3,430 research outputs found

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Framework for Data Sharing in Computer Supported Cooperative Environments

    Get PDF
    Concurrency control is an indispensable part of any information sharing system. Co-operative work introduces new requirements for concurrency control which cannot be met using existing applications and database management systems developed for non-cooperative environments. The emphasis of concurrency control in conventional database management systems is to keep users and their applications from inadvertently corrupting data rather than support a workgroup develop a product together. This insular approach is necessary because applications that access the database have been built with the assumptions that they have exclusive access to the data they manipulate and that users of these applications are generally oblivious of one another. These assumptions, however, are counter to the premise of cooperative work in which human-human interaction is emphasized among a group of users utilizing multiple applications to jointly accomplish a common goal. Consequently, applying conventional approaches to concurrency control are not only inappropriate for cooperative data sharing but can actually hinder group work. Computer support for cooperative work must therefore adopt a fresh approach to concurrency control which does promote group work as much as possible, but without sacrifice of all ability to guarantee system consistency. This research presents a new framework to support data sharing in computer supported cooperative environments; in particular, product development environments where computer support for cooperation among distributed and diverse product developers is essential to boost productivity. The framework is based on an extensible object-oriented data model, where data are represented as a collection of interrelated objects with ancillary attributes used to facilitate cooperation. The framework offers a flexible model of concurrency control, and provides support for various levels of cooperation among product developers and their applications. In addition, the framework enhances group activity by providing the functionality to implement user mediated consistency and to track the progress of group work. In this dissertation, we present the architecture of the framework; we describe the components of the architecture, their operation, and how they interact together to support cooperative data sharing

    Optimistic replication

    Get PDF
    Data replication is a key technology in distributed data sharing systems, enabling higher availability and performance. This paper surveys optimistic replication algorithms that allow replica contents to diverge in the short term, in order to support concurrent work practices and to tolerate failures in low-quality communication links. The importance of such techniques is increasing as collaboration through wide-area and mobile networks becomes popular. Optimistic replication techniques are different from traditional “pessimistic ” ones. Instead of synchronous replica coordination, an optimistic algorithm propagates changes in the background, discovers conflicts after they happen and reaches agreement on the final contents incrementally. We explore the solution space for optimistic replication algorithms. This paper identifies key challenges facing optimistic replication systems — ordering operations, detecting and resolving conflicts, propagating changes efficiently, and bounding replica divergence — and provides a comprehensive survey of techniques developed for addressing these challenges

    Transmitter Optimization in Multiuser Wireless Systems with Quality of Service Constraints

    Get PDF
    In this dissertation, transmitter adaptation for optimal resource allocation in wireless communication systems are investigated. First, a multiple access channel model is considered where many transmitters communicate with a single receiver. This scenario is a basic component of a. wireless network in which multiple users simultaneously access the resources of a wireless service provider. Adaptive algorithms for transmitter optimization to meet Quality-of-Service (QoS) requirements in a distributed manner are studied. Second, an interference channel model is considered where multiple interfering transmitter-receiver pairs co-exist such that a given transmitter communicates with its intended receiver in the presence of interference from other transmitters. This scenario models a wireless network in which several wireless service providers share the spectrum to offer their services by using dynamic spectrum access and cognitive radio (CR) technologies. The primary objective of dynamic spectrum access in the CR approach is to enable use of the frequency band dynamically and opportunistically without creating harmful interference to licensed incumbent users. Specifically, CR users are envisioned to be able to provide high bandwidth and efficient utilization of the spectrum via dynamic spectrum access in heterogeneous networks. In this scenario, a distributed method is investigated for combined precoder and power adaptation of CR transmitters for dynamic spectrum sharing in cognitive radio systems. Finally, the effect of limited feedback for transmitter optimization is analyzed where precoder adaptation uses the quantized version of interference information or the predictive vector quantization for incremental updates. The performance of the transmitter adaptation algorithms is also studied in the context of fading channels

    The integrity of digital technologies in the evolving characteristics of real-time enterprise architecture

    Get PDF
    Advancements in interactive and responsive enterprises involve real-time access to the information and capabilities of emerging technologies. Digital technologies (DTs) are emerging technologies that provide end-to-end business processes (BPs), engage a diversified set of real-time enterprise (RTE) participants, and institutes interactive DT services. This thesis offers a selection of the author’s work over the last decade that addresses the real-time access to changing characteristics of information and integration of DTs. They are critical for RTEs to run a competitive business and respond to a dynamic marketplace. The primary contributions of this work are listed below. • Performed an intense investigation to illustrate the challenges of the RTE during the advancement of DTs and corresponding business operations. • Constituted a practical approach to continuously evolve the RTEs and measure the impact of DTs by developing, instrumenting, and inferring the standardized RTE architecture and DTs. • Established the RTE operational governance framework and instituted it to provide structure, oversight responsibilities, features, and interdependencies of business operations. • Formulated the incremental risk (IR) modeling framework to identify and correlate the evolving risks of the RTEs during the deployment of DT services. • DT service classifications scheme is derived based on BPs, BP activities, DT’s paradigms, RTE processes, and RTE policies. • Identified and assessed the evaluation paradigms of the RTEs to measure the progress of the RTE architecture based on the DT service classifications. The starting point was the author’s experience with evolving aspects of DTs that are disrupting industries and consequently impacting the sustainability of the RTE. The initial publications emphasized innovative characteristics of DTs and lack of standardization, indicating the impact and adaptation of DTs are questionable for the RTEs. The publications are focused on developing different elements of RTE architecture. Each published work concerns the creation of an RTE architecture framework fit to the purpose of business operations in association with the DT services and associated capabilities. The RTE operational governance framework and incremental risk methodology presented in subsequent publications ensure the continuous evolution of RTE in advancements of DTs. Eventually, each publication presents the evaluation paradigms based on the identified scheme of DT service classification to measure the success of RTE architecture or corresponding elements of the RTE architecture
    • …
    corecore