
Proposal of a Clean Slate Network Architecture for

Ubiquitous Services Provisioning

X. Sanchez-Loro, J. Casademont, J. Paradells

Wireless Networks Group – Telematics Department

Technical University of Catalonia

Barcelona, Spain

{xsanchez, jordi.casademont, teljpa}@entel.upc.edu

J. L. Ferrer, A. Vidal

I2Cat Foundation

Barcelona, Spain

{jlferrer, albert.vidal}@i2cat.net

Abstract— The Pervasive Computing field is almost always

addressed from application, middleware, sensing or Human

Computer Interaction perspective. Thus, solutions are usually

designed at application level or involve developing new hardware.

Although current layered network architectures (mainly TCP/IP

stack) have enabled internetworking of lots of different devices

and services, they are neither well-suited nor optimized for

pervasive computing applications. Hence, we firmly believe that

we should have an underlying network architecture providing the

flexible, context-aware and adaptable communication

infrastructure required to ease the development of ubiquitous

services and applications. Herein, we propose a clean slate

network architecture to deploy ubiquitous services in a Pervasive

and Ubiquitous Computing environment. The architecture is

designed to avoid hierarchical layering, so we propose a service-

oriented approach for a flow-oriented context-aware network

architecture where communications are composed on the fly

(using reusable components) according to the needs and

requirements of the consumed service.

Keywords- Future Internet, Pervasive and Ubiquitous

Computing, Profiling, Context-Awareness

I. INTRODUCTION

Current network architecture design is based on hierarchical
layered models like OSI and TCP/IP stacks. In these models,
networking functions and protocols are grouped in layers,
according to a common objective and scope. Thus, each layer
performs different networking tasks, restricting inter-layer
communication to immediately adjacent layers. In theory, each
layer is in charge of a group of functions, but in practice
functions overlap at different layers, adding protocol overhead
and blurring the layered structure of the protocol stacks.

This rigid layering approach derives in monolithic network
architectures, lacking flexibility. First, network functions are
executed regardless of the characteristics of the surrounding
context, underlying network technologies and capabilities of
the devices involved in a communication. So, for some
situations, the same functions can be redundantly executed at
different levels, degrading communication performance and
wasting computing resources. Even worse, in certain
environments, the execution of certain functions can be
counterproductive for the correct operation of an application or
network service (e.g. TCP’s congestion control in wireless
networks), obliging to modify existing protocols to adapt them
to environments with restrictions [6].

Second, inter-layer communication is strongly restricted.
This has led to different cross-layering approaches to enhance
protocol and application performance in wireless environments
where traditional protocols show a poor performance [5]. These
cross-layering solutions, violating the layered structure of the
stack, further complicate the situation, bending the model and
its related standards. These practices pose serious
interoperability issues resulting in an increased complexity of
the network architecture.

Third, another cause of strife is the existence of new sub-
layers like MPLS at layer 2.5, IPsec at layer 3.5, and TLS at
layer 4.5. These sub-layers are features not considered in the
original design of the stack and they have been implemented as
patches as a consequence of the lack of flexibility of the
TCP/IP stack.

Fourth, middle-boxes (NATs, proxies, gateways, etc) erode
the end-to-end model as new features and participants are
placed in-network without control and knowledge of the edges.
These now common solutions further complicate the situation
as they were not considered during the original design and
development of the Internet (they did not exist then) [9].
Similar situations will surely arise during the following years
as technology and applications evolve, and the TCP/IP stack
lacks flexibility to clearly and easily deal with them.

 Most of these issues derive from the fact that TCP/IP stack
was designed with wired networks and mainframes in mind [3,
9]. The first users of these earlier networks were a trustful
community of people with high technical skills, enforcing the
end-to-end arguments [2, 9]. Protocols were tailored for the
capabilities of the nodes and technologies of the time, whilst
the applications were much simpler than today’s, in fact most
of them were simply replicas of the services of an operating
system on a network (telnet, FTP and RJE). In the following
decades, Internet applications and network services evolved,
increasing its complexity and requirements, diverting them
from a strict end-to-end philosophy. Quality of service (QoS)
and security were introduced as critical issues. With the rising
of wireless networks (mobile, ad hoc, mesh, sensor) and mobile
devices, new applications and issues arise: mobility, hostile and
time variant access media (interferences, lower bandwidth,
higher error rates, higher latency, etc.), intermittent
connections, energy restrictions, multi-modality issues, device
capabilities issues, localization, nomadism, roaming, context-
awareness, network and device heterogeneity, transcoding, etc.

This work was supported in part by the i2CAT Foundation and the
Spanish Government through the MECD and FEDER project TIC2006-04504.

2009 First International Conference on Future Information Networks

978-1-4244-5160-9/09/$26.00 ©2009 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

Now, there’s a myriad of different devices, applications and
network technologies. These advances have allowed new
computing paradigms like Pervasive and Ubiquitous
Computing or the Internet of the Things, to name a few, but
these paradigms shift from strict end-to-end arguments and
pose very different requirements and philosophy than original
TCP/IP applications -some don’t even use the IP protocol.
They require new modes of interaction between nodes and
components of network services not fulfilled by current
network architectures. So, network services should evolve on
an architectural framework to become flexible, ubiquitous,
composable, dependable, secure, context-aware and adaptable
in execution time. Following this trend some discussion about
“clean slate” re-design of the Internet [10-13, 8] has arose
during the last years and, we believe it will intensify in the next
years. Now, it is time to design the Network with the
characteristics we would wish to take for granted in 10 years.

II. DESIGNING A NEW NETWORK ARCHITECTURE

First, we should bear in mind when designing a new

network architecture
1
 that it should be flexible and adaptable

enough to perform reasonably well in all kind of

environments, without making assumptions about execution

environment, infrastructure support or a minimum set of

device capabilities. It should be truly ubiquitous, providing

tools for consuming network services anytime, anywhere, and

anyhow (that is with any device, any platform); thus,

integrating all kind of edge networks, platforms and devices

[4]. This is very important because most advances in the

networking field come from the edges. Therefore, if we can

design a flexible architecture, adaptable to context variations,

that works with minimalistic devices in restricted networks

like Wireless Sensor Networks; it should be easier to

extrapolate it to work in more complex environments, without

capacity restrictions, like wired computer networks. Hence,

we would like to invert the tendency to design complex

protocols for wired and backbone networks (with computers

and routers as reference nodes) and then adapting them to

environments with restrictions, approach that poses a lot of

implementation, design and performance issues. Furthermore,

restricted devices like sensors/actuators and objects are

becoming a real majority in the Network (and they will keep

growing in numbers), thus we cannot be oblivious of their

impact on networking applications and design a model that

accommodates them.

We need a shift from strict end-to-end arguments, building a

network architecture that provides more intelligence to the

network-side whilst still leaving decision-making processes to

the end-points [1-2]. In our opinion such architecture should

have the following characteristics and features:

• Context-awareness and dynamic adaptability
during execution time. It must take into account the

1 By architecture we mean: “a set of rules and constraints that characterize

a particular style of construction” [3]. So, applied to the context of network

design, it defines the network design model; that is the global technical

principles of design of the network.

capabilities of the nodes, services and network links to
establish new routes and to manage existing ones. So,
mechanisms to interchange context information
between entities in ad hoc and structured ways must be
supported.

• Oriented to service/resource interconnection and
not machine/interface interconnection. We propose
to shift the focus on network addresses to a
service/data-centric approach that allows the semantic
discovery of services and resources (including data
objects), easing the interaction with network facilities.

• Semantic identification and addressing of nodes,
resources and services

2
. Service discovery and, hence,

routing must be based on the semantic description of
the desired service, including security functions. This
way, we avoid making explicit addressing (and
naming) mandatory. Besides, existing addresses
(locators and identifiers) are treated as another
characteristic of the service/node/resource.
Furthermore, when used, addressing schemes should
be designed to be dependent on the location of entities
in a network, but route independent [3]. This semantic
context-aware service-derived route discovery
approach provides intrinsic support for mobility,
multihoming and nomadism.

• QoS integrated into routing and service discovery.
Discovery, establishment and management of routes
must be based on requested QoS and resource
availability.

• Flexible design and execution. Network functions
must be allocated according to each situation and not in
a monolithic way. Thus, functions must be allocated all
along the route, executing just the desired functions at
each hop, section of hops and end-to-end and applying
them just to the desired transmission unit (symbol,
frame, packet, etc.). Flexible support for different
semantic schemes or vocabularies for identifying
services, resources and nodes and to describe their
capabilities must be also devised. This flexible support
must be also extended to different schemes for
specifying desired/requested and provided QoS.

• User empowerment in service choice and routing. In
our opinion, with the diversification and popularity of
the Internet and the maliciousness of some of their
players [2], users should be provided with mechanisms
that allow them more control over their
communications. This control should be reflected in
flexible routing and service selection. So, a service
requester must be able to choose from matching service
responders which specific service wants to consume.
Also, if desired, source must be able to specify
preferred and trusted carriers/domains and blacklist
distrusted or malicious domains, this way end-points

2 Users and resources are discovered through the semantic discovery of the

service(s) that provides access to them, acting as their interface with the
network (object delivery services, user communication services, etc.)

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

have a certain degree of control over which routes their
communications follow

• Security functions must be fully integrated in its
design. In our opinion, security must not be an
addendum. Hence, service discovery/consumption
takes into account available security features. Other
points to assure are: data integrity and confidentiality,
plus user privacy and confidentiality. Also, we believe
that another important characteristic is traceability, i.e.,
finding the path to the traffic source for a specific
communication. As each connection is established for
service consumption, traceability can be achieved by
univocally tagging each single traffic flow. Therefore,
we make use of a unique tag (Session Identifier) to
identify and route each traffic flow.

III. PROPOSAL OF A NEW NETWORK ARCHITECTURE

Herein, we propose a new network architecture to deploy
ubiquitous services in a “clean slate” environment. The
architecture is designed to avoid hierarchical layering, so we
propose a service-oriented approach for a flow-oriented
context-aware network architecture where communications are
composed in situ (using reusable components) according to the
needs and requirements of the consumed service. Thus, we
define the network as a set of nodes and services. Nodes are
physical (device) or virtual entities (cluster) possessing
networking capabilities able to consume and to provide
services to itself and other entities and services. They provide
the necessary environment for service composition and
execution.

Services are classified into atomic and composed services.
Atomic services are those individual functions

3
 commonly used

in networking protocols (i.e. acknowledgments, sequence
numbers, flow control, etc). These are well-defined and self-
contained functions, used exclusively to establish
communications for consuming composed services. Composed
services are network applications with a wider scope than just
establishing communications (e.g. printer service, directory
service, file transfer, instant messaging, presence, etc.). Each
composed service or application imply consuming different
atomic and, sometimes, other composed services; appearing
possible dependences between them. Also, they can involve
one or more nodes, depending on the complexity of the service.

In this model, in order to obtain the desired behavior,
functionality and QoS constrains, communications are
established concatenating atomic services into a workflow for
consuming a certain composed service. So, atomic services are
the building blocks used to establish communications and to
deliver data in a self-adaptable, self-configurable and context-
aware way. They are allocated amongst involved nodes, as
required by conditions of temporal context and service
requirements. In this way, all functions are used only when and
where they are required, so that we assure that there is no
function overlapping or usage of counterproductive functions.

3 A function is a set of self-contained and well-defined instructions

executed with a common purpose in order to provide a certain logic
mechanism for data-interchange between services

Fig. 1. Example of heterogenic networks

For instance, there can be heterogenic networks where a
node may require very different network functions to
communicate with different nodes in order to consume the
same or a different composed service (see figure 1). On one
hand, there may be network segments with reliable
communication environments neither requiring error correction
nor error recovery, or perhaps very basic functions like a small
CRC computation. This could be the case for nodes connected
with wired and reliable links (e.g. segment E in figure 1). On
the other hand, other network segments could require strong
error detection and recovery mechanisms in order to
accomplish reliable data delivery in front of high error rates in
unreliable links (e.g. segment A, B, F). Function allocation not
only depends on network and link state but also on device
capabilities. In this way, there may be nodes with strict
restrictions in battery, memory and CPU preventing them to
perform intensive operations like message sequencing, data
transcoding or executing complex timed state-machines (e.g.
segment B).

Hence, in order to provide and consume (composed)
networked services in a truly ubiquitous fashion (according to
desired functionality, behavior and QoS constraints), atomic
services must be suitably allocated along the communication
path where they are actually needed and tuned/configured
accordingly to accomplish the application requirements. Thus,
atomic services can be executed in a per-hop, per-section
(between two non-adjacent nodes) and/or end-to-end basis
(section ranging the entire route).

A. Atomic Services

Each atomic service (see figure 2) provides one concrete
and well-defined networking function (along with the reverse
function, if any). Different algorithms and implementations of
an atomic service could exist (i.e. different congestion control
algorithms), and co-exist in the same node, using attributes to
both describe the different possibilities and to tune/configure
the atomic service in order to use it to fulfill specific workflows
needs.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Atomic services

1) Service granularity
Atomic services can be executed with different levels of

granularity, depending on desired functionality. For each level,
a different unit of information is processed/affected. We define
5 levels of granularity for atomic services:

1. Symbol flow: At symbol flow level, atomic services
are executed affecting the whole communication flow at
symbol level paying no attention to logical abstractions, akin to
circuit-oriented communications

4
.

2. Frame: At frame level, services are executed on per-
frame basis. So, all transformations, headers and responses use
physical frames as basic I/O unit and interfaces. The frame
level has its own sublevels of granularity:

a. Default: service execution affects the entire frame.

b. Payload: service execution only affects frame payload.

c. Overhead: service execution only affects frame
overhead.

3. Packet: At packet level, logical packets are the basic
I/O unit. Identically to the frame level, packet level granularity
has the default, payload and overhead granularity sublevels.

4. Object: In object level, services are executed on a per-
object basis. An object is an encapsulated/structured data
resource and may contain further objects inside. In order to
feasibly implement this level of granularity, support for the
object flow atomic service must be provided in all the nodes
executing services with object-level granularity.

5. Byte flow: In byte flow level, services are executed
affecting all the session’s data flow (without overhead) and
treating it as a raw stream of bytes.

4 In this case, services are negotiated as usual (see section IV.D), agreeing

on a Encoding & Signaling service implementation that allows working on

circuit mode (allocating a dedicated frequency, TDM scheme, etc); giving

support for a continuous traffic flow and just tagging the traffic flow at the
start of the session with a session id

B. Semantic Service Identification

Ubiquitous computing relies on the idea that users should
be able to consume network services anytime, anywhere and
anyhow (with any device and platform). This implies
mechanisms to create, discover, negotiate and consume
composed services in a flexible and context-aware way.
Service consumers (users and other entities) may not know
which device provides the desired composed service, they may
even not know the name or the identifier/locator of the service
or its provider; but they do know the characteristics of the
service they want to consume. Thus, consumers must be able to
describe the desired capabilities of the requested service and
the network must be able to resolve if there is any service
matching this description. In this way, service consumers
describe the desired service using semantic constructions like
“I want a color printer close to building X with toner and
paper”. Each node knows its own capabilities and which
composed services it provides and their characteristics, which
are described in node and service profile instances. Therefore
they can match against the attributes of their service profiles if
any of their composed services complies with the desired
functionality. This process is called semantic service
identification.

In order to be feasibly implemented, network nodes must
share a common knowledge base or ontology; that is a common
attribute semantics and syntax. Although different ontologies
may be supported, all nodes must support the minimum
identification ontology. This basic ontology is designed to be
minimalistic, in order to be supported by all kind of devices
and platforms with enough ease (in terms of memory,
computing power and energy), but still providing enough level
of expressiveness and completeness when building semantic
constructions. Hence, the nature of the relations expressed by
each attribute (i.e., “is a”, “has a”, “belongs to”, etc.) is inferred
from its own definition. Attributes are defined for describing
node capabilities (CPU, memory, network interfaces, battery,
etc.), temporal context characteristics (location, domain),
atomic services characteristics (type, supported granularity,
dependences, configuration parameters, etc.) and composed
services characteristics (I/O behavior, negotiation scheme,
description, provider, etc.) Besides, in order to minimize the
amount of information transferred, attribute syntax is
dictionary-based.

The following operators can be applied to attributes when
constructing semantic descriptions:

• Logical operators: AND, OR, NOT

• Operators <,>, = for comparing attribute values

• Regular expressions

IV. PROPOSAL OF A PROTOCOL FOR NEGOTIATING AND

CONSUMING UBIQUITOUS SERVICES

In order to allow communication creation and atomic
services allocation, we have designed a protocol based on ad-
hoc routing protocols for ubiquitous discovery, negotiation and
establishment of communications between service creators and
service consumers. This protocol is devised for pure ad hoc
environments, with no infrastructure support and dynamic

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

topology; so we use a controlled flooding scheme for
disseminating the communication requests. We choose
flooding as it does not require any extra information for its
operation. However, other ad hoc/WSN routing schemes [7]
like gossip algorithms, Directed Diffusion and Low-Energy
Adaptive Clustering Hierarchy (LEACH) may be used as well
with ease.

In case of fixed and structured networks, there is no need
for ad hoc/topology-changing schemes, therefore current
standard techniques based on routing tables with neighboring
nodes/networks should be used.

A. Protocol Characteristics

The protocol is designed to discover network services, and
thus routes to reach them, on-demand searching for all feasible
composed services; those that meet the requested QoS (and
functionality). We should note that we use the term QoS in its
widest sense, including traditional QoS metrics like bandwidth,
delay and error rates (flow QoS

5
 in the text), but also the atomic

services required to obtain the desired communication behavior
and functionality, not just performance (functional QoS in the
text). This includes security functions and other functions like
transcoding and caching. Therefore, QoS and security are
integrated in service discovery and negotiation. Service paths
(i.e., routes to matching services) are discovered and negotiated
according to composed service profile and characteristics of
involved links and nodes.

Resources are reserved during service path negotiation,
emulating a virtual circuit. We define the service
communication paths as unidirectional, in order to allow a
different configuration based on each link direction. However,
for the returning control traffic of some atomic services (i.e.,
ACKs, etc.) a reverse path will be created during service
negotiation.

Services and nodes are identified semantically through
attributes; avoiding using just addresses to identify a node’s
interfaces -addresses receive same treatment as the rest of
attributes. Hence, arbitrary interface addressing is substituted
by semantic description of the desired service. According to
this description, requests are routed searching for its final
destination: a service entry-point able to provide the requested
service. When a node provides or participates of a service that
matches this description, it responds. Consequently, macro-
mobility (inter-domain) and nomadism are supported by this
semantic routing scheme. However, mechanisms for route
management and reallocation are needed to cope with route
degradation during micro-mobility (intra-domain). Also,
multihoming is supported when required (addresses are just
attributes), but more important, multihoming can be dodged by
semantic identification as we search for a service or node, but
not for a certain network interface address.

Profiles describing the capabilities of the nodes and its
related services are interchanged between neighboring nodes in
Hello messages. So, each node stores a profile database

5 It must be pointed that the data forwarding atomic service is responsible

of forwarding data messages to its next destination. Thus, it is in charge of

scheduling forwarded messages, dictating the PHB (Per-Hop Behavior)
needed to comply/match with QoS agreements.

including a summary of the capabilities of the nodes and
services accessible from each network interface in order to
control flooding during service discovery. These Hello
messages are also used to monitor link state. Besides, there is
also the possibility of relying on a context information
provisioning service, in case of available infrastructure support.

B. Negotiation schemes

We define three negotiation schemes in the protocol: 3-way
handshake, 4-way handshake and no negotiation according to
different communication schemes.

The 3-way handshake is the main scheme of negotiation
(see figure 3). It consists in a Communication Request message
(CReq, see figure 4) describing the desired service
functionalities and QoS requirements. QoS parameter values
are divided into minimum and, optionally, optimum values.
They specify desired metric values (flow QoS) and network
functionalities (functional QoS). Furthermore, the CReq is
tagged with a session id field to univocally distinguish that
flow.

Fig. 3. Service Negotiation Flux Diagram

Intermediate nodes forward CReq using a controlled
flooding scheme, until it reaches a matching service.
Forwarding is constricted by semantic identification, timer
expiration and feasibility of meeting QoS requirements (both in
parameters and available functionalities). As in MANET/ad-
hoc routing protocols, a basic Expanding Ring Search
technique is also used in order to restrict range of CReq
flooding. Each intermediate node modifies flow QoS
requirements to reflect the consumed resources at each hop (see
figure 3). This flow QoS recalculation can be achieved as we
have included synchronization information in periodic
signaling protocol messages. This way, using classical HELLO
messages, information can be properly distributed. After
forwarding a CReq, each node creates a reverse route to
forward Communication Response messages (CRep, see figure
4) to source node. In order to facilitate routing and session
management, the destination includes a valid locator (by
default) or a univocal identifier in the reply (when source
explicitly requested it).

 Each node with a service profile matching the service
requirements replies (unicast) to each arriving CReq with a
CRep; reporting the QoS parameter values that could be
provided (see figure 3). Intermediate nodes complement these
values of QoS as CRep are forwarded. In this way, they

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

indicate functions that they are able to perform. They also
report the aggregate metrics that the route can assure. For some
parameters, this information is not enough to decide where
functions should be allocated. Thus, some parameters need to
be disaggregated, stating actual values at each link or node.
These include node capabilities like CPU, memory (buffering),
battery and link characteristics like error probability and
available bandwidth.

After receiving various CReps, CReq originator decides the
service path that will be used to establish the service session,
sending a unicast Communication Reservation (CRsv) message
indicating which functions (hop and segment) must perform
each node in the service path. As CRsv message is forwarded,
each intermediate node erases its own orders, concealing them
from following nodes. At the end, the destination node receives
its instructions for end-to-end functions. At this point, service
session is established and data can be transferred (see figure 3).
Data forwarding is based on Session Identifier look-up to
determine next hop, output interface and functions to be
executed. Scheduling of the data transfer to achieve required
QoS metrics is managed by the data forwarding atomic service.

It must be pointed that session release can be explicit or
implicit (timer expiration). In the explicit way, source indicates
the session identifier of the session to be released and resources
are orderly freed along the route. Explicit release is
recommended since resources are freed when the session
actually ends whilst in implicit release resources are wasted
waiting for timer expiration. There is a lifetime field in the
CRep packet that indicates the inactivity period supported
before the route is deemed to be expired. This value is set by
the originator of the reply and may be decreased (up to a
minimum threshold) by intermediate nodes according to their
resource and energy saving policies.

The 4-way handshake scheme is used to negotiate
additional parameters of the allocated functions. It consists in a
three-way handshake adding a way to agree the parameters of
usage of certain allocated functions (e.g., cryptographic keys,
negotiating cipher algorithms, transcoding formats). This
scheme is mainly devised for secure services, as security
functions usually need this additional negotiation for their
configuration.

The No negotiation scheme is designed for sending small
data (about 1 data packet.) during an instant session. As its
name suggests, there is no session negotiation and data travels
through the network embedded in discovery messages. Thus,
data will flood the network unless there is an existing route to
the destination; in this case the communication is unicast. This
scheme makes use of the following atomic services: data
transmission and reception, framing, MAC, identification and
data forwarding. This scheme is devised for simple sensing
applications, where nodes send small amounts of captured data
at spaced intervals and, therefore, there is no need of wasting
resources establishing and maintaining a session.

V. CONCLUSION

Future Internet design should address most of the
shortcomings of current Internet architecture. Specially, we
believe it should address the lack of ubiquity, pervasivity and

context-awareness in the TCP/IP stack. This focus on ubiquity
implies designing an architecture that suits the requirements of
sensor/actuators and object networks. WSN and other edge
networks are becoming a majority in the Internet and they
require solutions that fit their needs and restricted capabilities.
Furthermore, it is easier to implement innovations in the edges
than in the core of the network. So, herein, we have presented
the foundation of a clean slate network architecture that focuses
on service ubiquity, adaptability and context-awareness in
restricted edge networks, like WSNs. From a Pervasive and
Ubiquitous computing view, this architecture solves/mitigates
some of the issues and shortcomings of the current Internet
architecture providing features like: context-awareness and
dynamic adaptability during execution time; flexible allocation
and execution of network functions; traceability; QoS, security
and service discovery supported by the core of the architecture;
routing based on the semantic description of services (non-
mandatory use of addresses, support for mobility, nomadism
and multihoming); QoS and resource availability integrated
into routing and service discovery; enhanced user control; etc.

Although we can devise solutions that work well on paper,
we need to prove their feasibility. So, now, we are working on
a test-implementation to prove it and to test its performance
compared to current solutions. We know it is difficult to
surpass the performance of current solutions as they have been
polished for more than 20 years, but we expect to at least match
it in a first attempt, whilst providing further functionality and
flexibility.

Some future work on the architecture includes addressing
different issues: mechanisms to address communications and
service discovery across domains in a scalable way; exploring
optimal strategies for atomic service allocation; solving intra-
domain mobility and route degradation; further exploration on
syntax, rules and semantics of the different vocabularies for
QoS, resource and service description; exploring strategies for
enhancing flooding control during service discovery; exploring
suitable semantic addressing schemes for assigning locators
and identifiers; etc.

REFERENCES

[1] NewArch Project: Future-Generation Internet Architecture.
http://www.isi.edu/newarch/

[2] D. Clark, J. Wroclawski,, K. Sollins and R. Braden, "Tussle in
Cyberspace: Defining Tomorrow's Internet". ACM SIGCOMM 2002,
August 2002.

[3] J. Day. “Patterns in Network Architecture: A Return to Fundamentals”.
Prentice Hall PTR (January 6, 2008).

[4] D. Clark, C. Partridge, R. T. Braden, B. Davie, S. Floyd, Van Jacobson,
D. Katabi, G. Minshall, K.K. Ramakrishnan, T. Roscoe, I. Stoica, J.
Wroclawski and L. Zhang. “Making the World (of Communications) a
Different Place”. ACM SIGCOMM Computer Communication Review.
Volume 35, Number 2, July 2005

[5] VineetSrivastava and MehulMotani. “Cross-Layer Design: A Survey and
the Road Ahead”. Communications Magazine, IEEE, Vol. 43, No. 12.
December 2005

[6] X.Sanchez-Loro, Victoria Beltran, JordiCasademont and Marisa Catalan.
“Ubiquitous Web Access: Collaborative Optimization and Dynamic
Content Negotiation”. The 2nd International Workshop on Interactive
Multimedia & Intelligent Services in MUC. Busan, Korea, 24-26 April
2008

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

[7] K. Akkaya and M. Younis, "A survey on routing protocols for wireless
sensor networks," Elsevier Ad Hoc Network Journal, vol. 3, pp. 325-349,
2005.

[8] D. Stevenson, R. Dutta, G. Rouskas, D. Reeves and I. Baldine. “On the
Suitability of Composable Services for the Assurable Future” Milcom
'07 October 2007, Orland FL

[9] D. D. Clark. The design philosophy of the DARPA internet protocols.
ACM SIGCOMM, pages 106–114, Aug. 1988.

[10] GENI.net Global Environment for Network Innovations.
http://www.geni.net/

[11] NSF NeTS FIND Initiative.. http://www.nets-find.net/index.php

[12] The FP7 4WARD Project. http://www.4ward-project.eu/

[13] "AKARI" Architecture Design Project for New Generation Network”.
http://akari-project.nict.go.jp/eng/index2.htm

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on June 22,2010 at 13:25:18 UTC from IEEE Xplore. Restrictions apply.

