853 research outputs found

    Surround by Sound: A Review of Spatial Audio Recording and Reproduction

    Get PDF
    In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problemsThe authors acknowledge National Natural Science Foundation of China (NSFC) No. 61671380 and Australian Research Council Discovery Scheme DE 150100363

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    How far away is plug 'n' play? Assessing the near-term potential of sonification and auditory display

    Get PDF
    The commercial music industry offers a broad range of plug 'n' play hardware and software scaled to music professionals and scaled to a broad consumer market. The principles of sound synthesis utilized in these products are relevant to application in virtual environments (VE). However, the closed architectures used in commercial music synthesizers are prohibitive to low-level control during real-time rendering, and the algorithms and sounds themselves are not standardized from product to product. To bring sound into VE requires a new generation of open architectures designed for human-controlled performance from interfaces embedded in immersive environments. This presentation addresses the state of the sonic arts in scientific computing and VE, analyzes research challenges facing sound computation, and offers suggestions regarding tools we might expect to become available during the next few years. A list of classes of audio functionality in VE includes sonification -- the use of sound to represent data from numerical models; 3D auditory display (spatialization and localization, also called externalization); navigation cues for positional orientation and for finding items or regions inside large spaces; voice recognition for controlling the computer; external communications between users in different spaces; and feedback to the user concerning his own actions or the state of the application interface. To effectively convey this considerable variety of signals, we apply principles of acoustic design to ensure the messages are neither confusing nor competing. We approach the design of auditory experience through a comprehensive structure for messages, and message interplay we refer to as an Automated Sound Environment. Our research addresses real-time sound synthesis, real-time signal processing and localization, interactive control of high-dimensional systems, and synchronization of sound and graphics

    Sonic Interactions in Virtual Environments: the Egocentric Audio Perspective of the Digital Twin

    Get PDF
    The relationships between the listener, physical world and virtual environment (VE) should not only inspire the design of natural multimodal interfaces but should be discovered to make sense of the mediating action of VR technologies. This chapter aims to transform an archipelago of studies related to sonic interactions in virtual environments (SIVE) into a research field equipped with a first theoretical framework with an inclusive vision of the challenges to come: the egocentric perspective of the auditory digital twin. In a VE with immersive audio technologies implemented, the role of VR simulations must be enacted by a participatory exploration of sense-making in a network of human and non-human agents, called actors. The guardian of such locus of agency is the auditory digital twin that fosters intra-actions between humans and technology, dynamically and fluidly redefining all those configurations that are crucial for an immersive and coherent experience. The idea of entanglement theory is here mainly declined in an egocentric-spatial perspective related to emerging knowledge of the listener's perceptual capabilities. This is an actively transformative relation with the digital twin potentials to create movement, transparency, and provocative activities in VEs. The chapter contains an original theoretical perspective complemented by several bibliographical references and links to the other book chapters that have contributed significantly to the proposal presented here.Comment: 46 pages, 5 figures. Pre-print version of the introduction to the book "Sonic Interactions in Virtual Environments" in press for Springer's Human-Computer Interaction Series, Open Access license. The pre-print editors' copy of the book can be found at https://vbn.aau.dk/en/publications/sonic-interactions-in-virtual-environments - full book info: https://sive.create.aau.dk/index.php/sivebook

    Current Use and Future Perspectives of Spatial Audio Technologies in Electronic Travel Aids

    Get PDF
    Electronic travel aids (ETAs) have been in focus since technology allowed designing relatively small, light, and mobile devices for assisting the visually impaired. Since visually impaired persons rely on spatial audio cues as their primary sense of orientation, providing an accurate virtual auditory representation of the environment is essential. This paper gives an overview of the current state of spatial audio technologies that can be incorporated in ETAs, with a focus on user requirements. Most currently available ETAs either fail to address user requirements or underestimate the potential of spatial sound itself, which may explain, among other reasons, why no single ETA has gained a widespread acceptance in the blind community. We believe there is ample space for applying the technologies presented in this paper, with the aim of progressively bridging the gap between accessibility and accuracy of spatial audio in ETAs.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 643636.Peer Reviewe

    Mixed Structural Models for 3D Audio in Virtual Environments

    Get PDF
    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of the new technology by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but a few. The concurrent presence of multimodal senses and activities make multimodal virtual environments potentially flexible and adaptive, allowing users to switch between modalities as needed during the continuously changing conditions of use situation. Augmentation through additional modalities and sensory substitution techniques are compelling ingredients for presenting information non-visually, when the visual bandwidth is overloaded, when data are visually occluded, or when the visual channel is not available to the user (e.g., for visually impaired people). Multimodal systems for the representation of spatial information will largely benefit from the implementation of audio engines that have extensive knowledge of spatial hearing and virtual acoustics. Models for spatial audio can provide accurate dynamic information about the relation between the sound source and the surrounding environment, including the listener and his/her body which acts as an additional filter. Indeed, this information cannot be substituted by any other modality (i.e., visual or tactile). Nevertheless, today's spatial representation of audio within sonification tends to be simplistic and with poor interaction capabilities, being multimedia systems currently focused on graphics processing mostly, and integrated with simple stereo or multi-channel surround-sound. On a much different level lie binaural rendering approaches based on headphone reproduction, taking into account that possible disadvantages (e.g. invasiveness, non-flat frequency responses) are counterbalanced by a number of desirable features. Indeed, these systems might control and/or eliminate reverberation and other acoustic effects of the real listening space, reduce background noise, and provide adaptable and portable audio displays, which are all relevant aspects especially in enhanced contexts. Most of the binaural sound rendering techniques currently exploited in research rely on the use of Head-Related Transfer Functions (HRTFs), i.e. peculiar filters that capture the acoustic effects of the human head and ears. HRTFs allow loyal simulation of the audio signal that arrives at the entrance of the ear canal as a function of the sound source's spatial position. HRTF filters are usually presented under the form of acoustic signals acquired on dummy heads built according to mean anthropometric measurements. Nevertheless, anthropometric features of the human body have a key role in HRTF shaping: several studies have attested how listening to non-individual binaural sounds results in evident localization errors. On the other hand, individual HRTF measurements on a significant number of subjects result both time- and resource-expensive. Several techniques for synthetic HRTF design have been proposed during the last two decades and the most promising one relies on structural HRTF models. In this revolutionary approach, the most important effects involved in spatial sound perception (acoustic delays and shadowing due to head diffraction, reflections on pinna contours and shoulders, resonances inside the ear cavities) are isolated and modeled separately with a corresponding filtering element. HRTF selection and modeling procedures can be determined by physical interpretation: parameters of each rendering blocks or selection criteria can be estimated from real and simulated data and related to anthropometric geometries. Effective personal auditory displays represent an innovative breakthrough for a plethora of applications and structural approach can also allow for effective scalability depending on the available computational resources or bandwidth. Scenes with multiple highly realistic audiovisual objects are easily managed exploiting parallelism of increasingly ubiquitous GPUs (Graphics Processing Units). Building individual headphone equalization with perceptually robust inverse filtering techniques represents a fundamental step towards the creation of personal virtual auditory displays (VADs). To this regard, several examples might benefit from these considerations: multi-channel downmix over headphones, personal cinema, spatial audio rendering in mobile devices, computer-game engines and individual binaural audio standards for movie and music production. This thesis presents a family of approaches that overcome the current limitations of headphone-based 3D audio systems, aiming at building personal auditory displays through structural binaural audio models for an immersive sound reproduction. The resulting models allow for an interesting form of content adaptation and personalization, since they include parameters related to the user's anthropometry in addition to those related to the sound sources and the environment. The covered research directions converge to a novel framework for synthetic HRTF design and customization that combines the structural modeling paradigm with other HRTF selection techniques (inspired by non-individualized HRTF selection procedures) and represents the main novel contribution of this thesis: the Mixed Structural Modeling (MSM) approach considers the global HRTF as a combination of structural components, which can be chosen to be either synthetic or recorded components. In both cases, customization is based on individual anthropometric data, which are used to either fit the model parameters or to select a measured/simulated component within a set of available responses. The definition and experimental validation of the MSM approach addresses several pivotal issues towards the acquisition and delivery of binaural sound scenes and designing guidelines for personalized 3D audio virtual environments holding the potential of novel forms of customized communication and interaction with sound and music content. The thesis also presents a multimodal interactive system which is used to conduct subjective test on multi-sensory integration in virtual environments. Four experimental scenarios are proposed in order to test the capabilities of auditory feedback jointly to tactile or visual modalities. 3D audio feedback related to user’s movements during simple target following tasks is tested as an applicative example of audio-visual rehabilitation system. Perception of direction of footstep sounds interactively generated during walking and provided through headphones highlights how spatial information can clarify the semantic congruence between movement and multimodal feedback. A real time, physically informed audio-tactile interactive system encodes spatial information in the context of virtual map presentation with particular attention to orientation and mobility (O&M) learning processes addressed to visually impaired people. Finally, an experiment analyzes the haptic estimation of size of a virtual 3D object (a stair-step) whereas the exploration is accompanied by a real-time generated auditory feedback whose parameters vary as a function of the height of the interaction point. The collected data from these experiments suggest that well-designed multimodal feedback, exploiting 3D audio models, can definitely be used to improve performance in virtual reality and learning processes in orientation and complex motor tasks, thanks to the high level of attention, engagement, and presence provided to the user. The research framework, based on the MSM approach, serves as an important evaluation tool with the aim of progressively determining the relevant spatial attributes of sound for each application domain. In this perspective, such studies represent a novelty in the current literature on virtual and augmented reality, especially concerning the use of sonification techniques in several aspects of spatial cognition and internal multisensory representation of the body. This thesis is organized as follows. An overview of spatial hearing and binaural technology through headphones is given in Chapter 1. Chapter 2 is devoted to the Mixed Structural Modeling formalism and philosophy. In Chapter 3, topics in structural modeling for each body component are studied, previous research and two new models, i.e. near-field distance dependency and external-ear spectral cue, are presented. Chapter 4 deals with a complete case study of the mixed structural modeling approach and provides insights about the main innovative aspects of such modus operandi. Chapter 5 gives an overview of number of a number of proposed tools for the analysis and synthesis of HRTFs. System architectural guidelines and constraints are discussed in terms of real-time issues, mobility requirements and customized audio delivery. In Chapter 6, two case studies investigate the behavioral importance of spatial attribute of sound and how continuous interaction with virtual environments can benefit from using spatial audio algorithms. Chapter 7 describes a set of experiments aimed at assessing the contribution of binaural audio through headphones in learning processes of spatial cognitive maps and exploration of virtual objects. Finally, conclusions are drawn and new research horizons for further work are exposed in Chapter 8

    Reverberation and its Binaural Reproduction: The Trade-off between Computational Efficiency and Perceived Quality

    Get PDF
    Accurately rendering reverberation is critical to produce realistic binaural audio, particularly in augmented reality applications where virtual objects must blend in seamlessly with real ones. However, rigorously simulating sound waves interacting with the auralised space can be computationally costly, sometimes to the point of being unfeasible in real time applications on resource-limited mobile platforms. Luckily, knowledge of auditory perception can be leveraged to make computational savings without compromising quality. This chapter reviews different approaches and methods for rendering binaural reverberation efficiently, focusing specifically on Ambisonics-based techniques aimed at reducing the spatial resolution of late reverberation components. Potential future research directions in this area are also discussed

    Ecological Validity of Immersive Virtual Reality (IVR) Techniques for the Perception of Urban Sound Environments

    Get PDF
    Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. This paper aims to review the approaches that are utilized to assess the ecological validity of IVR for the perception of urban sound environments and the necessary technologies during audio–visual reproduction to establish a dynamic IVR experience that ensures ecological validity. The review shows that, through the use of laboratory tests including subjective response surveys, cognitive performance tests and physiological responses, the ecological validity of IVR can be assessed for the perception of urban sound environments. The reproduction system with head-tracking functions synchronizing spatial audio and visual stimuli (e.g., head-mounted displays (HMDs) with first-order Ambisonics (FOA)-tracked binaural playback) represents the prevailing trend to achieve high ecological validity. These studies potentially contribute to the outcomes of a normalized evaluation framework for subjective soundscape and noise assessments in virtual environment
    corecore