8 research outputs found

    Obtaining Progress Guarantee and GreaterConcurrency in Multi-Version Object Semantics

    Get PDF
    Software Transactional Memory Systems (STMs) provides ease of multithreading to the programmer withoutworrying about concurrency issues such as deadlock, livelock, priority inversion, etc. Most of the STMs workson read-write operations known as RWSTMs. Some STMs work at high-level operations and ensure greaterconcurrency than RWSTMs. Such STMs are known as Object-Based STMs (OSTMs). The transactions of OSTMscan return commit or abort. Aborted OSTMs transactions retry. But in the current setting of OSTMs, transactionsmay starve. So, we proposed a Starvation-Free OSTM (SF-OSTM) which ensures starvation-freedom whilesatisfying the correctness criteria as opacity.Databases, RWSTMs and OSTMs say that maintaining multiple versions corresponding to each key reduces thenumber of aborts and improves the throughput. So, to achieve the greater concurrency, we proposed Starvation-Free Multi-Version OSTM (SF-MVOSTM) which ensures starvation-freedom while storing multiple versioncorresponding to each key and satisfies the correctness criteria as local opacity. To show the performance benefits,We implemented three variants of SF-MVOSTM and compare its performance with state-of-the-art STM

    Achieving Starvation-Freedom with Greater Concurrency in Multi-Version Object-based Transactional Memory Systems

    Full text link
    To utilize the multi-core processors properly concurrent programming is needed. Concurrency control is the main challenge while designing a correct and efficient concurrent program. Software Transactional Memory Systems (STMs) provides ease of multithreading to the programmer without worrying about concurrency issues such as deadlock, livelock, priority inversion, etc. Most of the STMs works on read-write operations known as RWSTMs. Some STMs work at high-level operations and ensure greater concurrency than RWSTMs. Such STMs are known as Object-Based STMs (OSTMs). The transactions of OSTMs can return commit or abort. Aborted OSTMs transactions retry. But in the current setting of OSTMs, transactions may starve. So, we proposed a Starvation-Free OSTM (SF-OSTM) which ensures starvation-freedom in object based STM systems while satisfying the correctness criteria as co-opacity. Databases, RWSTMs and OSTMs say that maintaining multiple versions corresponding to each key of transaction reduces the number of aborts and improves the throughput. So, to achieve greater concurrency, we proposed Starvation-Free Multi-Version OSTM (SF-MVOSTM) which ensures starvation-freedom while storing multiple versions corresponding to each key and satisfies the correctness criteria such as local opacity. To show the performance benefits, We implemented three variants of SF-MVOSTM (SF-MVOSTM, SF-MVOSTM-GC and SF-KOSTM) and compared it with state-of-the-art STMs.Comment: 68 pages, 24 figures. arXiv admin note: text overlap with arXiv:1709.0103

    An Innovative Approach to Achieve Compositionality Efficiently using Multi-Version Object Based Transactional Systems

    Full text link
    In the modern era of multicore processors, utilizing cores is a tedious job. Synchronization and communication among processors involve high cost. Software transaction memory systems (STMs) addresses this issues and provide better concurrency in which programmer need not have to worry about consistency issues. Another advantage of STMs is that they facilitate compositionality of concurrent programs with great ease. Different concurrent operations that need to be composed to form a single atomic unit is achieved by encapsulating them in a single transaction. In this paper, we introduce a new STM system as multi-version object based STM (MVOSTM) which is the combination of both of these ideas for harnessing greater concurrency in STMs. As the name suggests MVOSTM, works on a higher level and maintains multiple versions corresponding to each key. We have developed MVOSTM with the unlimited number of versions corresponding to each key. In addition to that, we have developed garbage collection for MVOSTM (MVOSTM-GC) to delete unwanted versions corresponding to the keys to reduce traversal overhead. MVOSTM provides greater concurrency while reducing the number of aborts and it ensures compositionality by making the transactions atomic. Here, we have used MVOSTM for the list and hash-table data structure as list-MVOSTM and HT- MVOSTM. Experimental results of list-MVOSTM outperform almost two to twenty fold speedup than existing state-of-the-art list based STMs (Trans-list, Boosting-list, NOrec-list, list-MVTO, and list-OSTM). HT-MVOSTM shows a significant performance gain of almost two to nineteen times better than existing state-of-the-art hash-table based STMs (ESTM, RWSTMs, HT-MVTO, and HT-OSTM). MVOSTM with list and hash-table shows the least number of aborts among all the existing STM algorithms. MVOSTM satisfies correctness-criteria as opacity.Comment: 35 pages, 23 figure

    An Efficient Approach to Achieve Compositionality using Optimized Multi-Version Object Based Transactional Systems

    Get PDF
    In the modern era of multi-core systems, the main aim is to utilize the cores properly. This utilization can be done by concurrent programming. But developing a flawless and well-organized concurrent program is difficult. Software Transactional Memory Systems (STMs) are a convenient programming interface which assist the programmer to access the shared memory concurrently without worrying about consistency issues such as priority-inversion, deadlock, livelock, etc. Another important feature that STMs facilitate is compositionality of concurrent programs with great ease. It composes different concurrent operations in a single atomic unit by encapsulating them in a transaction. Many STMs available in the literature execute read/write primitive operations on memory buffers. We represent them as Read-Write STMs or RWSTMs. Whereas, there exist some STMs (transactional boosting and its variants) which work on higher level operations such as insert, delete, lookup, etc. on a hash-table. We refer these STMs as Object Based STMs or OSTMs. The literature of databases and RWSTMs say that maintaining multiple versions ensures greater concurrency. This motivates us to maintain multiple version at higher level with object semantics and achieves greater concurrency. So, this paper pro-poses the notion of Optimized Multi-version Object Based STMs or OPT-MVOSTMs which encapsulates the idea of multiple versions in OSTMs to harness the greater concurrency efficiently

    Towards lightweight and high-performance hardware transactional memory

    Get PDF
    Conventional lock-based synchronization serializes accesses to critical sections guarded by the same lock. Using multiple locks brings the possibility of a deadlock or a livelock in the program, making parallel programming a difficult task. Transactional Memory (TM) is a promising paradigm for parallel programming, offering an alternative to lock-based synchronization. TM eliminates the risk of deadlocks and livelocks, while it provides the desirable semantics of Atomicity, Consistency, and Isolation of critical sections. TM speculatively executes a series of memory accesses as a single, atomic, transaction. The speculative changes of a transaction are kept private until the transaction commits. If a transaction can break the atomicity or cause a deadlock or livelock, the TM system aborts the transaction and rolls back the speculative changes. To be effective, a TM implementation should provide high performance and scalability. While implementations of TM in pure software (STM) do not provide desirable performance, Hardware TM (HTM) implementations introduce much smaller overhead and have relatively good scalability, due to their better control of hardware resources. However, many HTM systems support only the transactions that fit limited hardware resources (for example, private caches), and fall back to software mechanisms if hardware limits are reached. These HTM systems, called best-effort HTMs, are not desirable since they force a programmer to think in terms of hardware limits, to use both HTM and STM, and to manage concurrent transactions in HTM and STM. In contrast with best-effort HTMs, unbounded HTM systems support overflowed transactions, that do not fit into private caches. Unbounded HTM systems often require complex protocols or expensive hardware mechanisms for conflict detection between overflowed transactions. In addition, an execution with overflowed transactions is often much slower than an execution that has only regular transactions. This is typically due to restrictive or approximative conflict management mechanism used for overflowed transactions. In this thesis, we study hardware implementations of transactional memory, and make three main contributions. First, we improve the general performance of HTM systems by proposing a scalable protocol for conflict management. The protocol has precise conflict detection, in contrast with often-employed inexact Bloom-filter-based conflict detection, which often falsely report conflicts between transactions. Second, we propose a best-effort HTM that utilizes the new scalable conflict detection protocol, termed EazyHTM. EazyHTM allows parallel commits for all non-conflicting transactions, and generally simplifies transaction commits. Finally, we propose an unbounded HTM that extends and improves the initial protocol for conflict management, and we name it EcoTM. EcoTM features precise conflict detection, and it efficiently supports large as well as small and short transactions. The key idea of EcoTM is to leverage an observation that very few locations are actually conflicting, even if applications have high contention. In EcoTM, each core locally detects if a cache line is non-conflicting, and conflict detection mechanism is invoked only for the few potentially conflicting cache lines.La Sincronización tradicional basada en los cerrojos de exclusión mutua (locks) serializa los accesos a las secciones críticas protegidas este cerrojo. La utilización de varios cerrojos en forma concurrente y/o paralela aumenta la posibilidad de entrar en abrazo mortal (deadlock) o en un bloqueo activo (livelock) en el programa, está es una de las razones por lo cual programar en forma paralela resulta ser mucho mas dificultoso que programar en forma secuencial. La memoria transaccional (TM) es un paradigma prometedor para la programación paralela, que ofrece una alternativa a los cerrojos. La memoria transaccional tiene muchas ventajas desde el punto de vista tanto práctico como teórico. TM elimina el riesgo de bloqueo mutuo y de bloqueo activo, mientras que proporciona una semántica de atomicidad, coherencia, aislamiento con características similares a las secciones críticas. TM ejecuta especulativamente una serie de accesos a la memoria como una transacción atómica. Los cambios especulativos de la transacción se mantienen privados hasta que se confirma la transacción. Si una transacción entra en conflicto con otra transacción o sea que alguna de ellas escribe en una dirección que la otra leyó o escribió, o se entra en un abrazo mortal o en un bloqueo activo, el sistema de TM aborta la transacción y revierte los cambios especulativos. Para ser eficaz, una implementación de TM debe proporcionar un alto rendimiento y escalabilidad. Las implementaciones de TM en el software (STM) no proporcionan este desempeño deseable, en cambio, las mplementaciones de TM en hardware (HTM) tienen mejor desempeño y una escalabilidad relativamente buena, debido a su mejor control de los recursos de hardware y que la resolución de los conflictos así el mantenimiento y gestión de los datos se hace en hardware. Sin embargo, muchos de los sistemas de HTM están limitados a los recursos de hardware disponibles, por ejemplo el tamaño de las caches privadas, y dependen de mecanismos de software para cuando esos límites son sobrepasados. Estos sistemas HTM, llamados best-effort HTM no son deseables, ya que obligan al programador a pensar en términos de los límites existentes en el hardware que se esta utilizando, así como en el sistema de STM que se llama cuando los recursos son sobrepasados. Además, tiene que resolver que transacciones hardware y software se ejecuten concurrentemente. En cambio, los sistemas de HTM ilimitados soportan un numero de operaciones ilimitadas o sea no están restringidos a límites impuestos artificialmente por el hardware, como ser el tamaño de las caches o buffers internos. Los sistemas HTM ilimitados por lo general requieren protocolos complejos o mecanismos muy costosos para la detección de conflictos y el mantenimiento de versiones de los datos entre las transacciones. Por otra parte, la ejecución de transacciones es a menudo mucho más lenta que en una ejecución sobre un sistema de HTM que este limitado. Esto es debido al que los mecanismos utilizados en el HTM limitado trabaja con conjuntos de datos relativamente pequeños que caben o están muy cerca del núcleo del procesador. En esta tesis estudiamos implementaciones de TM en hardware. Presentaremos tres contribuciones principales: Primero, mejoramos el rendimiento general de los sistemas, al proponer un protocolo escalable para la gestión de conflictos. El protocolo detecta los conflictos de forma precisa, en contraste con otras técnicas basadas en filtros Bloom, que pueden reportar conflictos falsos entre las transacciones. Segundo, proponemos un best-effort HTM que utiliza el nuevo protocolo escalable detección de conflictos, denominado EazyHTM. EazyHTM permite la ejecución completamente paralela de todas las transacciones sin conflictos, y por lo general simplifica la ejecución. Por último, proponemos una extensión y mejora del protocolo inicial para la gestión de conflictos, que llamaremos EcoTM. EcoTM cuenta con detección de conflictos precisa, eficiente y es compatible tanto con transacciones grandes como con pequeñas. La idea clave de EcoTM es aprovechar la observación que en muy pocas ubicaciones de memoria aparecen los conflictos entre las transacciones, incluso en aplicaciones tienen muchos conflictos. En EcoTM, cada núcleo detecta localmente si la línea es conflictiva, además existe un mecanismo de detección de conflictos detallado que solo se activa para las pocas líneas de memoria que son potencialmente conflictivas

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore