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Abstract—The vision-aided Pedestrian Dead Reckoning (PDR) 

systems have become increasingly popular, thanks to the 

ubiquitous mobile phone embedded with several sensors. This is 

particularly important for indoor use, where other indoor 

positioning technologies require additional installation or body-

attachment of specific sensors. This paper proposes and develops 

a novel 3D Passive Vision-aided PDR system that uses multiple 

surveillance cameras and smartphone-based PDR. The proposed 

system can continuously track users’ movement on different floors 

by integrating results of inertial navigation and Faster R-CNN-

based real-time pedestrian detection, while utilizing existing 

camera locations and embedded barometers to provide 

floor/height information to identify user positions in 3D space. 

This novel system provides a relatively low-cost and user-friendly 

solution, which requires no modifications to currently available 

mobile devices and also the existing indoor infrastructures 

available at many public buildings for the purpose of 3D indoor 

positioning. This paper shows the case of testing the prototype in 

a four-floor building, where it can provide the horizontal accuracy 

of 0.16m and the vertical accuracy of 0.5m. This level of accuracy 

is even better than required accuracy targeted by several 

emergency services, including the Federal Communications 

Commission (FCC). This system is developed for both Android 

and iOS-running devices.  

 
Index Terms—altimetry, identification of persons, image 

processing, indoor environments, inertial navigation, position 

measurement, sensor fusion 

 

I. INTRODUCTION 

UE to unavailability of Global navigation satellite Systems 

(GNSS), e.g. the Global Positioning System (GPS) for 

indoor use, there have been a significant amount of researches 

to design and develop an alternative indoor positioning 

technology. They have resulted in several solutions, which can 

be divided into two main categories: infrastructure-based, and 

infrastructure-free [1]. Infrastructure based methods require 

costly and labor intensive pre-installations or regular 

management of related infrastructures. Meanwhile, the 
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infrastructure-free methods overcome these limitations and are 

more promising, flexible, operational and marketable in the 

future [2]. In addition, the advancement of manufacturing 

common sensors used for infrastructure-free methods has also 

led to products with lower price, less energy consumption, 

smaller size and higher general precision [3-8]. Common 

examples are Inertial Measurement Units (IMU) of Micro-

Electro-Mechanical Systems (MEMS) and cameras of Charged 

Couple Device (CCD). These advantages become more evident 

with the ubiquity of IMU sensors in smartphones and 

surveillance cameras in public building areas, leading to a wider 

range of applications in indoor scenarios in daily life [2]. 

However, none has yet provided a standalone solution that can 

provide continuous positioning at low or zero cost, and a multi-

sensor system is considered to be a better option [6]. This paper, 

for the first time, uses the integration of Faster R-CNN based 

pedestrian detection by surveillance video, smartphone-based 

PDR, and barometer-based height/floor estimation to provide 

3D positioning.  

Using IMU sensors, PDR systems can provide the relative 

locations of users (not the absolute position though), the 

orientation, and the velocity of their movement. This can be 

potentially considered as a good solution for indoor use [4, 9-

14]. PDR systems can be categorized into several groups with 

respect to where they are deployed and so what constraints can 

be applied. They include the foot-mounted [15-20], waist-

mounted [21] and hand-held systems [22-26]. This study 

proposes and implements a novel PDR system for handheld 

smartphones, to make most of their wide use and ubiquity [27, 

28], and also the miniaturized and low-cost sensors that are 

embedded in the phone [1]. However, the accumulating 

temporal drift is still the major challenge for many applications 

[20, 29, 30]. It will accumulate with time and the positioning 

errors may exceed 100m in 1 minute [9]. This leads to errors in 

long-term PDR-alone positioning, and thus external positioning 

information is required for position calibration and absolute 

localization [4, 11, 31-33].  
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One solution for this can be multi-sensor fusion, i.e. the 

integration of additional sensors [31, 33]. In recent researches, 

approximately two-thirds of multi-sensor systems are inertial 

systems calibrated by external systems, and their common 

calibration choices are Received Signal Strength (RSS), Time-

of-Flight (ToF), and map matching [34]. This study chooses 

Optical Positioning System (OPS), which is under-represented 

in previous studies [34]. However, it has a huge potential due 

to its relatively higher accuracy with increasing availability in 

the form of surveillance videos [1, 35]. The reason of not having 

a significant amount of work on OPS could be explained by its 

performance vulnerability with the possibility of obstruction of 

the Line-of-Sight (LoS) signals (between the camera and the 

targets), which is common inside the buildings, and generally 

indoors [36, 37]. This may result in failure of the OPS to 

provide a reliable and continuous positioning solution. While 

this has remained as one of the major challenges of indoor 

tracking and navigation [38], despite several studies trying to 

predict the pedestrians’ positions by using a wide range of 

algorithm including Kalman filters [39-41] and linear 

regression [42, 43], this paper uses OPS alongside with PDR to 

overcome the LoS challenge. This is mainly due to the fact that 

predicting the pedestrian’s location can be unreliable due to the 

unpredictability of human movements. The introduction of OPS 

in the hybrid positioning can also enrich information gathering 

from visual data by object detection [8, 35].  

Some recent studies [11, 22-24] have proved that the 

integration of these two sensing systems, also known as Vision-

aided Inertial System (VINS), can keep the advantages of both 

positioning systems while providing 2D localization service 

with higher accuracy, continuity, accessibility, and reliability 

[13, 33]. However, the previous passive VINSs (PVINSs) only 

focus on providing the 2D positions in a fixed scene with a 

single camera using self-trained pedestrian detectors [11, 22-

24]. To overcome these limitations, this study contributes the 

first multi-camera 3D PVINS, with the ability of handling 

multi-scene shifting. Its algorithm for pedestrian detection, i.e. 

Faster R-CNN, can be directly implemented without training by 

utilizing online resources while achieving real-time detection 

with high detection accuracy. Meanwhile, it contributes a novel 

algorithm for automatic scene-shifting integrated with PDR’s 

automatic turning recognition. Second, this study provides a 

simple but effective novel algorithm to integrate PDR and 

visual tracking systems. Its performance has achieved at least 

20% accuracy improvement of synthesized results in an 

environment with over 65% entirely invisible areas, when the 

previous 2D PVINSs are applied in environments with less than 

50% partial occlusions [22-24]. Third, it contributes a novel 

algorithm to detect different floors and even their transition 

areas as the 3D information by using a smartphone-embedded 

barometer. Fourth, it is the first study which presents the 

acquired results in the automatic switching floor plans with 

absolute world coordinates and they can be directly used in 

outdoor systems. Finally, all previous studies are only tested on 

Android systems, while this study is the first one using both 

smartphones with iOS and Android operating systems. 

This paper contributes a novel design of a 3D PVINS with 

relatively higher accuracy. It tracks 2D user movements of each 

floor by using multi-cameras and smartphone-based PDR while 

identifying the current user floor and height by using a 

smartphone-based barometer. The prototype will be tested in a 

four-floor building by using two types of smartphones, running 

the commonly deployed iOS and Android operating systems. 

The paper is organized as follows. Section II compares the 

details of methods used in this study and other studies. Section 

III describes the components of the system used in this study. 

Section IV introduces the experimental design and Section V 

presents the results with the comparisons to other methods, and 

Section VI presents the conclusion.  

II. RELATED WORKS 

Based on the way of system deployment, the VINSs can be 

divided into two classes: the active VINSs (AVINSs) and the 

PVINSs. The AVINSs have been used extensively. They can 

provide 3D location information and orientation estimation for 

motion tracking [37]. Potential applications include robotic 

navigation, Simultaneous Localization and Mapping (SLAM), 

and unmanned vehicle systems. Their common setup is to 

attach a single camera and IMU sensor together on a fixed 

platform [12, 31, 44, 45]. In order to integrate the Inertial 

System (INS) and video, common methods include Particle 

Filter (PF) [2, 46], Kalman Filters (KF) [13, 47] and its 

extensions such as Extended Kalman Filters (EKF) [7, 36] and 

Unscented Kalman Filters (UKF) [31].  

 Some of AVINSs have utilized the embedded cameras and 

IMU sensors in smartphones for indoor localization [48-50]. 

However, this approach is not fully practical, particularly for 

commercial applications, as video recording by the embedded 

camera is energy consuming and cannot support long durations 

for indoor localization. Therefore, the authors previously 

suggested deploying surveillance cameras for pedestrian 

detection while using inertial sensors in smartphones [51, 52].  

This method is regarded as PVINS. Other than AVINS, the 

sensors in this system are distributed on different platforms and 

further data transformation is needed before sensing 

integration. Some of the recent studies utilize this idea to 

provide 2D locations [22-24]. These studies integrate the visual 

results from a single surveillance camera and PDR results from 

the embedded IMU sensors in the smartphone to continuously 

track 2D user movements in either indoor or outdoor 

environments. The studies conducted by Missouri University 

[22, 23] apply similarity matrices to combine the visual and 

PDR trajectories by checking whether the distance between 

these two trajectories is within a certain threshold in each 

sliding window. For visual tracking, it tracks the user in the 

visible areas by self-trained SVM-based detector. The acquired 

results from the filming view are warped to a top-down view by 

using four corresponding pairs. This requires the whole filming 

scene to be fixed, and be covered inside the visible area of the 

camera. For PDR positioning, it is based on speed vector with 

fixed step length and moving direction, by using accelerometer, 

gyroscope, and magnetometer. Both positioning results from 

these two sub-systems are required to be transferred to relative 

world coordinate for trajectory matching. This system can 
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achieve bi-directional calibration for both PDR and visual 

results. However, as the similarity matrix in a corresponding 

sliding window needs to be updated during the matching 

process, it may lead to some difficulties in computation. It may 

also require some more computation when shifting to a second 

camera as the warping matrix needs to be re-calculated. In 

addition, it may have detection-lag errors to determine whether 

pedestrian detection is still working by checking the frames in 

a certain duration. Moreover, the final positioning results are 

still in relative coordinates and they do not provide a solution 

to link them to real geographical coordinates. In this paper, the 

integration of visual positioning and PDR is based on the PDR’s 

heading calibration from visual orientation instead of using 

their positions. Therefore, the system operation is simpler as it 

does not need to calculate these matrices and visual tracking 

process can freely shift from one camera to another as a multi-

camera system. Moreover, as this study applied deep-learning 

methods for pedestrian detection, it does not need a self-training 

process as the detectors are already available resources. 

Meanwhile, it does not need self-updating of scales, as the 

algorithm can automatically update the detector’s size and it can 

save some manual work. It also achieves nearly real-time 

detection and it can respond immediately with zero detection. 

Therefore, it can reduce delay-detection errors of the system.  

Another study conducted by Shanghai Technology 

University [24] combines the two systems by matching the gait 

features from both visual and PDR system. For visual tracking, 

their system also installs the camera to view the whole scene.  

In no-occlusion areas, it uses foreground segmentation for 

pedestrian detection. The detected user feet position in each 

frame is on the extension cord of two points: the top point of 

the foreground mask and the gravity center of the bounding box 

(BB). The occlusion area in that study is defined as the 

condition that the pedestrian is only partially detected. In these 

areas, the feet point is regarded as the mid-point of the bottom 

boundary detected by Convolutional Neural Network (CNN). 

For visual gait feature extraction, it is achieved by finding the 

repeating pattern of a higher proportion of the lower body in 

BBs. After combining step state, step frequency and heading, 

the gait features from two systems with the largest matching 

rate will be integrated for 2D positioning. This method can 

improve feet position accuracies in no-occlusion areas. 

However, it increases the responding time of system as it needs 

more processing steps and the foreground segmentation method 

cannot process pedestrian detection as quickly as deep learning 

does. Moreover, this algorithm cannot be applied in areas when 

people are too close to the camera. It will limit the system 

accuracy as the feet points cannot be treated as the bottom mid-

points as their feet are invisible in the scene. In this paper, the 

filming areas have no occlusions, and thus the system does not 

need to separately treat the calculation of feet positions. 

Moreover, it removes those BBs when no entire human bodies 

can be viewed in the frames. Comparing the matching 

algorithms, the method in [24] needs gait feature extraction 

before integrating visual tracking and PDR data together, 

leading to an increase of the computation complexity for the 

application. In this paper, it only needs the similarity checking 

of time stamps from two sub-systems as it is a continuous 

process and it is simpler to achieve. Meanwhile, the system 

proposed by [24] still does not provide a solution to transfer the 

positioning results to the absolute geographical coordinates, i.e. 

the global mapping system. This paper has solved that problem 

and it can provide opportunities for further application of 

seamless indoor-outdoor transition. This paper also compares 

the performances between two common types of smartphone 

models. Other than only using Android-running smartphones in 

the previous studies, it has improved the system robustness for 

different kinds of smartphones.  

This study first improves the design of the previous system 

in the aspect of 2D PVINS. The video data are used to be 

derived from a single camera within a fixed scene [51-53]. 

However, in this study, they are acquired from multiple cameras 

with scene shifting to enlarge the visible areas for continuous 

tracking of user movement. Moreover, the sensor fusion 

method previously used is based on position replacement by 

time synchronization, which is not that close to reality. This 

study employs an alternative approach called heading 

calibration based on the comparison of the accuracy of these 

two methods conducted in [52]. It also adds the step length 

calibration to improve the performance of the PDR system. 

With these improvements, the 2D accuracy (0.16m) of this 

system is significantly higher than the best performances 

provided by the Commercial Mobile Radio Service (CRMS) 

reported in FCC (5~10 m) [54]. Moreover, the previous studies 

[11, 22-24, 51-53] only provide 2D user locations, while to 

enable a continuous positioning service, particularly for the 

time the user is walking up or downstairs, a 3D (or the 

recognition of the floors) are required [55-57].  

This paper introduces embedded barometer from smartphone 

and provides the height and floor estimation by contributing a 

novel floor detection algorithm with the integration of pre-

stored camera locations. It achieves a vertical accuracy of 0.5m 

with 98% accurate floor detection, which is significantly better 

than the requirement of FCC (3m) [54]. Some of the previous 

studies use IMU sensors to provide heights. However, it will 

still raise the problem of increasing bias in vertical direction 

[57-59], due to the introduction of nonlinearity caused by 

accelerometer rotation during measurements. The errors will 

grow quadratically with time and they cannot be handled 

efficiently by standard EKF [29, 58]. Thus, the fusion of other 

sensor data is necessary to stabilize the height tracking by fixed 

beacons or data training [29, 30, 60]. The former one will have 

additional cost for installation [61], and the latter one requires 

a high-cost data training process [57], leading to relatively high 

energy consumption [57, 62]. 

Using a barometer may be a good alternative solution [61]. 

First, it has been widely used at outdoors for altitude 

measurements [63, 64], as it is low in energy cost [57, 64-66] 

and requires no additional installations. Second, more 

smartphones are now embedding pressure sensors, such as 

Galaxy Nexus4, Samsung S4, iPhone6, Xiaomi Mi2, and their 

more recent versions [56, 57, 61, 64, 66, 67]. Together with 

corresponding software for data fusion, the portable sensor-

assisted methods have drawn more attention in the field of 



IM-18-19909 4 

height tracking [30, 56, 57, 64].  

MEMS barometer can be integrated with IMU sensors, which 

is known as baro-IMU for indoor navigation system [30, 55, 58, 

68, 69]. It can improve the accuracy of providing height 

information than using only MEMS accelerometers [59, 66]. 

For example, one previous study has loosely coupled these two 

types of data with self-designed hardware under experimental 

conditions. Its height estimation has achieved an RMSE in a 

range between 0.05m and 0.68m with simple motions [30]. A 

later study [68] applies this approach with smartphone sensors 

to help guide the blind in subway stations and commercial 

centers with longer distance, achieving decimeter-level 

accuracy on height estimation. However, many studies more 

concentrate on improving the 2D positioning accuracy by 

enhanced PDR algorithm, rather than focusing on the vertical 

height error. They just collect the pressure data of each floor as 

fingerprints and treat the between-floor height as constant, with 

a pre-calibrated pressure sensor by GNSS signals [69, 70]. The 

typical vertical error is approximately 2m [69], and the 

detection accuracy is still unknown as they do not provide any 

results about whether the floor detection can be performed 

accurately and in time. This may be explained by that the 

requirement for floor detection by barometer is not very high in 

the real-world applications, as the height difference between 

floors is relatively significant. This paper introduces the 

transition levels between floors during measurements, which is 

usually neglected in previous studies [30, 55, 58, 68, 69]. 

Therefore, the accuracy of height estimation is becoming more 

important as more detailed height changes are needed. Some 

studies set up a referential device to improve the height 

estimation. They have achieved better mean accuracy at about 

0.15m [71]. This study also adheres to the idea of providing 

height information for indoor tracking. However, it only uses a 

single device but different data collection tools to set up 

referential measurements. In addition, as the barometer can 

only help improve the performance in the 3rd dimension [61], it 

still needs an external positioning system for calibration on the 

2D aspect, which corresponds to the PVINS in this study.  

To sum up, this study contributes a novel design of a 3D 

indoor tracking system with the integration of the passive multi-

scene OPS, active PDR and altimetry estimation, supported by 

auto-shifting georeferenced maps. It is the first time to use only 

these three sub-systems for 3D localization simultaneously and 

collaboratively.  
 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

Fig. 1. The architecture of the proposed system (PDR, Visual, Barometer, and digital floor plans are represented in red, blue, green and orange, respectively). The 

pedestrian detection and floor detection in dash-boxes will be explained later in Section III B and III D, the Geo-Coordinate Transformation is in Section III C). 

III. SYSTEM DESIGN 

The structure of our system is shown in Fig.1. During the 

operation, the smartphone-based PDR keeps actively tracking 

the user movement, while the OPS only functions in the LoS 

areas, shifting from one scene to another. This is an update to 

previous work [51-53], as it can handle multi-scene instead of 

a fixed scene. During the movement, the smartphones are held 

horizontally and pointing forward. The accelerations and the 

angular velocities are collected simultaneously. The former is 

used for step detection and step length estimation while the 

latter is applied for heading estimation. The integration of these 

data can help calculate relative 2D PDR positions. Meanwhile, 

the video recording is triggered since the user starts moving. 

Once entering the LoS area of each camera and a significant 

change is detected from the estimated PDR headings, the 2D 
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visual positions will be calculated based on BBs’ positions by 

pedestrian detection and the estimated depth information in 

corresponding frames. Meanwhile, the 3D information of the 

corresponding functioning camera will also be reported to the 

main system, which will help to calibrate the floor detection. 

The 2D visual headings are determined by visual positions in 

every two consecutive frames [52]. They will later be used for 

2D PDR heading calibration based on similar time stamps. For 

data fusion, this study replaces previous time-synchronization-

based position replacement in [51] by using synthesized results 

from calibrated headings and PDR step lengths. This is because 

heading calibration responses better to the real-world scenarios 

based on the conclusions in [52], thus it can provide better 

synthesized position estimation.  

Before 2D calibration, the 2D results from PDR and visual 

tracking should both be transformed into real geographical 

coordinates, i.e. geo-coordinate transformation. It is beneficial 

for further development of seamless indoor-outdoor positioning 

[51, 52]. To achieve that, the corresponding floor plans will 

help to provide absolute positioning information. These maps 

are pre-stored in the system and will be integrated into the 2D 

PVINS results by automatic selection based on the results of 

floor detection. The system in 2D PVINS aspect is providing a 

calibrated 2D path in an absolute coordinate system at each 

epoch, i.e. the corresponding time stamps of each step. This 2D 

path will later be integrated with the estimated height and floor 

information by finding the similar time stamps. 

 For 3D information, the system uses the smartphone-based 

barometer to continuously identify the current floor of the user 

during movements. Before the start of operation, the barometer 

needs a self-calibration. This is done by comparing and 

adjusting the two readings acquired from two smartphone apps 

installed on the very same smartphone. One is chosen as the 

‘standard’ pressure, and the other is calibrated measurement for 

the same reading. The calibrated measurements are then 

processed for height estimation and floor detection. This 

process will be discussed in more details in sub-section III D. 

With the pre-stored 3D locations of cameras in the system, the 

calibrated results for the floor detection can also be improved.  

Having distinguished the floors, the results will be integrated 

with 2D PVINS with a minimum difference of time stamps. The 

final 3D path will be presented in a 2D form on each floor with 

the corresponding georeferenced floor plan for visualization.  

A. 2D Smartphone-Based PDR 

 The proposed inertial positioning proceeds as follows: (1) 

step detection, (2) step length estimation, (3) heading 

estimation, and (4) position estimation. This paper improves the 

previous works [51, 52] by calibrating estimated step lengths 

and adds automatic turning detection in the heading estimation. 

This can improve the 2D PDR positioning accuracy and assist 

data fusion with visual tracking. 

1) Step Detection 

 The measurements from the accelerometers are first filtered 

using a low-pass filter with frequency condition as a function 

of the accelerometer’s sampling rate [5]. Then, the raw motion 

accelerations with respect to time taken in three axes as 

𝑎𝑥(𝑡), 𝑎𝑦(𝑡), and 𝑎𝑦(𝑡), needs to be synthesized. This is due to 

the distribution of vertical signals, which mainly contributes to 

the step peaks and can appear in all axes depending on the 

current device’s altitude and orientation [52, 72]. While may 

not be always true, but the projection to the horizontal axis can 

be done. In addition, the training of evacuation may include 

such recommendation to the users. Having assumed the 

horizontal grip, the step detection is only related to the relative 

synthesized motion accelerations in the vertical direction 

𝑎∗(𝑡) and its magnitude can be calculated as in (1): 

         |𝑎∗(𝑡)| = √(𝑎𝑥(𝑡))2 + (𝑎𝑦(𝑡))2 + (𝑎𝑧(𝑡))2 − 𝑔          (1) 

where 𝑔 is the earth’s gravity, requiring to be removed from the 

vertical motion component. The synthetic motion’s magnitude 

|𝑎∗(𝑡) |is then needed to be processed by applying a pre-settled 

threshold to identify different features of a gait cycle in each 

sliding window as one acceleration, two static and one 

deceleration phase. The length of the window is determined by 

the frequency of the accelerations. After that, a zero-crossing 

approach is then applied to detect different cycles 𝑖 [51, 73].  

2) Step Length Estimation 

Step length estimation is based on Weinberg’s algorithm as 

demonstrated in (2), which uses a non-linear model with 

maximum (|𝑎∗
𝑚𝑎𝑥(𝑖)|) and minimum (|𝑎∗

𝑚𝑖𝑛(𝑖)|) of synthetic 

accelerations’ magnitude of each step event 𝑖 [51, 74]. 

   𝑆𝐿𝑖 =  √|𝑎∗
𝑚𝑎𝑥(𝑖)| − |𝑎∗

𝑚𝑖𝑛(𝑖)|4
∗ 𝑘 (𝑖 = 1,2, … , 𝑛)  (2) 

where 𝑆𝐿𝑖  is the step length of the 𝑖𝑡ℎ step and 𝑘 is an empirical 

value of penalty for estimation [51], which can be determined 

by the ratio between processed results of accelerations and 

assumed walking step length in 1.22m concluded from previous 

studies in [75-77]. Then 𝑆𝐿𝑖  will be calibrated by a ratio 𝜂 

which is determined by the sum of estimated step length and the 

length of reference path  𝐷𝑅𝑒𝑎𝑙  in 2D, which is not processed in 

previous work.  

              𝑆𝐿′𝑖 =  𝜂 ∗ 𝑆𝐿𝑖  , 𝜂 =  
∑ 𝑆𝐿𝑖

𝑛
𝑖=1

𝐷𝑅𝑒𝑎𝑙
 (𝑖 = 1,2, … , 𝑛)           (3) 

3) Heading Estimation 

Each step’s orientation is relative by its corresponding 

angular velocity changes in the body frame, which can be 

measured by the embedded three-axis gyroscope in a 

smartphone as 𝜔𝑥
𝑡 , 𝜔𝑦

𝑡  and 𝜔𝑧
𝑡  [9]. The changes of heading in 

body frame from the current stage to the next stage within 

certain duration ∆𝑡 can be described as: 

Ω =   (

0 −𝜔𝑧
𝑡∆𝑡 𝜔𝑦

𝑡 ∆𝑡

𝜔𝑧
𝑡∆𝑡 0 −𝜔𝑥

𝑡 ∆𝑡

−𝜔𝑦
𝑡 ∆𝑡 𝜔𝑥

𝑡 ∆𝑡 0

)                         (4) 

The next step is to transfer that change from body frame to the 

global frame by using a 3 × 3 rotation matrix as: 

                          𝑅(𝑡 + ∆𝑡) =  𝑅(𝑡) ∗ exp(Ω) (𝑡 > 0)               (5) 

where 𝑅(𝑡) is the rotation matrix of the current stage and the 

𝑅(𝑡 + ∆𝑡) for the next stage. When in the initial stage, the 

rotation matrix 𝑅(0) can be described by rotations happened in 

three axes as 𝑅𝑥(0), 𝑅𝑦(0), 𝑅𝑧(0). The transformation process 

is described in (6)-(9): 
                 𝑅𝑥(0) =  (

1 0 0
0 cos(𝜙(0)) − sin(𝜙(0))

0 sin(𝜙(0)) cos(𝜙(0))
)                 (6) 
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                 𝑅𝑦(0) =  ( 
𝑐𝑜𝑠(𝜃(0)) 0 𝑠𝑖𝑛(𝜃(0)) 

0 1 0
− 𝑠𝑖𝑛(𝜃(0)) 0 𝑐𝑜𝑠(𝜃(0))

 )                (7) 

                  𝑅𝑧(0) =  (
𝑐𝑜𝑠(𝜓(0)) − 𝑠𝑖𝑛(𝜓(0)) 0

𝑠𝑖𝑛(𝜓(0)) 𝑐𝑜𝑠(𝜓(0)) 0
0 0 1

 )              (8) 

                              𝑅(0) =   𝑅𝑧(0)𝑅𝑦(0)𝑅𝑥(0)                            (9) 

where 𝑅𝑥(0), 𝑅𝑦(0), and 𝑅𝑧(0) are sub rotation matrix consist 

of roll 𝜙(0), pitch 𝜃(0) and yaw 𝜓(0) directions of body frame 

respectively. The overall rotation matrix 𝑅(0) is determined by 

the integration of these three components. The initial states of 

roll 𝜙(0) and pitch 𝜃(0) angles are determined by average 

changes of initial accelerations in corresponding directions and 

the initial yaw 𝜓(0) will be zero [52]. The next step is to find 

corresponding Euler angles from calculated rotation 

matrices 𝑅(𝑡) from angular velocity changes. In this study, as 

the smartphone is held in a relatively stable condition by user’s 

hand, pointing to the walking direction, the heading i.e. 𝜓(𝑖) of 

each step is only the results of changes in yaw direction [5, 52] 

and can be calculated as in (10) based on the previous detected 

step events 𝑖:                  

        𝜓(𝑖) = arctan2 (𝑅2,1(𝑖), 𝑅1,1(𝑖)) (𝑖 = 1,2, … , 𝑛)       (10) 

This is because the rotation matrix 𝑅(𝑡) can be rewritten as: 

𝑅(𝑡) = [

𝑅1,1(𝑡) 𝑅1,2(𝑡) 𝑅1,3(𝑡)

𝑅2,1(𝑡) 𝑅2,2(𝑡) 𝑅2,3(𝑡)

𝑅3,1(𝑡) 𝑅3,2(𝑡) 𝑅3,3(𝑡)
]                     (11) 

and we have  {
𝑅2,1(𝑡) =  cos(𝜃(𝑡)) sin(𝜓(𝑡))

𝑅1,1(𝑡) =  cos(𝜃(𝑡)) cos(𝜓(𝑡))
                        (12) 

According to these equations, it can be found out that: 

tan(𝜓(𝑡)) =
𝑅2,1(𝑡)

𝑅1,1(𝑡)
                                 (13) 

As the path in this study is more complicated than in previous 

works [51, 52], the acquired headings 𝜓(𝑖)  needs to be 

processed for automatic turning detection by finding the sudden 

changes of average values with a certain threshold applied 

(Fig.2).  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An example of turning detection from iPhone by heading processing.  

It can later be used for matching with visual tracking for 2D 

position calibration. The previous study has tried to extract 

features from both magnetometer and gyroscopes for heading 

direction classification by applying Principal Component 

Analysis (PCA) algorithm [70]. However, this will increase the 

computation complexity, while introducing some unexpected 

detection errors. This will also reduce the variety of headings to 

eight directions. The method used in this study tries to simplify 

the computation process by using only gyroscope, smooth down 

these unexpected changes in headings by averaging while 

providing more options for heading directions. In this study, 

about 16 corners are detected and their average delay of 

detection is approximately one step. 

4) Position Estimation and Error Calculation 

The user position  𝑃𝑖 is calculated by the combination of 

corresponded estimated step length 𝑆𝐿𝑖  with estimated heading 

𝜓(𝑖) and the location of the previous step:  

            𝑃𝑖 = [
𝑃𝐸𝑖

𝑃𝑁𝑖

] =  [
𝑃𝐸𝑖−1

+ 𝑆𝐿𝑖 ∗  sin (𝜓(𝑖))

𝑃𝑁𝑖−1
+ 𝑆𝐿𝑖 ∗  cos (𝜓(𝑖))

]             (14)         

where 𝑃𝐸𝑖
 and 𝑃𝑁𝑖

 represent the eastern and northern position 

components separately [5, 52]. Before the calculation of 

position error, the estimated positions need to be transformed 

into a real geographic system as the reference positions are 

measured in this way [52]. The positioning error 𝐸𝑖is defined as 

the distance between the estimated position  𝑃𝑖  and reference 

position 𝑅𝑓𝑖
, and is calculated in (15). Then the Mean Average 

Error (MAE) is calculated as the mean of all 𝐸𝑖  in (16). 

𝐸𝑖 =  ‖𝑃𝑖 − 𝑅𝑓𝑖
‖                                 (15) 

MAE =  
1

𝑛
∑ 𝐸𝑖

𝑛
𝑖  (𝑖 = 1,2, … 𝑛)                     (16) 

B. 2D Visual Tracking 

1) Pedestrian Detection by Faster R-CNN 

 Common methods for passive pedestrian detection are 

feature-based segmentation [78-82]. They usually require 

manual selections for the best features, leading to constraints in 

the applications and the test environments. This is mainly due 

to their parameters of algorithm needs to be modified regularly, 

which is affected by the ambient. This study uses a deep-

learning based method for pedestrian detection, called Faster R-

CNN [51]. It requires a minimum of manual inputs as almost 

the whole process is automatic, providing a solution with 

relatively high flexibility and ubiquity [83-86], in comparison 

with the feature-based methods. It is based on 3-layer Regional 

Proposal Network (RPN) and 5-layer Region-Based CNNs (R-

CNNs), and is one of the state-of-art methods for deep learning 

with higher accuracy and real-time processing [51-53, 86]. The 

RPN is used for recognizing the potential object areas (ROIs). 

The ROIs are processed by Pooling for BB prediction and the 

results are passed to Full-Connected layers for later Softmax 

classification to differentiate all classes. This study simplifies 

the original 20 classes into two: ‘human’ and ‘non-human’. 

Meanwhile, the BB regression is used to improve the detection 

accuracy (Fig.3). Some of the later studies have attempted to 

increase the robustness of Faster R-CNN by improving the 

performance of detecting partial human bodies [87], however, 

this study mainly focuses on the detection of entire human 

bodies and thus still uses Faster R-CNN.  

In this study, the cameras are located on different floors and 

they are pointing nearly orthogonally to the corridors. As the 

resolution of the camera is too low for facial recognition, there 

is no risk of privacy infringement. Before the operation, the 

acquired video data need to be divided into frames for later 

processing as the Faster R-CNN algorithm only works for 

individual images. These frames will be uploaded to the system 

by streaming. Once the user is detected by the system, it will 
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first recognize the functioning camera with corresponding 

location information. After being processed by Faster R-CNN, 

the BBs are extracted from these frames and the corresponding 

frame numbers are also recorded for later time stamps 

acquisition. As the size of these BBs will be automatically 

adjusted to the size of device holders in the frames and the 

cameras are facing nearly orthogonally to the corridor, the 

gravity center of the filming user is therefore assumed to be at 

the center of BBs. The middle points of the BBs’ bottom 

boundaries are then regarded as the lowest points of the users 

or potential user’s mobility aid [51-53, 86]. Their coordinates 

can be determined by the horizontal coordinates (𝑥𝑖
1, 𝑥𝑖

2) of the 

BBs in frames, which needs to be transferred to the real distance 

by the width of the BBs and the width of each frame, and the 

depth information 𝐷′𝑖 which is derived from a pinhole model. 

These points can be constructed into the entire user path (Fig.4). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The framework of Faster R-CNN (ROI: Region of interest). 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. An example of extracted BB from the frame (left) and entire user path 

(right), where (𝑥𝑖
1, 𝑦𝑖

1) represents the upper left of BB, and (𝑥𝑖
2, 𝑦𝑖

2) reprents the 

lower right of BB.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The shift of visual tracking from one camera to another.  

This process only functions with both a sudden change of 

PDR’s headings (i.e. at the corners) and the average ratio 𝑛  of 

height and width of extracted BBs ( 𝑛 = 2.5  in this study) 

(Fig.5). This is an update to the previous works of single-scene 

[51-53]. It allows the multi-scenes filmed by different cameras 

can be shifted from one to another based on PDR’s time stamps. 

It also helps to remove incorrect measurements of pedestrian 

detection caused by long filming distance [51-53] and ensures 

the entire human body is included in each BB for the steps.  

2) Person Localization 

The coordinate of the user in each frame can be represented 

as (𝑋𝑖 , 𝐷′1 − 𝐷′𝑖), where 𝑋𝑖 is related to the ratio between the 

width of the frame and the corridor:  

(𝑥𝑖
1+𝑥𝑖

2)

2

𝑋𝑖
= 𝛼 ∗

𝑊𝐹

𝑊𝐶𝑜𝑟𝑟
, 𝛼 =  

√(𝑥𝑖
2)2− (𝑥𝑖

1)2 

𝑊′
𝐶𝑜𝑟𝑟

               (16) 

where (𝑥𝑖
1, 𝑥𝑖

2) is the horizontal coordinate of the upper left and 

lower right corner of each BB, 𝑊𝐹  is the frame width, 𝑊′
𝐶𝑜𝑟𝑟 

is the relative corridor width on the user position in the frame, 

𝑊𝐶𝑡ℎ𝑒 𝑜𝑟𝑟  is the real width of the corridor, which will be 

provided later by integrating map information. The depth 

information 𝐷′𝑖is driven from the distance 𝐷𝑖  between user and 

camera in 𝑖𝑡ℎ frame, which could be determined by a pinhole 

camera model [80] as in (17) with a pixel height ℎ𝑖 , focal pixel 

length 𝑓  and real height 𝐻𝑝  of human. 𝑓  is determined by 

camera resolution and field of view (FOV) [51-53].   
ℎ𝑖

𝑓
=

𝐻𝑃

𝐷𝑖
 (𝑖 = 1,2, … , 𝑛)                      (17) 

The real depth information can be then driven according to the 

filming mechanism of the camera (Fig.6) as: 

|𝐷′𝑖| =  √(𝐷𝑖)2 −  (𝐻𝐶 − 𝐻𝑃)2                   (18) 

where 𝐻𝐶  represents the height of the camera which is 3m, and 

𝐻𝑃  represents the height of the person, which is 1.6m in this 

paper. The first depth gathered from the calculation 𝐷′1 can be 

calibrated by the real length of the corridor, which will be 

provided by the map information and the ratio 𝛾 will be applied 

to the calculation of |𝐷′𝑖|: 
|𝐷′𝑖|

∗ =  𝛾 ∗ |𝐷′𝑖|                              (19) 
 
 

 

 

 

 

Fig. 6. The filming mechanism of a camera for depth information calculation. 

The heading information is subsequently determined by 

detected user position points from every two consecutive 

frames as (𝑋𝑖 , 𝐷′1 − 𝛾 ∗ 𝐷′𝑖) and (𝑋𝑖+1, 𝐷′1 − 𝛾 ∗ 𝐷′𝑖+1).  

C. 2D Floor Plan Integration and Heading Calibration 

1) 2D Floor Plan Integration 

Before calibration, both 2D results achieved from 

smartphone-based PDR and camera-based visual tracking need 

to be projected into the same coordinate system provided by 

map information, i.e. geo-coordinate transformation. The way 

to achieve that is by applying rotation  𝑀 , scaling  𝛽 , and 

translation 𝛿: 

[
𝑥𝑅

𝑦𝑅
] = 𝑀 [

𝑥𝑟

𝑦𝑟
] ∗ 𝛽 + 𝛿                        (20) 

where ( 𝑥𝑅 ,  𝑦𝑅 ) are the coordinates from the real global 
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geographical coordinate system while ( 𝑥𝑟 , 𝑦𝑟 ) are from the 

relative world coordinates, which can be (𝑃𝐸𝑖
, 𝑃𝑁𝑖

) from PDR 

and (𝑋𝑖 , 𝐷′1 − 𝛾 ∗ 𝐷′𝑖) from visual tracking systems. The 

rotation  𝑀 , scaling  𝛽 , and translation  𝛿  can be determined 

during the process of geo-referencing by finding three pairs of 

points on the floor map between relative and absolute 

positioning system.   

This study digitizes the image floor plans to digital maps by 

geo-referencing. The absolute positions with some simplified 

semantic representations of indoor building information are 

then created. The digitized floor plans of different floors are 

georeferenced into WGS84 coordinate system with assigned 

floor level. With the assistance of floor detection during the 

movement, the corresponding floor plan will be automatically 

selected for visualization. The use of WGS84 would help to 

develop a seamless transition between the indoor and outdoor 

environments. This is particularly helpful as it is a widely used 

Spatial Reference System (SRS) for GPS and many other 

outdoor positioning technologies using the same SRS [51-53]. 

2) 2D PDR Heading Calibration Based Data Fusion 

For calibration, this paper uses headings from visual 

positioning results to calibrate horizontal drifts of PDR-based 

positioning. In our previous work, a method called position-

replacement is used, however, our research later compared it 

with heading calibration and found the latter preferable due to 

higher accuracy [52]. This is because the sampling frequencies 

of these two positioning systems are different, and the 

positioning results from visual tracking cannot be directly 

applied to visual tracking. This paper uses heading calibration, 

which replaces each step’s heading 𝜓(𝑡(𝑖)) acquired from PDR 

by visual orientation decided by two consecutive frames with 

similar time steps. The time steps of PDR are deduced from the 

detected step events and the related time stamps from the 

accelerometer readings, while that of the videos are inferred 

from the frame number and filming frequency.  

𝜓(𝑡(𝑖)) =  

lim
(𝑡(𝑗)−𝑡(𝑖))→0

arctan2((𝑋𝑡(𝑗), 𝐷′1 − 𝛾 ∗ 𝐷′𝑡(𝑗)), (𝑋𝑡(𝑗+1), 𝐷′1 − 𝛾 ∗ 𝐷′𝑡(𝑗+1)) (21) 

where 𝑡(𝑖) is the time step from the 𝑖𝑡ℎ  step event, 𝑡(𝑗) and 

𝑡(𝑗 + 1) are the time steps from 𝑗𝑡ℎ  and its following frames. 

The 2D user positions will be recalculated based on the 

integration of these calibrated headings and pre-calibrated step 

length 𝑆𝐿′𝑖 [52]. With this process, PDR and OPS are integrated 

together to provide a 2D path, with synthesized headings from 

PDR and OPS, and calibrated step length from PDR.  

D. Floor Detection by Barometers 

A barometer altimeter allows height estimation based on air 

pressure above the given reference level, which is by default sea 

level [30, 56, 63, 64]. The equation used in this study is in (22):  

                                     ℎ =  
((

𝑃0
𝑃

)
1

5.257−1)∗𝑇

0.0065
                           (22) 

where 𝑃0 is the standard atmospheric pressure, which is 101.325 

kPa, 𝑃 is the absolute pressure, and 𝑇 is the temperature in K.  

However, the pressure information acquired by single 

barometer can be very noisy. It can be easily affected by the 

ambient factors, such as temperature, humidity, time, and even 

opening and closing of windows or doors. On the other hand, 

the relative changes of pressure between floors can be regarded 

as a constant value [30, 61, 63, 64, 66]. One study tried to build 

up fingerprints for relative heights of each floor, but it is time-

consuming and the accuracy is not satisfied as 1 to 2m [69]. In 

a later study [71] uses one reference device and one carrying 

device for exact floor identification and reaching an accuracy 

of 0.15m. This study contributes a novel algorithm to provide 

the 3D information by using only single barometer while the 

previous works have no such information [11, 22-24, 51-53].  

This study does not need the installation of a reference 

device. Instead, it uses a single smartphone-based barometer 

but along with two barometer apps: ‘Barometer’ can provide 

pressure at the ground level and the current level and 

‘Barograph’ keeps recording pressure reading during 

movement. Their readings will be compared initially for self-

calibration and then the relative height ∆𝐻𝑖  is then calculated by 

the removing the effect from ground level: 

∆𝐻𝑖 =  ℎ𝑖 − ℎ𝑔                                (23) 

 The pressure data will be processed by finding the sudden 

changes in trend and average for floor change detection (Fig.7). 

Instead of using a certain value for each floor, which has been 

used in many studies before [57, 64, 71], it uses a referential 

height range (∆𝐻𝑅𝑗(𝐵𝑜𝑡𝑡𝑜𝑚)
, ∆𝐻𝑅𝑗(𝑇𝑜𝑝)

) for each floor to deal with 

variations caused by multiple unknown factors.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The workflow of processing pressure data for floor detection.  

The indoor temperature is supposed to be measured by an 

indoor thermometer, which needs to be pre-installed in the 

building. However, the indoor temperature in this experiment is 

controlled by an air condition system and it can be regarded as 

thermostatic, with the estimation of 20ºC (293.15K).  

The algorithm also treats the transition areas between floors 

as independent layers for floor detection, which is neglected in 

the previous studies. They can be detected by following certain 

movement patterns. During the movement from one floor to 

another in this experiment, the user needs to pass two staircases 

and a transition area between them. This needs to be treated as 

a whole process in floor detection. This paper first separately 

tests two methods: taking average or linearity. It recognizes that 

neither of these two methods can detect floor changes perfectly. 

Taking linearity is good at detecting sudden vertical movements 

but bad at dealing with the variations in the flat floors due to 

high sensitivity to slope changes. In the processing results in 

Fig.8b, it can be found that there is an extra detection on the 

Pressure 𝑷𝒊 

Relative Height 
∆𝑯𝒊 

Temperature of 

Building (K) 

Find Sudden 
Changes by Mean 

and Slope 

Combine Transitions 
between Floors 

Floor 𝑱 

Ground Floor 
Reference (Kpa) 

Ground 

Pressure 𝑷𝒈  

Thermometer (°C) 

Corresponded 
Floor Plan 

Floor Detection 

YES 
Time Steps for 

Changes 

3D Camera 
Location 

Floor number 

NO In ∆𝑯𝑹𝒋(𝑩𝒐𝒕𝒕𝒐𝒎)
− 

∆𝑯𝑹𝒋(𝑻𝒐𝒑)
? 

Height Range of Each 

Floor ∆𝑯𝑹𝒋(𝑩𝒐𝒕𝒕𝒐𝒎)
to 

∆𝑯𝑹𝒋(𝑻𝒐𝒑)  (𝒋=𝟏,𝟏.𝟓,𝟐,𝟐.𝟓,…,𝒏) 



IM-18-19909 9 

fourth floor when missing detections in third and second floors. 

On the other hand, taking average is more robust at detecting 

the horizontal movement but not able to detect vertical 

movements in time. As shown in Fig.8a, the detections of 

transition periods are always longer than that in reality. By 

integrating the results of these two methods, the transition area 

between floors requires to pass two changes of linearity and 

three different means of heights (Fig.8).  

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

Fig. 8. The processed height data for floor detection by mean (a) and linearity 

(b) respectively (the real divisions between floors are marked out in black). 

With this method, the floor detection will be related to real-

time measurements by the number of detected floor changes 

and the initial floor level. These values can be determined by 

the average of in each height range of corresponded floor and 

they can be later used as a reference (Table I). The barometer 

data will be integrated with 2D PVINS data by limiting (𝑡(𝑘) −
𝑡(𝑖)) → 0, where 𝑡(𝑘) is the time steps of barometer readings. 

TABLE I 
HEIGHT RANGES FOR EACH FLOOR 

 

 
 

 

 
 

 

 
 

 
a represents the transition area between every two floors. 

IV. EXPERIMENTAL SETUP 

The test site in this study is located at a four-floor building at 

University of Nottingham, Ningbo, China. All data are 

transferred to a desktop by wireless network for post-processing 

by MATLAB. The reference maps in WGS84 are the digitized 

floor plans imported to ArcGIS 10.3. They are posted on a web 

map repository using ArcGIS Online for indoor-outdoor 

transition, with the simple semantic representations of indoor 

structures. The overall length of the 2D reference path is approx. 

161.57m and the total height of stairs is approx. 13.07m. The 

cameras are located on 4th floor in front of Room 416 and 1st 

floor in front of elevators, facing directly to the corresponding 

corridors with the targeted user in the center of the frame (Fig.9) 

and the height of cameras in the building are all in 3m.  

For smartphone-based PDR system, a Huawei Mate8 

(Android) in Android 6 and an iPhone7 Plus (iOS) in iOS 11 

are used. The data collection app is MATLAB Mobile, which 

can achieve online data uploading during movement. The 

sampling frequency for two smartphones is set to be 50 Hz. 

During the experiment, both smartphones are held horizontally, 

pointing towards the walking directions. For the visual tracking 

system, the resolution of each camera is 680×540, the vertical 

FOV is 27°, and so the focal pixel length is about 1.05×103 per 

inch. The filming frequency is 17 frames per second (FPS). 

Cameras start filming simultaneously with the initialization of 

smartphone-based PDR. For floor detection, the barometer apps 

for pressure data collection are Barometer and Barograph. The 

latter is used for continuous recording and its sampling 

frequency is 1s-1. Barometers are triggered before the 

smartphone PDR for self-calibration and their timestamps will 

be recorded for later sensor fusion. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. 2D reference paths visualized from different floors with positions of 

cameras (a)-(c), 3D view of entire indoor path (d), and the webmap with outdoor 

environment in ArcGIS Online (e) (where ‘adpt’ represents the rooms other 
than offices and ‘con’ represents stairs and elevators).  

V. RESULTS AND ANALYSIS 

A. 2D Visual Tracking 

In this study, the overall length of 2D visible paths is 56.13m, 
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which only accounts for 34.7% for the overall path. In previous 

studies, the non-occlusion path occupies at least 50% of the 

overall path when reaching decimeter-level accuracy [22-24, 

51, 52], even some of them not reach completely invisible 

occasion but only partial occlusion [22-24]. This paper aims to 

validate whether the system can still work under this extreme 

condition.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. 2D visual tracking mapping for the 4th floor (a) and 1st floor (b). 

The OPS first provides the position of the functioning 

camera, which can also help for floor level calibration in LoS 

areas. As shown in Fig.10, with the mapping results from visual 

tracking, two partial paths from two cameras are matched well 

against the reference path. However, both two paths have a 

problem of unevenly distributed visual positioning points, 

though this phenomenon for the positioning points provided by 

the second camera is not distinct to be realized. This is mainly 

due to pinhole-based depth information calculation, which 

relies on ℎ𝑖  changes in frames. In the initial stage, the changes 

of ℎ𝑖  are trivial, leading to a dense distribution of step points; 

while in the ending part, the changes of ℎ𝑖 are becoming more 

significant [51, 52], leading to a more scattered distribution of 

positions. The length of the second partial path is quite short 

which will not raise great changes of  ℎ𝑖 . Meanwhile, long 

distance between target and camera will also lead to mistakes 

in pedestrian detection.  

Meanwhile, the filming frequency cannot match with the step 

frequency and the detected target positions are always in the 

middle of a step but cannot identify the starting and ending 

points of each step event. The previous visual gait detection 

[22-24] is not suitable for this study as: a) this paper does not 

apply foreground masks, which is quite labor intensive and 

responds slowly, while using a pinhole model for distance 

estimation; b) the filming frequency is lower than previous 

studies; and c) the ratio between IMU sampling frequency and 

filming frequency is not an integer. This makes the results from 

visual positioning more time-domain based rather than gait-

based, and these data are not suitable to be directly used for 

calibrating the PDR positioning in visible areas, though it has 

an MAE of 0.06m. However, this will not affect the headings 

between steps and the information can be later applied for PDR 

calibration.  

B. 2D Smartphone-Based PDR  

1) 2D Calibration 

In this experiment, the user walks 312 steps from the fourth 

floor to the first floor and PDR only provides the horizontal 

positions to avoid imposing additional errors due to the 

inclusion of the third dimension. The Android-running phone 

detects 296 steps while iOS-based phone detects 307 steps 

(Table II). The measurements have been repeated for 10 times, 

but the average detected steps do not change significantly, 

within 1 or 2 steps’ fluctuations. This may be caused by data 

logging mechanism of PDR data, as it needs the network 

connection for data transmission while the RSS of Wireless 

Local Area Network (WLAN) is unstable in the experimental 

site. This could be resolved by using 4/5G for Mobile 

Communications as a supplement or using an offline system for 

data collection. The other reason to that may be due to a 

relatively higher sensitivity of the accelerometers embedded in 

iPhone7 Plus than that of Huawei Mate8’s, providing a better 

step detection performance for the iPhone.  

TABLE II 

 STEP DETECTION COMPARISON BETWEEN TWO TYPES OF SMARTPHONES 

 

Before the heading calibration in the horizontal direction, the 

positional accuracies of these two types of smartphones are 

almost the same, i.e. the MAE is 0.31m (Android) and 0.29m 

(iOS) (Table III). However, according to their Cumulative 

Distribution Function (CDF) of error distributions, the 

maximum error of iOS is higher than that of Android’s while it 

has more positioning points with an error less than 1m 

(Fig.11a). However, neither performs well enough for the 

staircase area with the frequent turnings (Fig.12a). This may be 

improved with the more sensitive gyroscope in the future with 

the advancement of embedded smartphone-based sensors. 

 After the 2D heading calibration, the MAEs of both types of 

smartphone-based PDR have been improved to 0.16m (Table 

III). 95% positioning points’ error falls below 0.65m while 

before calibration it was 0.90m (Fig.11b). The Android-based-

PDR seems to perform better after horizontal calibration 

without considerations of missing detected steps (Fig.12b). It 

  Device 

 Actual Steps iPhone7 Plus Huawei Mate8 

Detected Steps 312 307 296 

Accuracy 100% 98.4% 94.9% 

(a) 

(b) 
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may be explained by the fact that more detected steps from the 

iOS system will introduce more difficulties to 2D calibration as 

this time when LoS areas only occupied 35.9% of the entire 

path. Therefore, the positioning accuracy cannot be 

significantly improved using the heading calibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The CDF distribution for 2D smartphone-based PDR before (a) and 

after calibration (b).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The 2D projection on the 1st floor with all 2D PDR data before 

calibration (a) and after calibration (b). 

TABLE III 

 POSITIONING ACCURACY ANALYSIS BEFORE AND AFTER CALIBRATION 

 RMSE* is the Root Mean Squared Error, can be calculated as: 𝑅𝑀𝑆𝐸 =

 √𝑀𝐴𝐸2 +  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒. 

2) Improvements to Other Studies Using 2D PVINS 

Comparing with the recent study conducted by Shanghai 

Technology University [24], its MAE of PVINS can achieve 

0.2m under the condition of partial occlusion, because it has 

more than 50% of positioning areas are in view during the 

experiment. However, the MAE proposed by this paper 

performs better, even with a simpler data fusion algorithm and 

a lower portion of non-occlusion areas. The CDFs in this paper 

also has an advantage of lower variations with about 90% of 

errors less than 0.4m, while this number for other studies is up 

to 0.5m. The other studies conducted by Missouri University 

[22, 23] have a minimum MAE of 0.5m, with a maximum 

improvement of 22.6%, summarizing from four tests. This is 

lower than the results achieved in this paper with a maximum 

improvement of 48.3% and an MAE at 0.16m (Table IV). 

Moreover, our designed referential path has 16 turnings during 

movement, which could easily introduce more errors due to the 

bias drift from the gyroscope. While in the other studies, the 

maximum number of turnings is 4. This shows its potential to 

deal with a path with a more complicated structure. Meanwhile, 

the ending points of both calibrated paths match well with the 

entrance of the building, which can keep tracking user 

trajectory and later be directly shifted to the outdoor positioning 

system with available GPS signals. This system also has been 

tested on two types of smartphones while the previous studies 

mainly focus on Android-running systems. However, the 

system proposed by this paper cannot provide gait-feature 

based visual tracking as in [22-24], which makes the visual 

tracking results not fully compatible with step event mechanism 

of PDR. It makes this system more single-directional 

calibration based, i.e. calibrating PDR by visual tracking but not 

the other way round.  

TABLE IV 
POSITIONING ACCURACY COMPARISON BETWEEN OTHER 2D PVINS STUDIES  

3) Comparison to Other Studies Using Magnetometer-Based 

Heading Calibration 

This paper also compares its performance of 2D aspect to 

some other studies, who investigate alternative approaches, to 

 Device 

Index for Accuracy Huawei Mate 8 iPhone7 Plus 

Pre-Calibration MAE (m)* 0.31 0.29 

RMSE (m) * 0.43 0.43 
Post-Calibration MAE (m) 0.16 0.16 

Improvement 48.3% 44.8% 

RMSE (m) * 0.24 0.28 

Improvement 44.2% 34.8% 

Reference [22, 23] [24] This Study 

FPS 30 20 17 

Visible Area (%) >50 51.7 34.7 

Device  Samsung 

Galaxy S4 

Huawei 

Honor8  

Huawei Mate8,  

iPhone7 Plus 

Turnings 4 3 16 
Best MAE (m) 0.50 0.20 0.16 

Calibration Bi-directional Bi-directional Single-directional 
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improve the performances of Dead Reckoning (DR) based 

Indoor Inertial Systems [15-21, 25, 26]. They use 

magnetometers for heading calibration instead of passive OPS. 

The majority of these studies apply self-developed hardware-

suite without support from additional sensing system for precise 

positioning. Their preferred position for sensor wearing is on 

the foot, such as [15-20]. Their algorithms are mainly based on 

Zero-Velocity Updates (ZUPT) [15-20], with data fusion and 

error control based on EKF [16, 20] or Complimentary Filter 

(CF) [15, 19]. Some of the studies even integrate ZUPT and 

Step-and-Heading System (SHS) together for position 

estimation [17, 18]. Others hold the device in hand [25, 26] or 

put it on the waist [21]. These studies apply SHS for position 

estimations, with either Peak-Detection-based (PDT) or Zero-

Detection-based (ZDT) algorithm for step detection. Among 

these methods, the accuracy and experimental conditions of 

these studies are shown in Table V. As almost all path types in 

other studies are close-loops and their accuracies are evaluated 

as Start-to-End radial distance, thus the positioning accuracy for 

this study is treated as the ratio between the largest error during 

estimation and total walking distance for reference. The 

distance error is also treated as the ratio between the overall 

length of the predicted distance and the ground truth due to the 

different lengths of the designed paths. 

When comparing the positioning accuracy, the performance 

of the system in this case is not as good as these relatively 

precise foot-mounted INS systems with commercial IMU 

sensors, such as 0.3% in [20] and 0.4% in [15], though they are 

still comparable. This can be explained by the following 

reasons. First, the results are only calibrated in the LoS areas 

while the accuracy listed in Table V is the overall performance 

of both the visible and the invisible areas. The positioning 

accuracy in the LoS areas is 0.06%, which is much better than 

that in [15, 20]. The largest error actually appears in the 

invisible areas with frequent turnings, by only using 

smartphone-based PDR. This can be affected by the precision 

of applied hardware. The precision of the IMU sensors 

embedded in smartphones is not comparable to that of 

commercial foot-mounted sensors [4]. Moreover, as our system 

is tested on an open-loop path, it cannot have reverse-

calibration as testing on a close-loop path [4]. Meanwhile, the 

foot-mounted systems have higher accuracy of step detection 

due to the position of sensor installation and the mechanism of 

ZUPT. However, our system has an advantage of higher 

accessibility as it only requires to have a specific smartphone 

app for data collection and transfer, while the foot-mounted 

systems with comparable accuracies [15, 20] require to wear 

specific body-attached sensors, cables, or batteries. Meanwhile, 

considering the user experience, it can be hard to persuade the 

users to wear specific sensor suites on body as in [15, 20] while 

our system only requiring current buildings to install a 

surveillance system. Although it also needs the potential costs 

of camera installation and calibration for the application, it may 

not be a problem as the installation of surveillance cameras is 

necessary not only for the tracking but also for the security 

purpose and the calibration is required only once. In addition, 

the surveillance system installation will be a ubiquitous 

requirement for the future buildings, which shows potential 

market for our system. Moreover, it shows a relatively higher 

accuracy of total distance estimation by using the camera 

calibration (0.1%) than all previous studies. For processing 

algorithm, the computation cost for deep learning is higher than 

that for EKF, however, this will be compensated by its high 

accuracy in the LoS areas (0.06%).  

When compared to [26] with better overall performance 

among SHS-based systems, the system in this study has 

comparable performance on positioning accuracy. However, 

for the step detection, the accuracy of this system (98.4%) is 

slightly lower than that of [26] (98.67%). This may be also 

partially due to the hardware precision as mentioned above. 

Moreover, [26] divides the steps modes into four classes by 

SVM classification and introduces a Band-Pass Filter (BPF) for 

step detection under different walking modes. This may require 

more manual preparations before the test. However, our system 

does not have this process and just treats the whole process with 

one mixed class. Moreover, the difference between step-

detection accuracies is not significant and the performance of 

our system is acceptable for positioning. Another advantage of 

our handheld system is the deployed sensor suite is already 

available in daily life and will be more easily accepted by user. 

TABLE V 

 POSITIONING ACCURACY COMPARISON BETWEEN MAGNETOMETER-BASED STUDIES 

 

Reference [20] [16] [19] [15] [17] [18] [21] [25] [26] This Study 

Algorithm ZUPT-EKF ZUPT-EKF ZUPT-CF ZUPT-CF ZUPT-SHS ZUPT-SHS SHS-PDT SHS-ZDT SHS-(BPF)PDT SHS-ZDT 

PDR Data Collection 

Devices InertiaCube3 
Self-created 

prototype 

MicroStrain  

3DM-GX1 

MTi & 

MTi-G 
Nano IMU ADIS16405 NavMote Nexus S 

Self-created 

prototype 

Huawei 

Mate8/  
iPhone7 Plus 

Device Positions  On Foot On Foot On Foot On Foot On Foot On Foot On Waist Handheld Handheld Handheld  

Path Type Close loop Close loop Close loop Close loop Close loop Close loop Close loop Close loop Close loop Open loop 

Total Distance (m) 118.5 239.9 437.50 80 60 132 400 120 400 161.57 

2D Positioning 

Accuracy (%)  
0.3 2.01 1.0 0.4 2.0 3.26 3.0 4.2 1.8 0.6  

2D Distance Error (%)   / 3.47 0.27   / 2.0   / 3.0 1.7-6.7 1.9 0.1 

Data Transfer Radio 
Frequency-

Receiver 

Bluetooth Sony UXP-180  
mini-computer  

USB  Data Cable Bluetooth NetMote USB ARM Processor WLAN 
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C. Height Estimation and Floor Detection 

For 3D positioning, the common way to achieve that is to treat 

the horizontal and vertical localization separately [20, 30, 59, 

66, 68-70, 88]. This may be due to the navigation mechanism, 

as the horizontal positioning is more important on each floor 

than in the transition areas in staircases and the vertical 

positioning only needs to provide the correct floor. However, as 

this study also considers the transition areas to be individual 

levels, it will both provide the height accuracy and floor 

detection accuracy for localization. Moreover, both the initial 

and the final floors have additional sensor information for floor 

level calibration, i.e. cameras’ 3D locations in the main system. 

This can help improve the floor detection accuracy than using 

only the barometer-based floor detection algorithm. 

1) Height Estimation and Floor Detection by Barometers 

After the recorded pressure data are transferred into height, 

the MAEs of estimated height information from both types of 

smartphones is about 0.5m, which is not as good as that of using 

two barometers with one as a reference device with an accuracy 

of 0.15m [71]. However, it is better than the methods with a 

single barometer, which only achieves an accuracy of 1 to 2m 

[68-70, 88] (Table VI). Considering the low-cost and easy 

implementation, our method is still a better choice than other 

methods with comparable accuracy. 

TABLE VI 

ACCURACY COMPARISON BETWEEN OTHER STUDIES USING BAROMETERS 

After being processed using the floor detection algorithm, the 

results show that the barometers from both types of 

smartphones are sensitive enough to recognize the floors with 

relatively high accuracy, i.e. 98%. The errors typically appear 

in the first stages of the movement going down from the stairs. 

This may be due to the imprecision of embedded barometers, as 

the previous studies have faced the similar problems as the 

minimum height change that can be detected is about 1.6m [57, 

66, 89]. However, the height difference between every two 

stairs (0.16m) is smaller than that range in this experiment. 

2) Comparison with IMU-based Height Estimation 

Some studies explore the accuracy of using vertical 

acceleration changes based on foot-mounted INS for height 

estimation [16, 20]. As the experimental conditions of these 

studies are different, the accuracy will be assessed by the ratio 

between estimated height error and the overall height of the 

staircases (Table VII). The results suggest that the barometer-

assisted height detection is comparable to these foot-mounted 

sensor systems, even using lower precision of embedded 

hardware in smartphones. 

 TABLE VII 

ACCURACY COMPARISON BETWEEN OTHER STUDIES USING 

ACCELEROMETERS 

D. 3D Localization and Comparison to Other Studies 

A 3D path is produced after the integration with previous 

calibrated results of 2D PVINS by similar time stamps (Fig.13). 

However, as not all the steps are detected, there are some 

additional errors being introduced into PDR-based positioning 

system besides the errors from the barometer measurements, 

especially for Android-running system as it has more 

undetected steps. Moreover, as the step event frequency is not 

perfectly matching with that of height data, which will be 

another error source for the 3D localization. Thus, 3D positions 

estimated by Android-running system will have larger total 

MAE (1.55m) than that by the iOS-based system (1.52m). The 

errors mainly come from the transition areas, where there is no 

calibration from visual positioning and the barometer cannot 

deal with the quick changes of insignificant changes of height 

by walking downstairs (Fig.13), which has also been proved by 

[61] with similar conclusions.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.  The 3D view of the estimated path by smartphone-based PDR 

(Android in light blue and iOS in dark blue) and the locations of main errors in 

dash boxes. 

When comparing to the other systems with precise IMU 

sensors [20, 26], their performances are not affected by the 

missing detection of steps during sensor fusion. Therefore, their 

previous higher accuracies in both 2D positioning and height 

estimation will lead to a relatively better 3D positioning 

accuracy, with 0.3% in [20], and 1.1% in [26] (the accuracy 

here is the ratio between estimated error and the total distance 

of referential path). The accuracy of the proposed system is 

about 0.9%, which can be regarded as comparable to these 

studies. Moreover, this is also better than the previous study 

using multi-sensor system including Wi-Fi, iBeacons, and 

barometer for positioning with a 3D positioning accuracy of 

Reference [88] [68] [69, 70] [71] This Study 

Methods BPF Relative 

height 

fingerprint 

Relative 

height 

fingerprint + 

GNSS 

signals 

Reference 

Device  

Self-calibration 

+ 

Mean and Slope 

Change 

Detection 
No. of 

Barometers 
1 1 1 2 1 

Device  Self-
created 

prototype 

Samsung 
Galaxy S3 

Unknown 
Android 

Phone 

Samsung 
Galaxy 

N5 
Samsung 
Galaxy S4 

Huawei Mate8/ 
iPhone7 Plus 

MAE (m) 1.20 1~2 1~2 0.15 0.5 

Reference [20] [16] This Study 

Methods ZUPT  ZUPT +  
Probabilistic 

Neutral Network 

Classification 

Self-calibration + 

Mean and Slope 
Change Detection 

Total Height (m) 3 7.84 13.07 

Device  InertiaCube3 Self-created  

Prototype 

Huawei Mate8/ 

iPhone7 Plus 
Mean Accuracy (%) 2 6.42 3.8 

4F 

3F 

2F 

1F 
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1.7% [61], while having no additional cost for installation or 

infrastructure management. The accuracy of the proposed 

system may be improved in future with the PDR algorithm or 

the advancement of embedded IMU sensors to have higher 

sensitivity to detect the correct number of steps. 

However, the requirement of 3D positioning accuracy is less 

important for real applications as it usually requires 2.5D 

positioning instead of real 3D positioning. The user positions 

can then be represented as 𝑃∗(𝑥𝑅 , 𝑦𝑅 , 𝐽)  by providing the 

horizontal positions (𝑥𝑅 , 𝑦𝑅) and the correct floor number 𝐽. By 

integrating floor number information into the previous 2D 

system based similar time stamps, the overall performance of 

the system will not be significantly affected as this time the 2D 

positions are more important and the floor detection accuracy is 

high enough to handle automatic floor plan changes.   

E. Limitations before Developing into Real-Time System 

Like other similar studies [15-26], the data in this study is 

post-processed after transmission to the desktop. This is mainly 

limited by the visual data acquisition due to the privacy policy 

in the university and the visual data is not allowed to be 

transmitted to the desktop in real time. Meanwhile, the ‘PDR’ 

and the ‘Height Estimation’ sub-systems have already achieved 

real-time processing as the inertial and pressure data can be sent 

to desktop and processed during the movement via WLAN and 

the positions of the user will be stored in the system. The current 

offline system can be used for low-cost 3D mobile mapping, 

which can help calibrate the moving trajectories for 2D laser 

scanning to build 3D indoor models. It also can provide 

historical paths of the indoor pedestrians for security checking. 

In the future, one of the limitations of turning this system into 

an online system will be the live streaming speed of 

surveillance videos. This is determined by the available 

bandwidth of the existing WLAN in the building. For the 

current system, the bandwidth should be approx. 6 Mbps for 

each camera, while the university’s WLAN bandwidth is 10 

Mbps and it can fully support its live streaming. The storage of 

the data may be another problem. However, this system is 

designed for a whole building with a powerful processing center 

and it is assumed to finish all processing in the mainstream and 

send the data back to the user’s device via the network, like the 

idea mentioned in [21]. The requirement of the computation 

power for real-time detection is not very high. In this study, the 

computer has a CPU in Intel Core i7-7700, a GPU in NVIDIA 

GTX 1080, and 16G RAM, which is commonly used in the field 

of computer vision industry.  

VI. CONCLUSION 

 This study has designed a novel low-cost and user-friendly 

3D PVINS that uses multi-cameras, smartphone-based PDR 

and embedded barometer, and provides a comparable 3D 

accuracy of 0.9%. The novelty of this system is: (a) a modified 

Faster R-CNN based passive visual tracking, with simple 

implementation, high accuracy, and real-time detection; (b) a 

novel algorithm for multi-scene shifting with automatic PDR 

turning detection; (c) a novel data fusion method with simple 

operation and high effectiveness, achieving more than 20% 2D 

accuracy improvement for severe occlusion-affected areas than 

the previous 2D PVINSs; d) a novel algorithm for height/floor 

estimation with more detailed floor-level division using single 

embedded barometer in a smartphone; e) the acquired results 

with absolute coordinates to be directly used in outdoor 

systems; f) the application on both Android-running and iOS-

running smartphones with better robustness than previous 

Android-only systems. This system can provide 2D positions of 

each floor with an accuracy of 0.16m while identifying the 

current floor level of the users with 98% detection accuracy 

(0.5m vertical accuracy), which has already reached the 

requirement by FCC, with 50m horizontal accuracy and 3m 

vertical accuracy [54]. Another advantage of this 3D PVINS is 

no special requirement of attaching instruments on user bodies 

or using specific sensor-suite as settlements in other self-

contained systems, which makes them more accessible and 

user-friendly for the future applications. However, the PDR 

algorithm used in this study needs further improvement, 

because there are more missing steps with the accumulation of 

distance. This may be due to the data logging mechanism, and 

it may be solved by temporary data storage on a user’s device 

and resuming data transmission when having Wi-Fi connection 

again. Moreover, as this system is currently designed for single 

user tracking, it still has the potential to be developed into a 

multi-user system, which needs to improve the algorithm of 

visual tracking. The acquisition of surveillance data may be 

another limitation before turning the current system into a real-

time system as it will raise the issue of personal privacy and this 

time the permission is pre-applied for data downloading. The 

floor identification approach can also be more precise to 

identify exact user 3D locations inside buildings. 
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