250 research outputs found

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called Λ\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about Λ\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of Λ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    Indexed linear logic and higher-order model checking

    Full text link
    In recent work, Kobayashi observed that the acceptance by an alternating tree automaton A of an infinite tree T generated by a higher-order recursion scheme G may be formulated as the typability of the recursion scheme G in an appropriate intersection type system associated to the automaton A. The purpose of this article is to establish a clean connection between this line of work and Bucciarelli and Ehrhard's indexed linear logic. This is achieved in two steps. First, we recast Kobayashi's result in an equivalent infinitary intersection type system where intersection is not idempotent anymore. Then, we show that the resulting type system is a fragment of an infinitary version of Bucciarelli and Ehrhard's indexed linear logic. While this work is very preliminary and does not integrate key ingredients of higher-order model-checking like priorities, it reveals an interesting and promising connection between higher-order model-checking and linear logic.Comment: In Proceedings ITRS 2014, arXiv:1503.0437

    Relational Semantics of Linear Logic and Higher-order Model Checking

    Get PDF
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how this analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes

    Infinets: The parallel syntax for non-wellfounded proof-theory

    Get PDF
    Logics based on the µ-calculus are used to model induc-tive and coinductive reasoning and to verify reactive systems. A well-structured proof-theory is needed in order to apply such logics to the study of programming languages with (co)inductive data types and automated (co)inductive theorem proving. While traditional proof system suffers some defects, non-wellfounded (or infinitary) and circular proofs have been recognized as a valuable alternative, and significant progress have been made in this direction in recent years. Such proofs are non-wellfounded sequent derivations together with a global validity condition expressed in terms of progressing threads. The present paper investigates a discrepancy found in such proof systems , between the sequential nature of sequent proofs and the parallel structure of threads: various proof attempts may have the exact threading structure while differing in the order of inference rules applications. The paper introduces infinets, that are proof-nets for non-wellfounded proofs in the setting of multiplicative linear logic with least and greatest fixed-points (µMLL ∞) and study their correctness and sequentialization. Inductive and coinductive reasoning is pervasive in computer science to specify and reason about infinite data as well as reactive properties. Developing appropriate proof systems amenable to automated reasoning over (co)inductive statements is therefore important for designing programs as well as for analyzing computational systems. Various logical settings have been introduced to reason about such inductive and coinductive statements, both at the level of the logical languages modelling (co)induction (such as Martin Löf's inductive predicates or fixed-point logics, also known as µ-calculi) and at the level of the proof-theoretical framework considered (finite proofs with explicit (co)induction rulesà la Park [23] or infinite, non-wellfounded proofs with fixed-point unfold-ings) [6-8, 4, 1, 2]. Moreover, such proof systems have been considered over classical logic [6, 8], intuitionistic logic [9], linear-time or branching-time temporal logic [19, 18, 25, 26, 13-15] or linear logic [24, 16, 4, 3, 14]

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed
    corecore