265,660 research outputs found

    An Architecture for an Infrastructure as a Service for the Internet of Things

    Get PDF
    Internet of things (IoT) refers to things such as sensors and actuators interacting with each other to reach common goals. It enables multiple applications in sectors ranging from agriculture to health. Nowadays, applications and IoT infrastructure are tightly coupled and this may lead to the deployment of redundant IoT infrastructures, thus, cost inefficiency. Cloud computing can help in tackling the problem. It is a paradigm to quickly provision configured resources (computing, network, memory) on demand for cost efficiency. It has three layers, the infrastructure as a service (IaaS), the platform as a service (PaaS) and the software as a service (SaaS). Through the IaaS, configured hardware resources (CPU, storage, etc.) are provisioned on demand. However, designing and implementing an IoT IaaS architecture for the provisioning of IoT resource on demand remains very challenging. An example of a challenge is using the appropriate publishing and discovery mechanism suitable for IoT devices. Orchestrating a virtualized IoT device over several physical IoT devices is another challenge that needs to be addressed. The main contribution of this thesis is twofold. First, a novel IoT IaaS architecture is proposed where IoT devices can be provisioned as a configured infrastructure resource on demand via node virtualization. Second, the architecture is prototyped and evaluated using real-life sensors that support node virtualization. Node level virtualization achieves resource efficiency in contrast to middleware solutions. The essential architectural features, such as publication, discovery, and orchestration are identified and proposed. Two sets of a high-level interface are also introduced. A low-level uniform interface is suggested to decouple the IoT devices from the applications by allowing the applications to access the heterogeneous devices in a uniform way. In addition, a cloud management interface is proposed to expose the IoT IaaS to the cloud consumers (for example - the PaaS, the application, etc.) and allow them to provision the IoT resources. By allowing the capability sharing of the IoT devices using the node virtualization, the cost efficiency and energy efficiency are achieved in the proposed architecture. Addressing other challenges allowed the proposed architecture to expose the IoT devices to the IaaS in a more abstract manner. Thus allowing the application to provision the IoT resources on demand as well as handling the IoT device heterogeneity in the IaaS

    Data analysis as a service: an infrastructure for storing and analyzing the internet of things

    Get PDF
    As the Internet of Things (IoT) is becoming an increasingly trendy topic both for individuals, businesses and governments, the need for academically reviewed and developed prototypes focusing on certain aspects of IoT are increasing as well. Throughout this paper we propose an architecture and a technology stack for creating real-time applications focusing on time-series data generated by IoT devices. The architecture and technology stack are then implemented through a proof-of-concept prototype named Office Analysis as a Service, DaaS, a data-centric web application developed using Meteor. js and MongoDB. We also propose a data structure for storing time-series data in a MongoDB document for optimal query performance of large datasets. One common research challenge in the IoT, security, is considered only briefly, and is of utmost importance in future research

    Securing the Internet of Things Infrastructure - Standards and Techniques

    Get PDF
    The Internet of Things (IoT) infrastructure is a conglomerate of electronic devices interconnected through the Internet, with the purpose of providing prompt and effective service to end-users. Applications running on an IoT infrastructure generally handle sensitive information such as a patient’s healthcare record, the position of a logistic vehicle, or the temperature readings obtained through wireless sensor nodes deployed in a bushland. The protection of such information from unlawful disclosure, tampering or modification, as well as the unscathed presence of IoT devices, in adversarial environments, is of prime concern. In this paper, a descriptive analysis of the security of standards and technologies for protecting the IoT communication channel from adversarial threats is provided. In addition, two paradigms for securing the IoT infrastructure, namely, common key based and paired key based, are proposed

    Sensing as a Service Model for Smart Cities Supported by Internet of Things

    Full text link
    The world population is growing at a rapid pace. Towns and cities are accommodating half of the world's population thereby creating tremendous pressure on every aspect of urban living. Cities are known to have large concentration of resources and facilities. Such environments attract people from rural areas. However, unprecedented attraction has now become an overwhelming issue for city governance and politics. The enormous pressure towards efficient city management has triggered various Smart City initiatives by both government and private sector businesses to invest in ICT to find sustainable solutions to the growing issues. The Internet of Things (IoT) has also gained significant attention over the past decade. IoT envisions to connect billions of sensors to the Internet and expects to use them for efficient and effective resource management in Smart Cities. Today infrastructure, platforms, and software applications are offered as services using cloud technologies. In this paper, we explore the concept of sensing as a service and how it fits with the Internet of Things. Our objective is to investigate the concept of sensing as a service model in technological, economical, and social perspectives and identify the major open challenges and issues.Comment: Transactions on Emerging Telecommunications Technologies 2014 (Accepted for Publication

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform

    Securing the internet of things infrastructure – standards and techniques

    Get PDF
    The Internet of Things (IoT) infrastructure is a conglomerate of electronic devices interconnected through the Internet, with the purpose of providing prompt and effective service to end-users. Applications running on an IoT infrastructure generally handle sensitive information such as a patient’s healthcare record, the position of a logistic vehicle, or the temperature readings obtained through wireless sensor nodes deployed in a bushland. The protection of such information from unlawful disclosure, tampering or modification, as well as the unscathed presence of IoT devices, in adversarial environments, is of prime concern. In this paper, a descriptive analysis of the security of standards and technologies for protecting the IoT communication channel from adversarial threats is provided. In addition, two paradigms for securing the IoT infrastructure, namely, common key based and paired key based, are proposed

    Extending the Internet of Things to the future Internet through IPv6 Support

    Get PDF
    Emerging Internet of Things (IoT)/Machine-to-Machine (M2M) systems require a transparent access to information and services through a seamless integration into the Future Internet. This integration exploits infrastructure and services found on the Internet by the IoT. On the one hand, the so-called Web of Things aims for direct Web connectivity by pushing its technology down to devices and smart things. On the other hand, the current and Future Internet offer stable, scalable, extensive, and tested protocols for node and service discovery, mobility, security, and auto-configuration, which are also required for the IoT. In order to integrate the IoT into the Internet, this work adapts, extends, and bridges using IPv6 the existing IoT building blocks (such as solutions from IEEE 802.15.4, BT-LE, RFID) while maintaining backwards compatibility with legacy networked embedded systems from building and industrial automation. Specifically, this work presents an extended Internet stack with a set of adaptation layers from non-IP towards the IPv6-based network layer in order to enable homogeneous access for applications and services
    • …
    corecore