20 research outputs found

    Recent Advances on Implantable Wireless Sensor Networks

    Get PDF
    Implantable electronic devices are undergoing a miniaturization age, becoming more efficient and yet more powerful as well. Biomedical sensors are used to monitor a multitude of physiological parameters, such as glucose levels, blood pressure and neural activity. A group of sensors working together in the human body is the main component of a body area network, which is a wireless sensor network applied to the human body. In this chapter, applications of wireless biomedical sensors are presented, along with state-of-the-art communication and powering mechanisms of these devices. Furthermore, recent integration methods that allow the sensors to become smaller and more suitable for implantation are summarized. For individual sensors to become a body area network (BAN), they must form a network and work together. Issues that must be addressed when developing these networks are detailed and, finally, mobility methods for implanted sensors are presented

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications

    Get PDF
    Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μ m CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 m m 2 . The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μ W. The analog part of the design consumes only 36 μ W, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches

    A non-resonant kinetic energy harvester for bioimplantable applications

    Get PDF
    A linear non-resonant kinetic energy harvester for implantable devices is presented. The design contains a metal platform with permanent magnets, two stators with three-dimensional helical coils for increased power generation, ball bearings, and a polydimethylsiloxane (PDMS) package for biocompatibility. Mechanical excitation of this device within the body due to daily activities leads to a relative motion between the platform and stators, resulting in electromagnetic induction. Initial prototypes without packaging have been fabricated and characterized on a linear shaker. Dynamic tests showed that the friction force acting on the platform is on the order of 0.6 mN. The resistance and the inductance of the coils were measured to be 2.2 and 0.4 mu H, respectively. A peak open circuit voltage of 1.05 mV was generated per stator at a platform speed of 5.8 cm/s. Further development of this device offers potential for recharging the batteries of implantable biomedical devices within the body.No sponso

    Advances in Bioengineering

    Get PDF
    The technological approach and the high level of innovation make bioengineering extremely dynamic and this forces researchers to continuous updating. It involves the publication of the results of the latest scientific research. This book covers a wide range of aspects and issues related to advances in bioengineering research with a particular focus on innovative technologies and applications. The book consists of 13 scientific contributions divided in four sections: Materials Science; Biosensors. Electronics and Telemetry; Light Therapy; Computing and Analysis Techniques

    Wireless Telemetry System for Implantable Sensors

    Get PDF
    Advanced testing of medical treatments involves experimentation on small laboratory animals, such as genetically modified mice. These subjects are used to help researchers develop medication and cures for humans. To understand the effects of the treatments, innovative telemetry systems are developed, that enable remote real-time cardiac monitoring. The latest research in the field of cardiac monitoring has revealed two major limitations with wireless implantable systems: a) the current size of implantable electronics limits the physical size of the system to larger subjects; and b) the systems only interface with one sensor type (e.g., pressure sensor only). This research focuses on the design of a wireless telemetry system architecture, intended to retrieve blood pressure and volume data. A physical prototype is created that is 2.475 cm3 and weights 4.01 g. This thesis will enable a path towards miniaturization, leading to the incorporation of a wireless system into small laboratory animals

    Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Get PDF
    Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD)
    corecore