134,319 research outputs found

    A Knowledge-Based Model For Context-Aware Smart Service Systems

    Get PDF
    The advancement of the Internet of Things, big data, and mobile computing leads to the need for smart services that enable the context awareness and the adaptability to their changing contexts. Today, designing a smart service system is a complex task due to the lack of an adequate model support in awareness and pervasive environment. In this paper, we present the concept of a context-aware smart service system and propose a knowledge model for context-aware smart service systems. The proposed model organizes the domain and context-aware knowledge into knowledge components based on the three levels of services: Services, Service system, and Network of service systems. The knowledge model for context-aware smart service systems integrates all the information and knowledge related to smart services, knowledge components, and context awareness that can play a key role for any framework, infrastructure, or applications deploying smart services. In order to demonstrate the approach, two case studies about chatbot as context-aware smart services for customer support are presented

    Proposal of a clean slate network architecture for ubiquitous services provisioning

    Get PDF
    The Pervasive Computing field is almost always addressed from application, middleware, sensing or Human Computer Interaction perspective. Thus, solutions are usually designed at application level or involve developing new hardware. Although current layered network architectures (mainly TCP/IP stack) have enabled internetworking of lots of different devices and services, they are neither well-suited nor optimized for pervasive computing applications. Hence, we firmly believe that we should have an underlying network architecture providing the flexible, context-aware and adaptable communication infrastructure required to ease the development of ubiquitous services and applications. Herein, we propose a clean slate network architecture to deploy ubiquitous services in a Pervasive and Ubiquitous Computing environment. The architecture is designed to avoid hierarchical layering, so we propose a serviceoriented approach for a flow-oriented context-aware network architecture where communications are composed on the fly (using reusable components) according to the needs and requirements of the consumed service.Postprint (published version

    Towards a Context-Aware Knowledge Model for Smart Service Systems

    Get PDF
    The advancement of the Internet of things, big data, and mobile computing leads to the need for smart services that enable the context awareness and the adaptability to their changing contexts. Today, designing a smart service system is a complex task due to the lack of an adequate model support in awareness and pervasive environment. In this paper, we present a context-aware knowledge model for smart service systems that organizes the domain and context-aware knowledge into knowledge components based on the three levels of services: Services, Service system and Network of service systems. The context-aware knowledge model for smart service systems integrates all the information and knowledge related to smart services, knowledge components and context awareness that can play a key role for any framework, infrastructure, or applications deploying smart services. To demonstrate the approach, a case study about a chatbot as a smart service for customer support is presented

    Service-oriented computing : agents, semantics, and engineering : AAMAS 2007 International Workshop, SOCASE 2007, Honolulu, HI, USA, May 14, 2007 : proceedings

    Get PDF
    Executing Semantic Web Services with a Context-Aware Service Execution Agent.- An Effective Strategy for the Flexible Provisioning of Service Workflows.- Using Goals for Flexible Service Orchestration.- An Agent-Based Approach to User-Initiated Semantic Service Interconnection.- A Lightweight Agent Fabric for Service Autonomy.- Semantic Service Composition in Service-Oriented Multiagent Systems: A Filtering Approach.- Towards a Mapping from BPMN to Agents.- Associated Topic Extraction for Consumer Generated Media Analysis.- An MAS Infrastructure for Implementing SWSA Based Semantic Services.- A Role-Based Support Mechanism for Service Description and Discovery.- WS2JADE: Integrating Web Service with Jade Agents.- Z-Based Agents for Service Oriented Computing

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Data and Activity Representation for Grid Computing

    Get PDF
    Computational grids are becoming increasingly popular as an infrastructure for computa- tional science research. The demand for high-level tools and problem solving environments has prompted active research in Grid Computing Environments (GCEs). Many GCEs have been one-o development eorts. More recently, there have been many eorts to dene component ar- chitectures for constructing important pieces of a GCE. This paper examines another approach, based on a `data-centric' framework for building powerful, context-aware GCEs spanning mul- tiple layers of abstraction. We describe a scheme for representing data and activities in a GCE and outline various tools under development which use this representation

    An approach to cross-domain situation-based context management and highly adaptive services in pervasive environments

    Get PDF
    The concept of context-awareness is widely used in mobile and pervasive computing to reduce explicit user input and customization through the increased use of implicit input. It is considered to be the corner stone technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of the user. This requires the applications to take advantage of the context in order to infer the user’s objective and relevant environmental features. However, context-awareness introduces various software engineering challenges such as the need to provide developers with middleware infrastructure to acquire the context information available in distributed domains, reasoning about contextual situations that span one or more domains, and providing tools to facilitate building context-aware adaptive services. The separation of concerns is a promising approach in the design of such applications where the core logic is designed and implemented separately from the context handling and adaptation logics. In this respect, the aim of this dissertation is to introduce a unified approach for developing such applications and software infrastructure for efficient context management that together address these software engineering challenges and facilitate the design and implementation tasks associated with such context-aware services. The approach is based around a set of new conceptual foundations, including a context modelling technique that describes context at different levels of abstraction, domain-based context management middleware architecture, cross-domain contextual situation recognition, and a generative mechanism for context-aware service adaptation.Prototype tool has been built as an implementation of the proposed unified approach. Case studies have been done to illustrate and evaluate the approach, in terms of its effectiveness and applicability in real-life application scenarios to provide users with personalized services
    • …
    corecore