180 research outputs found

    On the discrepancy of random low degree set systems

    Get PDF
    Motivated by the celebrated Beck-Fiala conjecture, we consider the random setting where there are nn elements and mm sets and each element lies in tt randomly chosen sets. In this setting, Ezra and Lovett showed an O((tlogt)1/2)O((t \log t)^{1/2}) discrepancy bound in the regime when nmn \leq m and an O(1)O(1) bound when nmtn \gg m^t. In this paper, we give a tight O(t)O(\sqrt{t}) bound for the entire range of nn and mm, under a mild assumption that t=Ω(loglogm)2t = \Omega (\log \log m)^2. The result is based on two steps. First, applying the partial coloring method to the case when n=mlogO(1)mn = m \log^{O(1)} m and using the properties of the random set system we show that the overall discrepancy incurred is at most O(t)O(\sqrt{t}). Second, we reduce the general case to that of nmlogO(1)mn \leq m \log^{O(1)}m using LP duality and a careful counting argument

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma

    Full text link
    We consider integer programming problems in standard form max{cTx:Ax=b,x0,xZn}\max \{c^Tx : Ax = b, \, x\geq 0, \, x \in Z^n\} where AZm×nA \in Z^{m \times n}, bZmb \in Z^m and cZnc \in Z^n. We show that such an integer program can be solved in time (mΔ)O(m)b2(m \Delta)^{O(m)} \cdot \|b\|_\infty^2, where Δ\Delta is an upper bound on each absolute value of an entry in AA. This improves upon the longstanding best bound of Papadimitriou (1981) of (mΔ)O(m2)(m\cdot \Delta)^{O(m^2)}, where in addition, the absolute values of the entries of bb also need to be bounded by Δ\Delta. Our result relies on a lemma of Steinitz that states that a set of vectors in RmR^m that is contained in the unit ball of a norm and that sum up to zero can be ordered such that all partial sums are of norm bounded by mm. We also use the Steinitz lemma to show that the 1\ell_1-distance of an optimal integer and fractional solution, also under the presence of upper bounds on the variables, is bounded by m(2mΔ+1)mm \cdot (2\,m \cdot \Delta+1)^m. Here Δ\Delta is again an upper bound on the absolute values of the entries of AA. The novel strength of our bound is that it is independent of nn. We provide evidence for the significance of our bound by applying it to general knapsack problems where we obtain structural and algorithmic results that improve upon the recent literature.Comment: We achieve much milder dependence of the running time on the largest entry in $b

    Discrepancy and Signed Domination in Graphs and Hypergraphs

    Get PDF
    For a graph G, a signed domination function of G is a two-colouring of the vertices of G with colours +1 and -1 such that the closed neighbourhood of every vertex contains more +1's than -1's. This concept is closely related to combinatorial discrepancy theory as shown by Fueredi and Mubayi [J. Combin. Theory, Ser. B 76 (1999) 223-239]. The signed domination number of G is the minimum of the sum of colours for all vertices, taken over all signed domination functions of G. In this paper, we present new upper and lower bounds for the signed domination number. These new bounds improve a number of known results.Comment: 12 page

    Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem

    Get PDF
    An important theorem of Banaszczyk (Random Structures & Algorithms `98) states that for any sequence of vectors of 2\ell_2 norm at most 1/51/5 and any convex body KK of Gaussian measure 1/21/2 in Rn\mathbb{R}^n, there exists a signed combination of these vectors which lands inside KK. A major open problem is to devise a constructive version of Banaszczyk's vector balancing theorem, i.e. to find an efficient algorithm which constructs the signed combination. We make progress towards this goal along several fronts. As our first contribution, we show an equivalence between Banaszczyk's theorem and the existence of O(1)O(1)-subgaussian distributions over signed combinations. For the case of symmetric convex bodies, our equivalence implies the existence of a universal signing algorithm (i.e. independent of the body), which simply samples from the subgaussian sign distribution and checks to see if the associated combination lands inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which allows us to reduce to the case where the body is symmetric. As our second main contribution, we show that the above framework can be efficiently implemented when the vectors have length O(1/logn)O(1/\sqrt{\log n}), recovering Banaszczyk's results under this stronger assumption. More precisely, we use random walk techniques to produce the required O(1)O(1)-subgaussian signing distributions when the vectors have length O(1/logn)O(1/\sqrt{\log n}), and use a stochastic gradient ascent method to implement the recentering procedure for asymmetric bodies

    Improved Algorithmic Bounds for Discrepancy of Sparse Set Systems

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most tt sets. We give an algorithm that finds a coloring with discrepancy O((tlognlogs)1/2)O((t \log n \log s)^{1/2}) where ss is the maximum cardinality of a set. This improves upon the previous constructive bound of O(t1/2logn)O(t^{1/2} \log n) based on algorithmic variants of the partial coloring method, and for small ss (e.g.s=poly(t)s=\textrm{poly}(t)) comes close to the non-constructive O((tlogn)1/2)O((t \log n)^{1/2}) bound due to Banaszczyk. Previously, no algorithmic results better than O(t1/2logn)O(t^{1/2}\log n) were known even for s=O(t2)s = O(t^2). Our method is quite robust and we give several refinements and extensions. For example, the coloring we obtain satisfies the stronger size-sensitive property that each set SS in the set system incurs an O((tlognlogS)1/2)O((t \log n \log |S|)^{1/2}) discrepancy. Another variant can be used to essentially match Banaszczyk's bound for a wide class of instances even where ss is arbitrarily large. Finally, these results also extend directly to the more general Koml\'{o}s setting
    corecore