5,500 research outputs found

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Searching Ontologies Based on Content: Experiments in the Biomedical Domain

    No full text
    As more ontologies become publicly available, finding the "right" ontologies becomes much harder. In this paper, we address the problem of ontology search: finding a collection of ontologies from an ontology repository that are relevant to the user's query. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Ontologies that are most relevant to such query often do not have the query term in the names of their concepts (e.g., the Foundational Model of Anatomy ontology does not have the term "anatomy" in any of its concepts' names). Thus, we present a new ontology-search technique that helps users in these types of searches. When looking for ontologies on a particular topic (e.g., anatomy), we retrieve from the Web a collection of terms that represent the given domain (e.g., terms such as body, brain, skin, etc. for anatomy). We then use these terms to expand the user query. We evaluate our algorithm on queries for topics in the biomedical domain against a repository of biomedical ontologies. We use the results obtained from experts in the biomedical-ontology domain as the gold standard. Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names (like Swoogle). We show 43% improvement for the case where not only class and property names but also property values are taken into account

    Searching biomedical ontologies based on content

    Get PDF
    As more ontologies become publicly available, finding the 'right' ontologies becomes much harder. In this paper, we introduce a new ontology search technique which is based on corpus analysis. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names

    Improving Ontology Recommendation and Reuse in WebCORE by Collaborative Assessments

    Get PDF
    In this work, we present an extension of CORE [8], a tool for Collaborative Ontology Reuse and Evaluation. The system receives an informal description of a specific semantic domain and determines which ontologies from a repository are the most appropriate to describe the given domain. For this task, the environment is divided into three modules. The first component receives the problem description as a set of terms, and allows the user to refine and enlarge it using WordNet. The second module applies multiple automatic criteria to evaluate the ontologies of the repository, and determines which ones fit best the problem description. A ranked list of ontologies is returned for each criterion, and the lists are combined by means of rank fusion techniques. Finally, the third component uses manual user evaluations in order to incorporate a human, collaborative assessment of the ontologies. The new version of the system incorporates several novelties, such as its implementation as a web application; the incorporation of a NLP module to manage the problem definitions; modifications on the automatic ontology retrieval strategies; and a collaborative framework to find potential relevant terms according to previous user queries. Finally, we present some early experiments on ontology retrieval and evaluation, showing the benefits of our system

    Geographical information retrieval with ontologies of place

    Get PDF
    Geographical context is required of many information retrieval tasks in which the target of the search may be documents, images or records which are referenced to geographical space only by means of place names. Often there may be an imprecise match between the query name and the names associated with candidate sources of information. There is a need therefore for geographical information retrieval facilities that can rank the relevance of candidate information with respect to geographical closeness of place as well as semantic closeness with respect to the information of interest. Here we present an ontology of place that combines limited coordinate data with semantic and qualitative spatial relationships between places. This parsimonious model of geographical place supports maintenance of knowledge of place names that relate to extensive regions of the Earth at multiple levels of granularity. The ontology has been implemented with a semantic modelling system linking non-spatial conceptual hierarchies with the place ontology. An hierarchical spatial distance measure is combined with Euclidean distance between place centroids to create a hybrid spatial distance measure. This is integrated with thematic distance, based on classification semantics, to create an integrated semantic closeness measure that can be used for a relevance ranking of retrieved objects

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Spatial information retrieval and geographical ontologies: an overview of the SPIRIT project

    Get PDF
    A large proportion of the resources available on the world-wide web refer to information that may be regarded as geographically located. Thus most activities and enterprises take place in one or more places on the Earth's surface and there is a wealth of survey data, images, maps and reports that relate to specific places or regions. Despite the prevalence of geographical context, existing web search facilities are poorly adapted to help people find information that relates to a particular location. When the name of a place is typed into a typical search engine, web pages that include that name in their text will be retrieved, but it is likely that many resources that are also associated with the place may not be retrieved. Thus resources relating to places that are inside the specified place may not be found, nor may be places that are nearby or that are equivalent but referred to by another name. Specification of geographical context frequently requires the use of spatial relationships concerning distance or containment for example, yet such terminology cannot be understood by existing search engines. Here we provide a brief survey of existing facilities for geographical information retrieval on the web, before describing a set of tools and techniques that are being developed in the project SPIRIT : Spatially-Aware Information Retrieval on the Internet (funded by European Commission Framework V Project IST-2001-35047)
    • 

    corecore