108,928 research outputs found

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    SPEEDY: An Eclipse-based IDE for invariant inference

    Full text link
    SPEEDY is an Eclipse-based IDE for exploring techniques that assist users in generating correct specifications, particularly including invariant inference algorithms and tools. It integrates with several back-end tools that propose invariants and will incorporate published algorithms for inferring object and loop invariants. Though the architecture is language-neutral, current SPEEDY targets C programs. Building and using SPEEDY has confirmed earlier experience demonstrating the importance of showing and editing specifications in the IDEs that developers customarily use, automating as much of the production and checking of specifications as possible, and showing counterexample information directly in the source code editing environment. As in previous work, automation of specification checking is provided by back-end SMT solvers. However, reducing the effort demanded of software developers using formal methods also requires a GUI design that guides users in writing, reviewing, and correcting specifications and automates specification inference.Comment: In Proceedings F-IDE 2014, arXiv:1404.578
    corecore