147 research outputs found

    Advanced Control Strategies with Simulations for a Typical District Heating System to Approaching Energy Efficiency Buildings

    Get PDF
    District heating systems (DHSs) are very common and important in cold areas in the world not only because of the huge energy consumption including kinds of fuel, electricity and water but also due to thermal comfort of all customers. To increase the energy efficiency and improve heating quality within the operational period, suitable and optimal control strategy should be applied for the DHSs. Thus, in this chapter, a typical DHS is designed. Based on the DHS information, a dynamic model is developed by using thermodynamic principles and corrected according to the measured operational data from real systems. The DHS properties are simulated by utilizing the open-loop tests (OLTs) of the developed actual dynamic model. System performance of operation, energy consumption and zone air temperature are addressed for several control strategies. Based on the energy consumed and indoor air temperature response, average water temperature set point corrected by equivalent outside air temperature (Case 4) and indoor air temperature control directly (Case 5) are considered, which are the best cases of optimal operation in the DHS

    CONTROL AND OPTIMIZATION OF NOx EMISSION AND EFFICIENCY IN BOILERS

    Get PDF

    Model-predictive control for non-domestic buildings: a critical review and prospects

    Get PDF
    Model-predictive control (MPC) has recently excited a great deal of interest as a new control paradigm for non-domestic buildings. Since it is based on the notion of optimisation, MPC is, in principle, well-placed to deliver significant energy savings and reduction in carbon emissions compared to existing rule-based control systems. In this paper, we critically review the prospects for buildings MPC and, in particular, the central role of the predictive mathematical model that lies at its heart; our clear emphasis is on practical implementation rather than control-theoretic aspects, and covers the role of occupants as well as the form of the predictive model. The most appropriate structure for such a model is still an open question, which we discuss alongside the development of the initial model, and the process of updating the model during the building’s operational life. The importance of sensor placement is highlighted alongside the possibility of updating the model with occupants’ comfort perception. We conclude that there is an urgent need for research on the automated creation and updating of predictive models if MPC is to become an economically-viable control methodology for non-domestic buildings. Finally, more evidence through operating full scale buildings with MPC is required to demonstrate the viability of this method

    Modelling, Control and Scheduling of Hydronic Domestic Heating Systems

    Get PDF

    Prioritised objectives for model predictive control of building heating systems

    Get PDF
    Advantages of Model Predictive Control (MPC) strategies for control of building energy systems have been widely reported. A key requirement for successful realisation of such approaches is that strategies are formulated in such a way as to be easily adapted to fit a wide range of buildings with little commissioning effort. This paper introduces an MPC-based building heating strategy, whereby the (typically competing) objectives of energy and thermal comfort are optimised in a prioritised manner. The need for balancing weights in an objective function is eliminated, simplifying the design of the strategy. The problem is further divided into supply and demand problems, separating a high order linear optimisation from a low order nonlinear optimisation. The performance of the formulation is demonstrated in a simulation platform, which is trained to replicate the thermal dynamics of a real building using data taken from the building

    Advanced control strategies for optimal operation of a combined solar and heat pump system

    Get PDF
    The UK domestic sector accounts for more than a quarter of total energy use. This energy use can be reduced through more efficient building operations. The energy efficiency can be improved through better control of heating in houses, which account for a large portion of total energy consumption. The energy consumption can be lowered by using renewable energy systems, which will also help the UK government to meet its targets towards reduction in carbon emissions and generation of clean energy. Building control has gained considerable interest from researchers and much improved ways of control strategies for heating and hot water systems have been investigated. This intensified research is because heating systems represent a significant share of our primary energy consumption to meet thermal comfort and indoor air quality criteria. Advances in computing control and research in advanced control theory have made it possible to implement advanced controllers in building control applications. Heating control system is a difficult problem because of the non-linearities in the system and the wide range of operating conditions under which the system must function. A model of a two zone building was developed in this research to assess the performance of different control strategies. Two conventional (On-Off and proportional integral controllers) and one advanced control strategies (model predictive controller) were applied to a solar heating system combined with a heat pump. The building was modelled by using a lumped approach and different methods were deployed to obtain a suitable model for an air source heat pump. The control objectives were to reduce electricity costs by optimizing the operation of the heat pump, integrating the available solar energy, shifting electricity consumption to the cheaper night-time tariff and providing better thermal comfort to the occupants. Different climatic conditions were simulated to test the mentioned controllers. Both on-off and PI controllers were able to maintain the tank and room temperatures to the desired set-point temperatures however they did not make use of night-time electricity. PI controller and Model Predictive Controller (MPC) based on thermal comfort are developed in this thesis. Predicted mean vote (PMV) was used for controlling purposes and it was modelled by using room air and radiant temperatures as the varying parameters while assuming other parameters as constants. The MPC dealt well with the disturbances and occupancy patterns. Heat energy was also stored into the fabric by using lower night-time electricity tariffs. This research also investigated the issue of model mismatch and its effect on the prediction results of MPC. MPC performed well when there was no mismatch in the MPC model and simulation model but it struggled when there was a mismatch. A genetic algorithm (GA) known as a non-dominated sorting genetic algorithm (NSGA II) was used to solve two different objective functions, and the mixed objective from the application domain led to slightly superior results. Overall results showed that the MPC performed best by providing better thermal comfort, consuming less electric energy and making better use of cheap night-time electricity by load shifting and storing heat energy in the heating tank. The energy cost was reduced after using the model predictive controller
    • …
    corecore