5 research outputs found

    WIFI BASED INDOOR POSITIONING - A MACHINE LEARNING APPROACH

    Get PDF
    Navigation has become much easier these days mainly due to advancement in satellite technology. The current navigation systems provide better positioning accuracy but are limited to outdoors. When it comes to the indoor spaces such as airports, shopping malls, hospitals or office buildings, to name a few, it will be challenging to get good positioning accuracy with satellite signals due to thick walls and roofs as obstacles. This gap led to a whole new area of research in the field of indoor positioning. Many researches have been conducting experiments on different technologies and successful outcomes have beenseen. Each technology providing indoor positioning capability has its own limitations. In this thesis, different radio frequency (RF) and non-radio frequency (Non-RF) technologies are discussed but focus is set on Wi-Fi for indoor positioning. A demo indoor positioning app is developed for the Technobothnia building at the University of Vaasa premises. This building is already equipped with Wi-Fi infrastructure. A floor plan of the building, radio maps and a fingerprinting database with Wi-Fi signal strength measurements is created with help of tools from HERE technology. The app provides real-time positioning and routing as a future visitor tool. With the exceeding amounts of available data, one of the highly popular fields is applying Machine Learning (ML) to data. It can be applied in many disciplines from medicine to space. In ML, algorithms learn from the data and make predictions. Due to the significant growth in various sensor technologies and computational power, large amounts of data can be stored and processed. Here, the ML approach is also taken to the indoor positioning challenge. An open-source Wi-Fi fingerprinting dataset is obtained from Tampere University and ML algorithms are applied on it for performing indoor positioning. Algorithms are trained with received signal strength (RSS) values with their respective reference coordinates and the user location can be predicted. The thesis provides a performance analysis of different algorithms suitable for future mobile implementations

    3D Passive-Vision-Aided Pedestrian Dead Reckoning for Indoor Positioning

    Get PDF
    The vision-aided Pedestrian Dead Reckoning (PDR) systems have become increasingly popular, thanks to the ubiquitous mobile phone embedded with several sensors. This is particularly important for indoor use, where other indoor positioning technologies require additional installation or body-attachment of specific sensors. This paper proposes and develops a novel 3D Passive Vision-aided PDR system that uses multiple surveillance cameras and smartphone-based PDR. The proposed system can continuously track users’ movement on different floors by integrating results of inertial navigation and Faster R-CNN-based real-time pedestrian detection, while utilizing existing camera locations and embedded barometers to provide floor/height information to identify user positions in 3D space. This novel system provides a relatively low-cost and user-friendly solution, which requires no modifications to currently available mobile devices and also the existing indoor infrastructures available at many public buildings for the purpose of 3D indoor positioning. This paper shows the case of testing the prototype in a four-floor building, where it can provide the horizontal accuracy of 0.16m and the vertical accuracy of 0.5m. This level of accuracy is even better than required accuracy targeted by several emergency services, including the Federal Communications Commission (FCC). This system is developed for both Android and iOS-running devices
    corecore