an increasingly important role in the applications like service robots, rehabilitation, humanoid robots, entertainment robots, industries etc.. A number of multi-fingered robotic hands have been developed by various researchers in the past. The distinct advantages of a multi-fingered robot hand having structural similarity with human hand motivate the need for an anthropomorphic robot hand. Such a hand provides a promising base for supplanting human hand in execution of tedious, complicated and dangerous tasks, especially in situations such as manufacturing, space, undersea etc. These can also be used in orthopaedic rehabilitation of humans for improving the quality of the life of people having orthopedically and neurological disabilities. The developments so far are mostly driven by the application requirements. There are a number of bottlenecks with industrial grippers as regards to the stability of grasping objects of irregular geometries or complex manipulation operations. A multi-fingered robot hand can be made to mimic the movements of a human hand. The present piece of research work attempts to conceptualize and design a multi-fingered, anthropomorphic robot hand by structurally imitating the human hand. In the beginning, a brief idea about the history, types of robotic hands and application of multi-fingered hands in various fields are presented. A review of literature based on different aspects of the multi-fingered hand like structure, control, optimization, gasping etc. is made. Some of the important and more relevant literatures are elaborately discussed and a brief analysis is made on the outcomes and shortfalls with respect to multi-fingered hands. Based on the analysis of the review of literature, the research work aims at developing an improved anthropomorphic robot hand model in which apart from the four fingers and a thumb, the palm arch effect of human hand is also considered to increase its dexterity. A robotic hand with five anthropomorphic fingers including the thumb and palm arch effect having 25 degrees-of-freedom in all is investigated in the present work. Each individual finger is considered as an open loop kinematic chain and each finger segment is considered as a link of the manipulator. The wrist of the hand is considered as a fixed point. The kinematic analyses of the model for both forward kinematics and inverse kinematic are carried out. The trajectories of the tip positions of the thumb and the fingers with respect to local coordinate system are determined and plotted. This gives the extreme position of the fingertips which is obtained from the forward kinematic solution with the help of MATLAB. Similarly, varying all the joint iv angles of the thumb and fingers in their respective ranges, the reachable workspace of the hand model is obtained. Adaptive Neuro-Fuzzy Inference System (ANFIS) is used for solving the inverse kinematic problem of the fingers. Since the multi-fingered hand grasps the object mainly through its fingertips and the manipulation of the object is facilitated by the fingers due to their dexterity, the grasp is considered to be force-closure grasp. The grasping theory and different types of contacts between the fingertip and object are presented and the conditions for stable and equilibrium grasp are elaborately discussed. The proposed hand model is simulated to grasp five different shaped objects with equal base dimension and height. The forces applied on the fingertip during grasping are calculated. The hand model is also analysed using ANSYS to evaluate the stresses being developed at various points in the thumb and fingers. This analysis was made for the hand considering two different hand materials i.e. aluminium alloy and structural steel. The solution obtained from the forward kinematic analysis of the hand determines the maximum size for differently shaped objects while the solution to the inverse kinematic problem indicates the configurations of the thumb and the fingers inside the workspace of the hand. The solutions are predicted in which all joint angles are within their respective ranges. The results of the stress analysis of the hand model show that the structure of the fingers and the hand as a whole is capable of handling the selected objects. The robot hand under investigation can be realized and can be a very useful tool for many critical areas such as fine manipulation of objects, combating orthopaedic or neurological impediments, service robotics, entertainment robotics etc. The dissertation concludes with a summary of the contribution and the scope of further work

    Acetylcholine esterase as a possible marker for the detection of halal way of slaughtering

    Get PDF
    Introduction: Different methods of slaughtering are being practiced because of differences in religious guidelines and environmental issues (use of electricity) or convenience of handling etc. Variation in methods of slaughtering results in different conditions namely, release of varying amount of blood and different degree of movement of its body parts prior to death. These issues are related to the release of neurotransmitter (NT) at the neuro-muscular junction (NMJ) eventually is subject to be released from the body through the blood flow. Experimental design: Muscle samples from chicken in small pieces were collected immediately after slaughtering. Slaughtering was carried out using sharp knife. Two different conditions pertaining to the Islamic guidelines of slaughtering were investigated. such as whether the neck was severed (S+) or not (S-) from the body during slaughtering and whether the animal just after slaughtering was released (R+) or not (R-). The level of acetylecholine esterase mRNA involved in the degradation of acetylecholine, a NT at NMJ was investigated by RT-PCR. Results: The level of acetylecholine esterase mRNA was not detected in the sample obtained from the chicken slaughtered following Islamic guidelines i.e., neck should not be severed and body should be released just after the slaughtering (R+S-). Conclusions: Level of acetylcholine or acetylcholine esterase can be used as a biomarker to identify if the slaughtering is performed following Islamic guidelines

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Calophyllum canum : antibacterial and anticancer plant

    Get PDF
    Human have used plants as a source of medicine throughout the world since time immemorial. Today there are at least 120 distinct chemical substances derived from plants that are considered as important drugs currently in use in one or more countries in the world. In particular, 60% drugs currently in clinical use for treatment of cancer were found to be of natural origin. Calophyllum canum is a large tree which grows in South East Asia and which is popular for its timber. This plant belongs to the family Guttiferae; a family that boasts species which are rich in bioactive phytochemicals. Some species are believed to having medicinal values and are used against several diseases including anti-inflammatory, anti infectious, astringent and antipyretic. We have successfully isolated two compounds from the methanol extract of Calophyllum canum stembarks that active inhibit the growth of Staphylococcus aureus (ATCC 29213 and ATCC 25923). The cytotoxic study on the extracts revealed that the n-hexane extract had the strongest antiproliferation activity, followed by the methanol extract. n-hexane strongly inhibited the growth of TE1 and MCF7 cell lines. IC50 for n-hexane and methanol extract activity on the A549 cell line was found to be 27.96 μg/mL and 78.9 μg/mL respectively.The compounds (CE0 - CE5) isolated from ethyl acetate extract of C. canum are active to inhibit cell proliferation of human cervix adenocarcinoma cells
    corecore