45 research outputs found

    PlasmoID: A dataset for Indonesian malaria parasite detection and segmentation in thin blood smear

    Full text link
    Indonesia holds the second-highest-ranking country for the highest number of malaria cases in Southeast Asia. A different malaria parasite semantic segmentation technique based on a deep learning approach is an alternative to reduce the limitations of traditional methods. However, the main problem of the semantic segmentation technique is raised since large parasites are dominant, and the tiny parasites are suppressed. In addition, the amount and variance of data are important influences in establishing their models. In this study, we conduct two contributions. First, we collect 559 microscopic images containing 691 malaria parasites of thin blood smears. The dataset is named PlasmoID, and most data comes from rural Indonesia. PlasmoID also provides ground truth for parasite detection and segmentation purposes. Second, this study proposes a malaria parasite segmentation and detection scheme by combining Faster RCNN and a semantic segmentation technique. The proposed scheme has been evaluated on the PlasmoID dataset. It has been compared with recent studies of semantic segmentation techniques, namely UNet, ResFCN-18, DeepLabV3, DeepLabV3plus and ResUNet-18. The result shows that our proposed scheme can improve the segmentation and detection of malaria parasite performance compared to original semantic segmentation techniques

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Geo-Information Technology and Its Applications

    Get PDF
    Geo-information technology has been playing an ever more important role in environmental monitoring, land resource quantification and mapping, geo-disaster damage and risk assessment, urban planning and smart city development. This book focuses on the fundamental and applied research in these domains, aiming to promote exchanges and communications, share the research outcomes of scientists worldwide and to put these achievements better social use. This Special Issue collects fourteen high-quality research papers and is expected to provide a useful reference and technical support for graduate students, scientists, civil engineers and experts of governments to valorize scientific research

    Tree species classification from AVIRIS-NG hyperspectral imagery using convolutional neural networks

    Full text link
    This study focuses on the automatic classification of tree species using a three-dimensional convolutional neural network (CNN) based on field-sampled ground reference data, a LiDAR point cloud and AVIRIS-NG airborne hyperspectral remote sensing imagery with 2 m spatial resolution acquired on 14 June 2021. I created a tree species map for my 10.4 km2 study area which is located in the Jurapark Aargau, a Swiss regional park of national interest. I collected ground reference data for six major tree species present in the study area (Quercus robur, Fagus sylvatica, Fraxinus excelsior, Pinus sylvestris, Tilia platyphyllos, total n = 331). To match the sampled ground reference to the AVIRIS-NG 425 band hyperspectral imagery, I delineated individual tree crowns (ITCs) from a canopy height model (CHM) based on LiDAR point cloud data. After matching the ground reference data to the hyperspectral imagery, I split the extracted image patches to training, validation, and testing subsets. The amount of training, validation and testing data was increased by applying image augmentation through rotating, flipping, and changing the brightness of the original input data. The classifier is a CNN trained on the first 32 principal components (PC’s) extracted from AVIRIS-NG data. The CNN uses image patches of 5 × 5 pixels and consists of two convolutional layers and two fully connected layers. The latter of which is responsible for the final classification using the softmax activation function. The results show that the CNN classifier outperforms comparable conventional classification methods. The CNN model is able to predict the correct tree species with an overall accuracy of 70% and an average F1-score of 0.67. A random forest classifier reached an overall accuracy of 67% and an average F1-score of 0.61 while a support-vector machine classified the tree species with an overall accuracy of 66% and an average F1-score of 0.62. This work highlights that CNNs based on imaging spectroscopy data can produce highly accurate high resolution tree species distribution maps based on a relatively small set of training data thanks to the high dimensionality of hyperspectral images and the ability of CNNs to utilize spatial and spectral features of the data. These maps provide valuable input for modelling the distributions of other plant and animal species and ecosystem services. In addition, this work illustrates the importance of direct collaboration with environmental practitioners to ensure user needs are met. This aspect will be evaluated further in future work by assessing how these products are used by environmental practitioners and as input for modelling purposes

    Urban Forests and Landscape Ecology

    Get PDF
    Urbanization is a dominant driver of landscape transformation across the world, with cities representing centers of economic and socio-cultural development. Today, more than 4.2 billion people live in urban areas, which represent ~3% of the Earth’s land area. By 2050, it is predicted this number will increase to 6.6 billion people (~70% of the predicted global population). As the human population grows, cities around the globe will continue to expand, increasing the demand for food and services. Within cities, urban forests provide multiple nature-based solutions, as well as other environmental services and socio-economic benefits, such as heat mitigation and social integration. Urban forests are also important for coping with psychological stress during events, such as the COVID-19 pandemic. Therefore, urban forests are a priority for basic and applied forest research because they are intimately connected with people’s physical, cultural, and economic well-being in the urban environment, and can also be important reservoirs of biodiversity. To promote a better understanding of urban forests and landscape ecology, this book in “Urban Forests and Landscape Ecology” compiled research set in urban forests and focused on some spatially explicit processes. Studies presented in this book are highly interdisciplinary and use a wide range of research approaches. This book present nine scientific publications from global urban forests demonstrating that these forests, as a nature-based solution, provide multiple environmental services and are crucial to improve urban livability and thereby the wellbeing of city dwellers

    Exploiting hyperspectral and multispectral images in the detection of tree species: A review

    Get PDF
    Classification of tree species provides important data in forest monitoring, sustainable forest management and planning. The recent developments in Multi Spectral (MS) and Hyper Spectral (HS) Imaging sensors in remote sensing have made the detection of tree species easier and accurate. With this systematic review study, it is aimed to understand the contribution of using the Multi Spectral and Hyper Spectral Imaging data in the detection of tree species while highlighting recent advances in the field and emphasizing important directions together with new possibilities for future inquiries. In this review, researchers and decision makers will be informed in two different subjects: First one is about the processing steps of exploiting Multi Spectral and HS images and the second one is about determining the advantages of exploiting Multi Spectral and Hyper Spectral images in the application area of detecting tree species. In this way exploiting satellite data will be facilitated. This will also provide an economical gain for using commercial Multi Spectral and Hyper Spectral Imaging data. Moreover, it should be also kept in mind that, as the number of spectral tags that will be obtained from each tree type are different, both the processing method and the classification method will change accordingly. This review, studies were grouped according to the data exploited (only Hyper Spectral images, only Multi Spectral images and their combinations), type of tree monitored and the processing method used. Then, the contribution of the image data used in the study was evaluated according to the accuracy of classification, the suitable type of tree and the classification method

    Attention to Fires: Multi-Channel Deep Learning Models for Wildfire Severity Prediction

    Get PDF
    Wildfires are one of the natural hazards that the European Union is actively monitoring through the Copernicus EMS Earth observation program which continuously releases public information related to such catastrophic events. Such occurrences are the cause of both short- and long-term damages. Thus, to limit their impact and plan the restoration process, a rapid intervention by authorities is needed, which can be enhanced by the use of satellite imagery and automatic burned area delineation methodologies, accelerating the response and the decision-making processes. In this context, we analyze the burned area severity estimation problem by exploiting a state-of-the-art deep learning framework. Experimental results compare different model architectures and loss functions on a very large real-world Sentinel2 satellite dataset. Furthermore, a novel multi-channel attention-based analysis is presented to uncover the prediction behaviour and provide model interpretability. A perturbation mechanism is applied to an attention-based DS-UNet to evaluate the contribution of different domain-driven groups of channels to the severity estimation problem

    Semantic segmentation of tree-canopy in urban environment with pixel-wise deep learning

    Get PDF
    Urban forests are an important part of any city, given that they provide several environmental benefits, such as improving urban drainage, climate regulation, public health, biodiversity, and others. However, tree detection in cities is challenging, given the irregular shape, size, occlusion, and complexity of urban areas. With the advance of environmental technologies, deep learning segmentation mapping methods can map urban forests accurately. We applied a region-based CNN object instance segmentation algorithm for the semantic segmentation of tree canopies in urban environments based on aerial RGB imagery. To the best of our knowledge, no study investigated the performance of deep learning-based methods for segmentation tasks inside the Cerrado biome, specifically for urban tree segmentation. Five state-of-the-art architectures were evaluated, namely: Fully Convolutional Network; U-Net; SegNet; Dynamic Dilated Convolution Network and DeepLabV3+. The experimental analysis showed the effectiveness of these methods reporting results such as pixel accuracy of 96,35%, an average accuracy of 91.25%, F1-score of 91.40%, Kappa of 82.80% and IoU of 73.89%. We also determined the inference time needed per area, and the deep learning methods investigated after the training proved to be suitable to solve this task, providing fast and effective solutions with inference time varying from 0.042 to 0.153 minutes per hectare. We conclude that the semantic segmentation of trees inside urban environments is highly achievable with deep neural networks. This information could be of high importance to decision-making and may contribute to the management of urban systems. It should be also important to mention that the dataset used in this work is available on our website

    Remote sensing-based assessment of mangrove ecosystems in the Gulf Cooperation Council countries: a systematic review

    Get PDF
    Mangrove forests in the Gulf Cooperation Council (GCC) countries are facing multiple threats from natural and anthropogenic-driven land use change stressors, contributing to altered ecosystem conditions. Remote sensing tools can be used to monitor mangroves, measure mangrove forest-and-tree-level attributes and vegetation indices at different spatial and temporal scales that allow a detailed and comprehensive understanding of these important ecosystems. Using a systematic literature approach, we reviewed 58 remote sensing-based mangrove assessment articles published from 2010 through 2022. The main objectives of the study were to examine the extent of mangrove distribution and cover, and the remotely sensed data sources used to assess mangrove forest/tree attributes. The key importance of and threats to mangroves that were specific to the region were also examined. Mangrove distribution and cover were mainly estimated from satellite images (75.2%), using NDVI (Normalized Difference Vegetation Index) derived from Landsat (73.3%), IKONOS (15%), Sentinel (11.7%), WorldView (10%), QuickBird (8.3%), SPOT-5 (6.7%), MODIS (5%) and others (5%) such as PlanetScope. Remotely sensed data from aerial photographs/images (6.7%), LiDAR (Light Detection and Ranging) (5%) and UAV (Unmanned Aerial Vehicles)/Drones (3.3%) were the least used. Mangrove cover decreased in Saudi Arabia, Oman, Bahrain, and Kuwait between 1996 and 2020. However, mangrove cover increased appreciably in Qatar and remained relatively stable for the United Arab Emirates (UAE) over the same period, which was attributed to government conservation initiatives toward expanding mangrove afforestation and restoration through direct seeding and seedling planting. The reported country-level mangrove distribution and cover change results varied between studies due to the lack of a standardized methodology, differences in satellite imagery resolution and classification approaches used. There is a need for UAV-LiDAR ground truthing to validate country-and-local-level satellite data. Urban development-driven coastal land reclamation and pollution, climate change-driven temperature and sea level rise, drought and hypersalinity from extreme evaporation are serious threats to mangrove ecosystems. Thus, we encourage the prioritization of mangrove conservation and restoration schemes to support the achievement of related UN Sustainable Development Goals (13 climate action, 14 life below water, and 15 life on land) in the GCC countries
    corecore