4,339 research outputs found

    Inverse Problems and Data Assimilation

    Full text link
    These notes are designed with the aim of providing a clear and concise introduction to the subjects of Inverse Problems and Data Assimilation, and their inter-relations, together with citations to some relevant literature in this area. The first half of the notes is dedicated to studying the Bayesian framework for inverse problems. Techniques such as importance sampling and Markov Chain Monte Carlo (MCMC) methods are introduced; these methods have the desirable property that in the limit of an infinite number of samples they reproduce the full posterior distribution. Since it is often computationally intensive to implement these methods, especially in high dimensional problems, approximate techniques such as approximating the posterior by a Dirac or a Gaussian distribution are discussed. The second half of the notes cover data assimilation. This refers to a particular class of inverse problems in which the unknown parameter is the initial condition of a dynamical system, and in the stochastic dynamics case the subsequent states of the system, and the data comprises partial and noisy observations of that (possibly stochastic) dynamical system. We will also demonstrate that methods developed in data assimilation may be employed to study generic inverse problems, by introducing an artificial time to generate a sequence of probability measures interpolating from the prior to the posterior

    Signal tracking beyond the time resolution of an atomic sensor by Kalman filtering

    Full text link
    We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially-known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.Comment: 15 pages, 4 figure

    Signal tracking beyond the time resolution of an atomic sensor by Kalman filtering

    Get PDF
    We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensor's intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially-known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.Comment: 15 pages, 4 figure

    Forecasting trends with asset prices

    Full text link
    In this paper, we consider a stochastic asset price model where the trend is an unobservable Ornstein Uhlenbeck process. We first review some classical results from Kalman filtering. Expectedly, the choice of the parameters is crucial to put it into practice. For this purpose, we obtain the likelihood in closed form, and provide two on-line computations of this function. Then, we investigate the asymptotic behaviour of statistical estimators. Finally, we quantify the effect of a bad calibration with the continuous time mis-specified Kalman filter. Numerical examples illustrate the difficulty of trend forecasting in financial time series.Comment: 26 pages, 11 figure
    • …
    corecore