33 research outputs found

    The Automation of the Extraction of Evidence masked by Steganographic Techniques in WAV and MP3 Audio Files

    Full text link
    Antiforensics techniques and particularly steganography and cryptography have become increasingly pressing issues that affect the current digital forensics practice, both techniques are widely researched and developed as considered in the heart of the modern digital era but remain double edged swords standing between the privacy conscious and the criminally malicious, dependent on the severity of the methods deployed. This paper advances the automation of hidden evidence extraction in the context of audio files enabling the correlation between unprocessed evidence artefacts and extreme Steganographic and Cryptographic techniques using the Least Significant Bits extraction method (LSB). The research generates an in-depth review of current digital forensic toolkit and systems and formally address their capabilities in handling steganography-related cases, we opted for experimental research methodology in the form of quantitative analysis of the efficiency of detecting and extraction of hidden artefacts in WAV and MP3 audio files by comparing standard industry software. This work establishes an environment for the practical implementation and testing of the proposed approach and the new toolkit for extracting evidence hidden by Cryptographic and Steganographic techniques during forensics investigations. The proposed multi-approach automation demonstrated a huge positive impact in terms of efficiency and accuracy and notably on large audio files (MP3 and WAV) which the forensics analysis is time-consuming and requires significant computational resources and memory. However, the proposed automation may occasionally produce false positives (detecting steganography where none exists) or false negatives (failing to detect steganography that is present) but overall achieve a balance between detecting hidden data accurately along with minimising the false alarms.Comment: Wires Forensics Sciences Under Revie

    A review and open issues of multifarious image steganography techniques in spatial domain

    Get PDF
    Nowadays, information hiding is becoming a helpful technique and fetch more attention due fast growth of using internet, it is applied for sending secret information by using different techniques. Steganography is one of major important technique in information hiding. Steganography is science of concealing the secure information within a carrier object to provide the secure communication though the internet, so that no one can recognize and detect it’s except the sender & receiver. In steganography, many various carrier formats can be used such as an image, video, protocol, audio. The digital image is most popular used as a carrier file due its frequency on internet. There are many techniques variable for image steganography, each has own strong and weak points. In this study, we conducted a review of image steganography in spatial domain to explore the term image steganography by reviewing, collecting, synthesizing and analyze the challenges of different studies which related to this area published from 2014 to 2017. The aims of this review is provides an overview of image steganography and comparison between approved studies are discussed according to the pixel selection, payload capacity and embedding algorithm to open important research issues in the future works and obtain a robust method

    An Effectual Hybrid Approach Using Data Encryption Standard (DES) and Secured Hash Algorithm (SHA) for Image Steganography

    Get PDF
    Today Security of data is of foremost importance in today’s world. Security has become one of the most important factor in communication and information technology. For this purpose steganography is used. Steganography is the art of hiding secret or sensitive information into digital media like images so as to have secure communication. In this paper we present and discuss LSB (Least Significant Bit) based image steganography with DES SHA algorithm so as to provide an extra layer of security

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Solving the threat of LSB steganography within data loss prevention systems

    Get PDF
    With the recent spate of data loss breaches from industry and commerce, especially with the large number of Advanced Persistent Threats, companies are increasing their network boundary security. As network defences are enhanced through the use of Data Loss Prevention systems (DLP), attackers seek new ways of exploiting and extracting confidential data. This is often done by internal parties in large-scale organisations through the use of steganography. The successful utilisation of steganography makes the exportation of confidential data hard to detect, equipped with the ability of escaping even the most sophisticated DLP systems. This thesis provides two effective solutions to prevent data loss from effective LSB image steganographic behaviour, with the potential to be applied in industrial DLP systems

    Solving the threat of LSB steganography within data loss prevention systems

    Get PDF
    With the recent spate of data loss breaches from industry and commerce, especially with the large number of Advanced Persistent Threats, companies are increasing their network boundary security. As network defences are enhanced through the use of Data Loss Prevention systems (DLP), attackers seek new ways of exploiting and extracting confidential data. This is often done by internal parties in large-scale organisations through the use of steganography. The successful utilisation of steganography makes the exportation of confidential data hard to detect, equipped with the ability of escaping even the most sophisticated DLP systems. This thesis provides two effective solutions to prevent data loss from effective LSB image steganographic behaviour, with the potential to be applied in industrial DLP systems

    System Steganalysis: Implementation Vulnerabilities and Side-Channel Attacks Against Digital Steganography Systems

    Get PDF
    Steganography is the process of hiding information in plain sight, it is a technology that can be used to hide data and facilitate secret communications. Steganography is commonly seen in the digital domain where the pervasive nature of media content (image, audio, video) provides an ideal avenue for hiding secret information. In recent years, video steganography has shown to be a highly suitable alternative to image and audio steganography due to its potential advantages (capacity, flexibility, popularity). An increased interest towards research in video steganography has led to the development of video stego-systems that are now available to the public. Many of these stego-systems have not yet been subjected to analysis or evaluation, and their capabilities for performing secure, practical, and effective video steganography are unknown. This thesis presents a comprehensive analysis of the state-of-the-art in practical video steganography. Video-based stego-systems are identified and examined using steganalytic techniques (system steganalysis) to determine the security practices of relevant stego-systems. The research in this thesis is conducted through a series of case studies that aim to provide novel insights in the field of steganalysis and its capabilities towards practical video steganography. The results of this work demonstrate the impact of system attacks over the practical state-of-the-art in video steganography. Through this research, it is evident that video-based stego-systems are highly vulnerable and fail to follow many of the well-understood security practices in the field. Consequently, it is possible to confidently detect each stego-system with a high rate of accuracy. As a result of this research, it is clear that current work in practical video steganography demonstrates a failure to address key principles and best practices in the field. Continued efforts to address this will provide safe and secure steganographic technologies

    A Novel Hybrid Method for Effective Identification and Extraction of Digital Evidence Masked by Steganographic Techniques in WAV and MP3 Files

    Get PDF
    Anti-forensics techniques, particularly steganography and cryptography, have become increasingly pressing issues affecting current digital forensics practices. This paper advances the automation of hidden evidence extraction in audio files by proposing a novel multi-approach method. This method facilitates the correlation between unprocessed artefacts, indexed and live forensics analysis, and traditional steganographic and cryptographic detection techniques. In this work, we opted for experimental research methodology in the form of a quantitative analysis of the efficiency of the proposed automation in detecting and extracting hidden artefacts in WAV and MP3 audio files. This comparison is made against standard industry systems. This work advances the current automation in extracting evidence hidden by cryptographic and steganographic techniques during forensic investigations. The proposed multi-approach demonstrates a clear enhancement in terms of coverage and accuracy, notably on large audio files (MP3 and WAV), where manual forensic analysis is complex, time-consuming and requires significant expertise. Nonetheless, the proposed multi-approach automation may occasionally produce false positives (detecting steganography where none exists) or false negatives (failing to detect steganography that is present). However, it strikes a good balance between efficiently and effectively detecting hidden evidence, minimising false negatives and validating its reliability

    Hybrid Arabic text steganography

    Get PDF
    An improved method for Arabic text steganography is introduced in this paper. This method hides an Arabic text inside another based on a hybrid approach. Both Kashida and Arabic Diacritics are used to hide the Arabic text inside another text. In this improved method, the secret message is divided into two parts, the first part is to be hidden by the Kashida method, and the second is to be hidden by the Diacritics or Harakat method. For security purposes, we benefitted from the natural existence of Diacritics as a characteristic of Arabic written language, as used to represent vowel sounds. The paper exploits the possibility of hiding data in Fathah diacritic and Kashida punctuation marks, adjusting previously presented schemes that are based on a single method only. Here, the secret message is divided into two parts, the cover text is prepared, and then we apply the Harakat method on the first part. The Kashida method is applied on the second part, and then the two parts are combined. When the hidden ‘StegoText’ is received, a split mechanism is used to recover the original message. The described hybrid Arabic StegoText showed higher capacity and security with promising results compared to other methods
    corecore