262 research outputs found

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberán, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577

    A Patient Risk Minimization Model for Post-Disaster Medical Delivery Using Unmanned Aircraft Systems

    Get PDF
    The purpose of this research was to develop a novel routing model for delivery of medical supplies using unmanned aircraft systems, improving existing vehicle routing models by using patient risk as the primary minimization variable. The vehicle routing problem is a subset of operational research that utilizes mathematical models to identify the most efficient route between sets of points. Routing studies using unmanned aircraft systems frequently minimize time, distance, or cost as the primary objective and are powerful decision-making tools for routine delivery operations. However, the fields of emergency triage and disaster response are focused on identifying patient injury severity and providing the necessary care. This study addresses the misalignment of priorities between existing routing models and the emergency response industry by developing an optimization model with injury severity to measure patient risk. Model inputs for this study include vehicle performance variables, environmental variables, and patient injury variables. These inputs are used to construct a multi-objective mixed-integer nonlinear programming (MOMINLP) optimization model with the primary objective of minimizing total risk for a set of patients. The model includes a secondary aim of route time minimization to ensure optimal fleet deployment but is constrained by the risk minimization value identified in the first objective. This multi-objective design ensures risk minimization will not be sacrificed for route efficiency while still ensuring routes are completed as expeditiously as possible. The theoretical foundation for quantifying patient risk is based on mass casualty triage decision-making systems, specifically the emergency severity index, which focuses on sorting patients into categories based on the type of injury and risk of deterioration if additional assistance is not provided. Each level of the Emergency Severity Index is assigned a numerical value, allowing the model to search for a route that prioritizes injury criticality, subject to the appropriate vehicle and environmental constraints. An initial solution was obtained using stochastic patient data and historical environmental data validated by a Monte Carlo simulation, followed by a sensitivity analysis to evaluate the generalizability and reliability of the model. Multiple what-if scenarios were built to conduct the sensitivity analysis. Each scenario contained a different set of variables to demonstrate model generalizability for various vehicle limitations, environmental conditions, and different scales of disaster response. The primary contribution of this study is a flexible and generalizable optimization model that disaster planning organizations can use to simulate potential response capabilities with unmanned aircraft. The model also improves upon existing optimization tools by including environmental variables and patient risk inputs, ensuring the optimal solution is useful as a real-time disaster response tool

    Hybrid Vehicle-drone Routing Problem For Pick-up And Delivery Services Mathematical Formulation And Solution Methodology

    Get PDF
    The fast growth of online retail and associated increasing demand for same-day delivery have pushed online retail and delivery companies to develop new paradigms to provide faster, cheaper, and greener delivery services. Considering drones’ recent technological advancements over the past decade, they are increasingly ready to replace conventional truck-based delivery services, especially for the last mile of the trip. Drones have significantly improved in terms of their travel ranges, load-carrying capacity, positioning accuracy, durability, and battery charging rates. Substituting delivery vehicles with drones could result in $50M of annual cost savings for major U.S. service providers. The first objective of this research is to develop a mathematical formulation and efficient solution methodology for the hybrid vehicle-drone routing problem (HVDRP) for pick-up and delivery services. The problem is formulated as a mixed-integer program, which minimizes the vehicle and drone routing cost to serve all customers. The formulation captures the vehicle-drone routing interactions during the drone dispatching and collection processes and accounts for drone operation constraints related to flight range and load carrying capacity limitations. A novel solution methodology is developed which extends the classic Clarke and Wright algorithm to solve the HVDRP. The performance of the developed heuristic is benchmarked against two other heuristics, namely, the vehicle-driven routing heuristic and the drone-driven routing heuristic. Anticipating the potential risk of using drones for delivery services, aviation authorities in the U.S. and abroad have mandated necessary regulatory rules to ensure safe operations. The U.S. Federal Aviation Administration (FAA) is examining the feasibility of drone flights in restricted airspace for product delivery, requiring drones to fly at or below 400-feet and to stay within the pilot’s line of sight (LS). Therefore, a second objective of this research is considered to develop a modeling framework for the integrated vehicle-drone routing problem for pick-up and delivery services considering the regulatory rule requiring all drone flights to stay within the pilot’s line of sight (LS). A mixed integer program (MIP) and an efficient solution methodology were developed for the problem. The solution determines the optimal vehicle and drone routes to serve all customers without violating the LS rule such that the total routing cost of the integrated system is minimized. Two different heuristics are developed to solve the problem, which extends the Clarke and Wright Algorithm to cover the multimodality aspects of the problem and to satisfy the LS rule. The first heuristic implements a comprehensive multimodal cost saving search to construct the most efficient integrated vehicle-drone routes. The second heuristic is a light version of the first heuristic as it adopts a vehicle-driven cost saving search. Several experiments are conducted to examine the performance of the developed methodologies using hypothetical grid networks of different sizes. The capability of the developed model in answering a wide variety of questions related to the planning of the vehicle-drone delivery system is illustrated. In addition, a case study is presented in which the developed methodology is applied to provide pick-up and delivery services in the downtown area of the City of Dallas. The results show that mandating the LS rule could double the overall system operation cost especially in dense urban areas with LS obstructions

    Developing a Vans-and-Drones System for Last-Mile Delivery

    Get PDF
    The e-commerce industry is experiencing rapid growth, and growing customer expectations and demand challenges the industry to find more cost-efficient ways of performing the last-mile deliveries. Drones have in recent years been a hot topic, and with high versatility and several application areas it may be the answer to the challenge. In this project a Vans-and-Drones System for Last-Mile Delivery have been developed considering effective task allocation and route scheduling. A literature review is presented on the topic of drone technology and application areas, especially emphasizing utilization of drones in logistic operations and routing problems. A mathematical model for the Vehicle Routing Problem with Drones is derived based on the classical Capacitated Vehicle Routing Problem, and the formulation is modeled in Jupyter Notebook with Python programming language and solved with CPLEX solver. A case study is carried out to examine the effects of integrating drones into the delivery system for a vaccine distribution scenario in a sparsely populated area, Ofoten region, considering vehicle employment cost, delivery time and emission impact. Results show that the proposed vans-and-drones system outperforms a truck-only delivery system for this purpose

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141
    corecore