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a b s t r a c t

For a graph G, a signed domination function of G is a two-colouring of the vertices of Gwith
colours+1 and−1 such that the closed neighbourhood of every vertex containsmore+1’s
than−1’s. This concept is closely related to combinatorial discrepancy theory as shown by
Füredi and Mubayi [Z. Füredi, D. Mubayi, Signed domination in regular graphs and set-
systems, J. Combin. Theory Ser. B 76 (1999) 223–239]. The signed domination number of G
is the minimum of the sum of colours for all vertices, taken over all signed domination
functions of G. In this paper, we present new upper and lower bounds for the signed
domination number. These new bounds improve a number of known results.

© 2010 Elsevier B.V. All rights reserved.

1. Discrepancy theory and signed domination

Originated from number theory, discrepancy theory is, generally speaking, the study of irregularities of distributions in
various settings. The classical combinatorial discrepancy theory is devoted to the problem of partitioning the vertex set of a
hypergraph into two classes in such a way that all hyperedges are split into approximately equal parts by the classes, i.e. we
are interested inmeasuring the deviation of an optimal partition fromperfect, when all hyperedges are split into equal parts.
It may be pointed out that many classical results in various areas of mathematics, e.g. geometry and number theory, can be
formulated in these terms. The combinatorial discrepancy theory was introduced and studied by Beck in [2]. Also, studies
on discrepancy theory have been conducted in [3–5,15].
Let H = (V , E) be a hypergraph with the vertex set V and the hyperedge set E = {E1, . . . , Em}. One of the main

problems in classical combinatorial discrepancy theory is to colour the elements of V by two colours in such a way that all
of the hyperedges have almost the same number of elements of each colour. Such a partition of V into two classes can be
represented by a function

f : V → {+1,−1}.

For a set E ⊆ V , let us define the imbalance of E as follows:

f (E) =
∑
v∈E

f (v).

First defined by Beck [2], the discrepancy of H with respect to f is

D(H, f ) = max
Ei∈E
|f (Ei)|

and the discrepancy ofH is

D(H) = min
f :V→{+1,−1}

D(H, f ).
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Thus, the discrepancy of a hypergraph tells us how well all its hyperedges can be partitioned. Spencer [16] proved a
fundamental ‘‘six-standard-deviation’’ result that for any hypergraphH with n vertices and n hyperedges,

D(H) ≤ 6
√
n.

As shown in [1], this bound is best possible up to a constant factor. More precisely, if a Hadamard matrix of order n > 1
exists, then there is a hypergraphH with n vertices and n hyperedges such that

D(H) ≥ 0.5
√
n.

It is well known that a Hadamard matrix of order between n and (1 − ε)n does exist for any ε and sufficiently large n. The
following important result, due to Beck and Fiala [4], is valid for a hypergraph with any number of hyperedges:

D(H) ≤ 2∆− 1,

where∆ is the maximum degree of vertices ofH . They also posed the discrepancy conjecture that for some constant K

D(H) < K
√
∆.

Another interesting aspect of discrepancywas discussed by Füredi andMubayi in their fundamental paper [9]. A function
g : V → {+1,−1} is called a signed domination function (SDF) of the hypergraphH if

g(Ei) =
∑
v∈Ei

g(v) ≥ 1

for every hyperedge Ei ∈ E , i.e. each hyperedge has a positive imbalance. The signed discrepancy ofH , denoted by SD(H),
is defined in the following way:

SD(H) = min
SDFg
g(V ),

where the minimum is taken over all signed domination functions ofH . Thus, in this version of discrepancy, the success is
measured byminimizing the imbalance of the vertex set V , while keeping the imbalance of every hyperedge Ei ∈ E positive.
One of the main results in this context, formulated in terms of hypergraphs, is due to Füredi and Mubayi [9]:

Theorem 1 ([9]). Let H be an n-vertex hypergraph with hyperedge set E = {E1, . . . , Em}, and suppose that every hyperedge
has at least k vertices, where k ≥ 100. Then

SD(H) ≤ 4

√
ln k
k
n+

1
k
m.

This theorem can be easily re-formulated in terms of graphs by considering the neighbourhood hypergraph of a given
graph. A signed domination function of a graphG is a two-colouring of the vertices ofGwith colours+1 and−1 such that the
closed neighbourhood of every vertex contains more+1’s than−1’s. The signed domination number of G, denoted γs(G), is
the minimum of the sum of colours for all vertices, taken over all signed domination functions of G.

Theorem 2 ([9]). If G has n vertices and minimum degree δ ≥ 99, then

γs(G) ≤

(
4

√
ln(δ + 1)
δ + 1

+
1

δ + 1

)
n.

Moreover, Füredi andMubayi [9] found quite good upper bounds for very small values of δ and, usingHadamardmatrices,
constructed a δ-regular graph G of order 4δ with

γs(G) ≥ 0.5
√
δ − O(1).

This construction shows that the upper bound in Theorem 2 is off from optimal by at most the factor of
√
ln δ. They posed

an interesting conjecture that, for some constant C ,

γs(G) ≤
C
√
δ
n,

and proved that the above discrepancy conjecture, if true, would imply this upper bound for δ-regular graphs. A strong result
of Matoušek [14] shows that the bound is true, but the constant C in his proof is big making the result of rather theoretical
interest.
The lower bound for the signed domination number given in the theorem below is formulated in terms of the degree

sequence of a graph. Other lower bounds are also known, see Corollaries 4–6.
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Theorem 3 ([7]). Let G be a graph with degrees d1 ≤ d2 ≤ · · · ≤ dn. If k is the smallest integer for which
k−1∑
i=0

dn−i ≥ 2(n− k)+
n−k∑
i=1

di,

then

γs(G) ≥ 2k− n.

In this paper, we present new upper and lower bounds for the signed domination number, which improve the above
theorems and also generalise three known results formulated in Corollaries 4–6. Note that our results can be easily re-
formulated in terms of hypergraphs.Moreover, we refine Füredi–Mubayi’s conjecture formulated above as follows: for some
C ≤ 10 and α, 0.18 ≤ α < 0.21,

γs(G) ≤ min
{
n
δα
,
Cn
√
δ

}
.

2. Notation and technical results

All graphs will be finite and undirected without loops and multiple edges. If G is a graph of order n, then V (G) =
{v1, v2, . . . , vn} is the set of vertices in G and di denotes the degree of vi. Let N(x) denote the neighbourhood of a vertex
x. Also, let N(X) = ∪x∈X N(x) and N[X] = N(X) ∪ X . Denote by δ(G) and ∆(G) the minimum and maximum degrees of
vertices of G, respectively. Put δ = δ(G) and∆ = ∆(G).
A set X is called a dominating set if every vertex not in X is adjacent to a vertex in X . The minimum cardinality of

a dominating set of G is called the domination number γ (G). The domination number can be defined equivalently by
means of a domination function, which can be considered as a characteristic function of a dominating set in G. A function
f : V (G)→ {0, 1} is a domination function on a graph G if for each vertex v ∈ V (G),∑

x∈N[v]

f (x) ≥ 1. (1)

The value
∑

v∈V (G) f (v) is called the weight f (V (G)) of the function f . It is obvious that the minimum of weights, taken over
all domination functions on G, is the domination number γ (G) of G.
It is easy to obtain different variations of the domination number by replacing the set {0, 1} by another set of numbers. If

{0, 1} is exchanged by {−1, 1}, thenwe obtain the signed domination number. A signed domination function of a graph Gwas
defined in [7] as a function f : V (G)→ {−1, 1} such that for each v ∈ V (G), the expression (1) is true. The signed domination
number of a graph G, denoted γs(G), is the minimum of weights f (V (G)), taken over all signed domination functions f on G.
Signed domination has been studied in [7–14].
Let d ≥ 2 be an integer and 0 ≤ p ≤ 1. Let us denote

f (d, p) =
d0.5de∑
m=0

(d0.5de −m+ 1)
(
d+ 1
m

)
pm(1− p)d+1−m.

We will need the following technical results:

Lemma 1 ([9]). If d is odd, then

f (d+ 1, p) < 2(1− p)f (d, p).

If d is even, then

f (d+ 1, p) <
(
2p+ (1− p)

d+ 4
d+ 2

)
f (d, p).

In particular, if

2(1− p)
(
2p+ (1− p)

d+ 4
d+ 2

)
< 1,

then

max
d≥δ
f (d, p) ∈ {f (δ, p), f (δ + 1, p)}.

Lemma 2 ([6]). Let p ∈ [0, 1] and X1, . . . , Xk be mutually independent random variables with

P[Xi = 1− p] = p,
P[Xi = −p] = 1− p.
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If X = X1 + · · · + Xk and c > 0, then

P[X < −c] < e−
c2
2pk .

Let us also denote

d̃0.5 =
(
δ′ + 1
d0.5δ′e

)
,

where

δ′ =

{
δ if δ is odd;
δ + 1 if δ is even.

3. Upper bounds for the signed domination number

The following theorem provides an upper bound for the signed domination number, which is better than the bound of
Theorem 2 for ‘relatively small’ values of δ. For example, if δ(G) = 99, then, by Theorem 2, γs(G) ≤ 0.869n, while Theorem 4
yields γs(G) ≤ 0.537n. For larger values of δ, the latter result is improved in Corollaries 1–3.

Theorem 4. For any graph G with δ > 1,

γs(G) ≤

(
1−

2̂δ

(1+ δ̂)1+1/̂δ d̃1/̂δ0.5

)
n, (2)

where δ̂ = b0.5δc.

Proof. Let A be a set formed by an independent choice of vertices of G, where each vertex is selected with the probability

p = 1−
1

(1+ δ̂)1/̂δ d̃1/̂δ0.5
.

For m ≥ 0, let us denote by Bm the set of vertices v ∈ V (G) dominated by exactly m vertices of A and such that
|N[v] ∩ A| < d0.5dve + 1, i.e.

|N[v] ∩ A| = m ≤ d0.5dve.

Note that each vertex v ∈ V (G) is in at most one of the sets Bm and 0 ≤ m ≤ d0.5dve. Then we form a set B by selecting
d0.5dve − m + 1 vertices from N[v] that are not in A for each vertex v ∈ Bm and adding them to B. We construct the set D
as follows: D = A∪ B. Let us assume that f is a function f : V (G)→ {−1, 1} such that all vertices in D are labelled by 1 and
all other vertices by−1. It is obvious that f (V (G)) = |D| − (n− |D|) and f is a signed domination function.
The expectation of f (V (G)) is

E[f (V (G))] = 2E[|D|] − n
= 2(E[|A|] + E[|B|])− n

≤ 2
n∑
i=1

P(vi ∈ A)+ 2
n∑
i=1

d0.5die∑
m=0

(d0.5die −m+ 1)P(vi ∈ Bm)− n

= 2pn+ 2
n∑
i=1

d0.5die∑
m=0

(d0.5die −m+ 1)
(
di + 1
m

)
pm(1− p)di+1−m − n

≤ 2pn+ 2
n∑
i=1

max
di≥δ
f (di, p)− n.

It is not difficult to check that 2(1 − p)(2p + (1 − p)(d + 4)/(d + 2)) < 1 for any d ≥ δ ≥ 2. As noted by the referee, the
simplest way to check this inequality is to observe first that p > 3/4. By Lemma 1,

max
d≥δ
f (d, p) ∈ {f (δ, p), f (δ + 1, p)}.

The last inequality implies 2(1− p) < 1 because 2p > 1. Therefore, by Lemma 1,

max
d≥δ
f (d, p) = f (δ, p)
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if δ is odd. If δ is even, then we can prove that

max
d≥δ
f (d, p) = f (δ + 1, p).

Thus,

max
d≥δ
f (d, p) = f (δ′, p).

Therefore,

E[f (V (G))] ≤ 2pn+ 2n
d0.5δ′e∑
m=0

(d0.5δ′e −m+ 1)
(
δ′ + 1
m

)
pm(1− p)δ

′
+1−m

− n.

Since

(d0.5δ′e −m+ 1)
(
δ′ + 1
m

)
≤

(
δ′ + 1
d0.5δ′e

)(
d0.5δ′e
m

)
,

we obtain

E[f (V (G))] ≤ 2pn+ 2n
d0.5δ′e∑
m=0

(
δ′ + 1
d0.5δ′e

)(
d0.5δ′e
m

)
pm(1− p)δ

′
+1−m

− n

= 2pn+ 2n
(
δ′ + 1
d0.5δ′e

)
(1− p)δ

′
−d0.5δ′e+1

d0.5δ′e∑
m=0

(
d0.5δ′e
m

)
pm(1− p)d0.5δ

′
e−m
− n

= 2pn+ 2ñd0.5(1− p)δ
′
−d0.5δ′e+1

− n.

Taking into account that δ′ − d0.5δ′e = b0.5δ′c = b0.5δc = δ̂, we have

E[f (V (G))] ≤ 2pn+ 2ñd0.5(1− p)̂δ+1 − n

≤

(
1−

2̂δ

(1+ δ̂)1+1/̂δ̃d1/̂δ0.5

)
n,

as required. The proof of Theorem 4 is complete. �

Our next result and its corollaries give a modest improvement of Theorem 2. More precisely, the upper bound of
Theorem 5 is asymptotically 1.63 times better than the bound of Theorem 2, and for δ = 106 the improvement is 1.44
times.

Theorem 5. If δ(G) ≥ 106, then

γs(G) ≤
√
6 ln(δ + 1)+ 1.21
√
δ + 1

n.

Proof. Denote δ+ = δ+ 1, Nv = N[v] and nv = |Nv|. Let A be a set formed by an independent choice of vertices of G, where
each vertex is selected with the probability

p = 0.5+
√
1.5 ln δ+/δ+.

Let us construct two sets Q and U in the following way: for each vertex v ∈ V (G), if |Nv ∩ A| ≤ 0.5nv , then we put v ∈ U
and add b0.5nv + 1c vertices of Nv to Q . Furthermore, we assign ‘‘+’’ to A ∪ Q , and ‘‘–’’ to all other vertices. The resulting
function g : V (G)→ {−1, 1} is a signed domination function, and

g(V (G)) = 2|A ∪ Q | − n ≤ 2|A| + 2|Q | − n.

The expectation of g(V (G)) is

E[g(V (G))] ≤ 2E[|A|] + 2E[|Q |] − n
= 2pn− n+ 2E[|Q |]. (3)

It is easy to see that |Q | ≤
∑

v∈Ub0.5nv + 1c, hence

E[|Q |] ≤
∑
v∈V (G)

b0.5nv + 1cP[v ∈ U], (4)
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where

P[v ∈ U] = P[|Nv ∩ A| ≤ 0.5nv].

Let us define the following random variables

Xw =
{
1− p ifw ∈ A
−p ifw 6∈ A

and let X∗v =
∑

w∈Nv Xw.We have

|Nv ∩ A| ≤ 0.5nv if and only if X∗v ≤ (1− p)0.5nv + (−p)0.5nv.

Thus,

P[|Nv ∩ A| ≤ 0.5nv] = P[X∗v ≤ (0.5− p)nv].

By Lemma 2,

P[X∗v ≤ (0.5− p) nv] < e
−
1.5nv ln δ+/δ+

1+
√
6 ln δ+/δ+ .

For nv ≥ δ+ > 106, let us define

y(nv, δ+) =
1.5nv ln δ+/δ+

1+
√
6 ln δ+/δ+

− ln(2.25n1.5v )+ 1.

The function y(nv, δ+) is an increasing function of nv and y(δ+, δ+) > 0 for δ+ > 106. Hence y(nv, δ+) ≥ y(δ+, δ+) > 0
and

1.5nv ln δ+/δ+

1+
√
6 ln δ+/δ+

> ln(2.25n1.5v )− 1.

We obtain

P[|Nv ∩ A| ≤ 0.5nv] < e1−ln(2.25n
1.5
v )
=

e
2.25n1.5v

,

and, using inequality (4),

2E[|Q |] ≤ 2
∑
v∈V (G)

e(0.5nv + 1)
2.25n1.5v

≤
e(δ + 3)n

2.25(δ + 1)1.5
≤

1.21
√
δ + 1

n.

Thus, (3) yields

E[g(V (G))] ≤ 2pn− n+
1.21n
√
δ + 1

=

√
6 ln(δ + 1)+ 1.21
√
δ + 1

n,

as required. The proof of Theorem 5 is complete. �

Corollary 1. If 24,000 ≤ δ, then

γs(G) ≤
√
6.8 ln(δ + 1)+ 0.32
√
δ + 1

n.

Proof. Putting p = 0.5+
√
1.7 ln δ+/δ+ in the proof of Theorem 5, we obtain by Lemma 2,

P[X∗v ≤ (0.5− p) nv] < e
−

1.7nv ln δ+/δ+

1+
√
6.8 ln δ+/δ+ .

Let us define the following function:

y(nv, δ+) =
1.7nv ln δ+/δ+

1+
√
6.8 ln δ+/δ+

− ln(3.14n1.5v )
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for nv ≥ δ+ > 24,000. The function y(nv, δ+) is an increasing function of nv and y(δ+, δ+) > 0 for δ+ > 24,000. Hence
y(nv, δ+) ≥ y(δ+, δ+) > 0 and

1.7nv ln δ+/δ+

1+
√
6.8 ln δ+/δ+

> ln(3.14n1.5v ).

We obtain

2E[|Q |] ≤ 2
∑
v∈V (G)

0.5nv + 1
3.14n1.5v

≤
(δ + 3)n

3.14(δ + 1)1.5
≤

0.32
√
δ + 1

n.

Thus, (3) yields

E[g(V (G))] ≤ 2pn− n+
0.32n
√
δ + 1

=

√
6.8 ln(δ + 1)+ 0.32
√
δ + 1

n,

as required. The proof is complete. �

Corollary 2. If 1,000 ≤ δ ≤ 24,000, then

γs(G) ≤
√
ln(δ + 1)(11.8− 0.48 ln δ)+ 0.25

√
δ + 1

n.

Proof. It is similar to the proof of Corollary 1 ifweput p = 0.5+
√
(2.95− 0.12 ln δ) ln δ+/δ+ and consider the the following

function for 1,000 ≤ δ ≤ 24,000:

y(nv, δ+) =
(2.95− 0.12 ln δ)nv ln δ+/δ+

1+
√
(11.8− 0.48 ln δ) ln δ+/δ+

− ln(4.01n1.5v ). �

Corollary 3. If 230 ≤ δ ≤ 1,000, then

γs(G) ≤
√
ln(δ + 1)(18.16− 1.4 ln δ)+ 0.25

√
δ + 1

n.

Proof. It is similar to the proof of Corollary 1 if we put p = 0.5+
√
(4.54− 0.35 ln δ) ln δ+/δ+ and consider the following

function for 230 ≤ δ ≤ 1,000:

y(nv, δ+) =
(4.54− 0.35 ln δ)nv ln δ+/δ+

1+
√
(18.16− 1.4 ln δ) ln δ+/δ+

− ln(4.04n1.5v ). �

We believe that Füredi–Mubayi’s conjecture, saying that γs(G) ≤ Cn
√
δ
, is true for some small constant C . However, as the

Peterson graph shows, C > 1, i.e. the behaviour of the conjecture is not good for relatively small values of δ. Therefore, we
propose the following refined conjecture, which, roughly speaking, consists of two functions for ‘small’ and ‘large’ values
of δ.

Conjecture 1. For some C ≤ 10 and α, 0.18 ≤ α < 0.21,

γs(G) ≤ min
{
n
δα
,
Cn
√
δ

}
.

The above results imply that if C = 10 and α = 0.13, then this upper bound is true for all graphs with δ ≤ 96× 104.

4. A lower bound for the signed domination number

The following theorem provides a lower bound for the signed domination number of a graph G depending on its order
and a parameter λ, which is determined on the basis of the degree sequence of G (note that λ may be equal to 0, in this
case we put

∑λ
i=1 = 0). This result improves the bound of Theorem 3 and, in some cases, it provides a much better lower



2098 A. Poghosyan, V. Zverovich / Discrete Mathematics 310 (2010) 2091–2099

bound. For example, let us consider a graph G consisting of two vertices of degree 5 and n− 2 vertices of degree 3. Then, by
Theorem 3,

γs(G) ≥ 0.25n− 1,

while Theorem 6 yields

γs(G) ≥ 0.5n− 1.

Theorem 6. Let G be a graph with n vertices and degrees d1 ≤ d2 ≤ · · · ≤ dn. Then

γs(G) ≥ n− 2λ,

where λ ≥ 0 is the largest integer such that

λ∑
i=1

⌈
di
2
+ 1

⌉
≤

n∑
i=λ+1

⌊
di
2

⌋
.

Proof. Let f be a signed domination function of minimum weight of the graph G. Let us denote

X = {v ∈ V (G) : f (v) = −1},

and

Y = {v ∈ V (G) : f (v) = 1}.

We have

γs(G) = f (V (G)) = |Y | − |X | = n− 2|X |.

By definition, for any vertex v,

f [v] =
∑
u∈N[v]

f (u) ≥ 1.

Therefore, for all v ∈ V (G),

|N[v] ∩ Y | − |N[v] ∩ X | ≥ 1.

Using this inequality, we obtain

|N[v]| = deg(v)+ 1 = |N[v] ∩ Y | + |N[v] ∩ X | ≤ 2|N[v] ∩ Y | − 1.

Hence

|N[v] ∩ Y | ≥
deg(v)
2
+ 1.

Since |N[v] ∩ Y | is an integer, we conclude

|N[v] ∩ Y | ≥
⌈
deg(v)
2

⌉
+ 1

and

|N[v] ∩ X | = deg(v)+ 1− |N[v] ∩ Y | ≤
⌊
deg(v)
2

⌋
.

Denote by eX,Y the number of edges between the parts X and Y . We have

eX,Y =
∑
v∈X

|N[v] ∩ Y | ≥
∑
v∈X

(⌈
deg(v)
2

⌉
+ 1

)
≥

|X |∑
i=1

(⌈
di
2

⌉
+ 1

)
.

Note that if X = ∅, then we put
∑0
i=1 g(i) = 0. On the other hand,

eX,Y =
∑
v∈Y

|N[v] ∩ X | ≤
∑
v∈Y

⌊
deg(v)
2

⌋
≤

n∑
i=n−|Y |+1

bdi/2c =
n∑

i=|X |+1

bdi/2c.
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Therefore, the following inequality holds:
|X |∑
i=1

(⌈
di
2

⌉
+ 1

)
≤

n∑
i=|X |+1

⌊
di
2

⌋
.

Since λ ≥ 0 is the largest integer such that
λ∑
i=1

(⌈
di
2

⌉
+ 1

)
≤

n∑
i=λ+1

⌊
di
2

⌋
,

we conclude that

|X | ≤ λ.

Thus,

γs(G) = n− 2|X | ≥ n− 2λ.

The proof is complete. �

Theorem 6 immediately implies the following known results:

Corollary 4 ([10,17]). For any graph G,

γs(G) ≥
(
d0.5δe − b0.5∆c + 1
d0.5δe + b0.5∆c + 1

)
n.

Note that Haas and Wexler [10] formulated the above bound only for graphs with δ ≥ 2, while Zhang et al. [17] proved
a weaker version without the ceiling and floor functions.

Corollary 5 ([13]). If δ is odd and G is δ-regular, then

γs(G) ≥
2n
δ + 1

.

Corollary 6 ([7]). If δ is even and G is δ-regular, then

γs(G) ≥
n

δ + 1
.

Disjoint unions of complete graphs show that these lower bounds are sharp whenever n/(δ + 1) is an integer, and
therefore the bound of Theorem 6 is sharp for regular graphs.
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