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Classification of tree species provides important data in forest monitoring,
sustainable forest management and planning. The recent developments in
Multi Spectral (MS) and Hyper Spectral (HS) Imaging sensors in remote sensing
have made the detection of tree species easier and accurate. With this systematic
review study, it is aimed to understand the contribution of using the Multi Spectral
and Hyper Spectral Imaging data in the detection of tree species while highlighting
recent advances in the field and emphasizing important directions together with
new possibilities for future inquiries. In this review, researchers and decision
makers will be informed in two different subjects: First one is about the
processing steps of exploiting Multi Spectral and HS images and the second
one is about determining the advantages of exploiting Multi Spectral and Hyper
Spectral images in the application area of detecting tree species. In this way
exploiting satellite data will be facilitated. This will also provide an economical gain
for using commercial Multi Spectral and Hyper Spectral Imaging data. Moreover, it
should be also kept in mind that, as the number of spectral tags that will be
obtained from each tree type are different, both the processing method and the
classification method will change accordingly. This review, studies were grouped
according to the data exploited (only Hyper Spectral images, only Multi Spectral
images and their combinations), type of tree monitored and the processing
method used. Then, the contribution of the image data used in the study was
evaluated according to the accuracy of classification, the suitable type of tree and
the classification method.
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1 Introduction

Tree species information is an indispensable resource for managing forest ecosystems.
Forests are the most effective fighters of global warming, which is why we need them more
than ever. The need for tree species knowledge for the sustainable management of forests is
timeless. With the rapid increase in population in our developing and consuming world, the
need for forests and forest products is increasing. Therefore, whether natural forests or
industrially grown forests, they all need sustainable management (Hycza et al., 2018). Species
recalculations may also be needed after future forest crop planning, deforestation as a result
of illegal cutting, damage to forests as a result of fires or natural disasters (Xi et al., 2021;
Zagajewski et al., 2021). The determination of tree species is carried out by the local forest
administrations by preparing stand maps with classical methods based on land surveys.
However, there are easy and less costly ways to detect tree species, which is a constant need,
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compared to conventional methods (Immitzer et al., 2012). In 1998,
the first studies on tree species detection with hyperspectral images
(AVIRIS) were made by (Martin et al., 1998). Today, hyperspectral
images are still used for this purpose. Recent spectral innovations in
hyperspectral and multispectral imaging methods have led to their
frequent use in studies on tree species detection. Vegetation
calculations have been facilitated by the use of red edge bands,
which are used to measure the level of chlorophyll, which gives the
plant its green color, especially in multispectral images. The
phenological differences between plants are calculated with the
help of these red edge bands and it has been widely used in tree
species determination (Grabska et al., 2019). Tree detection was
carried out by using seasonal tree phenology differences with time
series analyzes on multi-temporal multispectral images that are
served free of charge (Grabska et al., 2019; Xi et al., 2021).
Hyperspectral images already had high spectral resolution due to
the large number of narrow bands they contained, but the low spatial
resolution made it difficult to detect individual tree species. These
difficulties have been overcome with the pan sharpening method,
which has been frequently applied recently by Lassalle et al. (2022)
and Ferreira et al. (2020).

With the help of free satellite images and open source
applications, tree species can be detected almost inexpensively.
With the help of unmanned aerial vehicles or planes, tree species
detection studies can be carried out in a more up-to-date and less
tiring way than field studies (Hati et al., 2021; Yang et al., 2022).
With hyperspectral and multispectral images, individual tree
identifications can be made as well as stand-based species
mapping (Ferreira et al., 2020; Grabska et al., 2020). With the
without restraint development of technology, the increase in
artificial intelligence applications has also contributed to remotely
sensed images (Bolyn et al., 2022).

The use of machine learning, deep learning, newly produced
algorithms and plant indices with remotely sensed images has
increased the classification accuracy (Xi et al., 2021; Yang et al.,
2022) Although review studies have been carried out for tree species
detection in the past years, due to the recent developments in
classification and satellite images, a compilation study in this area
has been required (Fassnacht et al., 2016).

A systematic review was made by examining the articles written
in English published in peer-reviewed journals containing
technological developments and methods that have occurred in
recent years. In this review study we prepared for the
determination of tree species; we used recent studies that have
exploited hyperspectral images, multispectral images, and their
combination (Hycza et al., 2018; Rumora et al., 2020; Abbas
et al., 2021; Hati et al., 2021; Yang et al., 2022).

During the literature review, articles on tree species detection
with multispectral and hyperspectral images between the years
2012–2022 were selected. The search was conducted on
20 November 2022 by searching for the phrases “Tree type
detection, tree species classification” in SCI journals and
excluding systems other than Hyperspectral and Multispectral
imaging systems (like LIDAR, SAR).

As all the methods, bands, algorithms and plant indices used in
these studies were different according to the types of forests (Xi et al.,
2021; Yang et al., 2022). For this reason, we evaluated these methods
according to the forest types.

In this review, we have classified the studies on tree species
detection as six forest types to make it more understandable.
Rainforests are also considered as tropical forests, however, we
have considered the two forest types differently due to the
differences in the species they contain and the reason that not
every tropical tree species will be a rain forest. Forests are grouped as;
Mangrove forests (Hati et al., 2021), Tropical forests (Ferreira et al.,
2016), Rainforests (La Rosa et al., 2021), Boreal forests (Grabska
et al., 2020), and Temperate forests (Persson et al., 2018; Hościło and
Lewandowska, 2019).

In this study, 17 articles which use only MS images (Javan et al.,
2021; Xi et al., 2021; Wang et al., 2022) 13 articles which use only HS
images (Franklin and Ahmed, 2018; Hycza et al., 2018; Abbas et al.,
2021) and 4 articles which use fusion of both images (Hati et al.,
2021; Yang et al., 2022) for the detection of tree species were
reviewed as shown in Figure 1.

As a result of the examinations, detailed information is given
about the pre-processing steps (atmospheric correction, size
reduction, etc.), classification methods (machine learning, deep
learning, different plant indices) and methods used in accuracy
assessment (majority class assessment, species composition
assessment, etc.) in the following sections.

2 Detection of tree species: Forests and
approaches

2.1 Forest types

In this review, we evaluated the studies in 4 different types.
These are Boreal, Temperate, Subtropical and Tropical forests.
Since the tree species in the forests show different characteristics,
they also contain different spectral values in terms of absorption
and retroreflection of sunlight. Boreal forests are forests spread in
the north of the world with their cold-resistant structures. Boreal
forests, which can withstand even very cold climatic conditions,
contain fewer trees in terms of species. They are generally more
shade tolerant and have narrow crowns that absorb sunlight even
at the lowest angle. Boreal forests generally contain the following
types of trees; Pines (Pinus) and spruces (Picea), larch (Larix) and
birch (Betula), aspen (Populus) and willow (Salix) (Landsberg and
Waring, 2014) Tropical forests are also often referred to as
rainforests, but not all tropical forests are always wet. They are
generally found in the Amazon in the northern half of South
America, where temperatures are high, in the forests of Central
Africa and the forests of Southeast Asia (Landsberg and Waring,
2014). In this compilation study, trees were classified within the
forest community in which they are generally located. However,
since not every tropical tree will be included in a rainforest and a
separate tree identification study has been carried out, it has been
classified as a separate forest type (La Rosa et al., 2021). Species
found in temperate forests; oak, beech, fir, maple, elm, chestnut
and cedar. These trees are often used commercially because they
are straight and tall. Mangroves live in coastal areas in the tropics
and subtropics. Due to its ecological characteristics, it is an
important resource for the use of wood, its use in medicine,
aquaculture and even ecotourism. Mangroves are trees that are
under threat due to intense storms, floods, heavy human use
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(Mafaziya Nijamdeen et al., 2023). In the classification we make as
other forests, there are trees that can grow in many places that are
not specifically included in such forests or that are mentioned in a
small number of studies. Among the studies that made tree
detection with multispectral (MSI) and hyperspectral (HSI)
images, which we examined within the scope of the review, the
tree species found in Boreal forests were determined the most as
shown in Figure 2.

In the articles reviewed, tree detection was done in two ways,
individual and forest stands (Ferreira et al., 2019; Grabska et al.,
2020). Stand maps created by authorized institutions and

organizations may become out of date in a short time.
However, forest inventory information or stand maps may not
be sufficient in determining the tree species to be used for forest
monitoring. In such cases, tree detection with remotely sensed
images ensures that the data is kept up-to-date. Among the studies
we examined, the number of studies that made individual tree
detection was less than the number of studies that made stand-
based detection due to classification difficulties. While
hyperspectral images (HSI) were used more in individual tree
detection, multispectral images (MSI) were used more in stand-
based detections (Figure 3).

FIGURE 1
Satellite and sensor types used in the studies.
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3 Remote sensing of trees: Instruments
and methodologies

3.1 Detecting trees by satellite-sensor and
cameras

The data used for tree species detection in remote sensing
typically include aerial or satellite imagery, including high-
resolution multispectral or hyperspectral imagery, Light Detection
and Ranging (LiDAR) data, and thermal imagery. These data types
provide information on the reflectance, radiance, structure, and
temperature of the Earth’s surface, which can be used to identify and
distinguish different tree species based on their unique spectral,
structural, and thermal signatures.

However, these data have advantages and disadvantages
compared to each other. While LIDAR is a great invention for
detecting tree species, it is costly to use. Although Hyperspectral
Images are successful in crown detection thanks to their high
spectral resolution, they are easier to process and use than
multispectral data due to their size. In this study, we examined
what has been done in tree detection and how it can be improved
with low cost, high resolution, multispectral and hyperspectral data
that we can analyze on a global scale.

Hyperspectral images are obtained through hyperspectral
remote sensing technology. This technology uses specialized
sensors on satellites, aircraft, or unmanned aerial vehicles
(UAVs) to capture data across a wide range of the
electromagnetic spectrum, including visible light, near-infrared,
and shortwave infrared. The data captured by these sensors is
divided into many narrow spectral bands, typically around
10–30 nm wide, to provide detailed information about the
reflectance properties of different materials in the scene. This
data is then processed to form an image, where each pixel
represents the reflectance values for a specific location in the
scene across all of the spectral bands. There are various
hyperspectral remote sensing platforms and sensors available,
each with different specifications and capabilities. The choice of
platform and sensor depends on the specific requirements of the
study, such as the desired spatial and spectral resolution, the size of
the area to be covered, and the cost constraints.

The important feature of satellite images in tree detection is their
spatial and spectral resolutions. The spectral resolution of the trees
will be important for the accuracy of the spectral response, and the
spatial resolution will be important for the comparison of these trees
with the training data during classification. High-resolution images
allowed individual tree detection and even the separation of leaves
from these trees (Grabska et al., 2019).

However, not every satellite image has both of these advantages
at the same time. Since it is not possible for satellite images to have
high spectral and spatial resolution at the same time, users found the
solution in pansharpening. They also increased the spatial resolution
of hyperspectral images with a high number of spectral bands and
suitable for tree detection by using panchromatic bands (for
example,: (Pu and Landry, 2012; Ferreira et al., 2019; Lassalle
et al., 2022).

MS images from different satellites such as Landsat, IKONOS,
Quickbird, and Sentinel have been frequently used in the
classification of tree species. Among the main reasons why these
systems are preferred is that they provide free images at more
frequent times than other systems (LIDAR, Unmanned Aerial
Vehicle). Another reason for preference is the bands they have
regarding SWIR, tissue properties and plant indices (Figure 4).

When these bands are used together with various classification
methods, they provide great convenience to the user in both single
image and instant tree detection (Xi et al., 2021). By making use of
the phenological cycles of trees, species identification can be made

FIGURE 2
Forest types and percentages of trees classified in the studies
examined.

FIGURE 3
Tree detection studies at individual and tree crown level.

FIGURE 4
Satellites with multispectral sensors used in the studies and their
spectral properties.
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with images of a tree taken on more than one date and season. The
seasonal yellowing of leaves in deciduous trees allows each tree to
give a different spectral reflection and facilitates detection. In a stand
where deciduous and evergreen trees are mixed, species
identification can be made by making use of the defoliation
seasons (Grabska et al., 2019). The main difficulty in species
identification studies with the help of time series is to identify
evergreen trees among themselves. Hyperspectral images are also
frequently used in the classification of tree species. The authors
preferred these images because they provide deeper information.
There are many studies on tree detection with unmanned aerial
vehicle, camera or satellite images. Hyperspectral images have
mostly been used for individual crown classification and species
identification in mangrove forests. Authors have preferred to use
hyperspectral image in their studies according to the depth of the
study and the desired classification sensitivity with the cost of spatial
resolution.

3.2 General operation steps

The most basic workflow applied in identifying and mapping
tree species is given in Figure 5. Of course, these are not the limited
options here, and they will be discussed in detail in the following
parts of the study. The most basic issue in a tree detection study is to
choose the image that suits your study. There are two important
questions to ask when choosing an image; “How would the spectral
characteristics of this image help me solve my problem?”, “Is the
spatial resolution of this selected image suitable for my intended
sensitivity?”. For example, while higher spectral resolution
hyperspectral images are often used in individual crown
detection processes, there is a need to increase the spatial
resolution of the image at the same time. Therefore, it is aimed
to increase the spatial resolution of the hyperspectral image with the
pan-sharpening method. In stand-based species identification
studies, high spectral resolution is ignored and free-to-use
hyperspectral images are frequently used.

We can list the workflow in general as follows, of course, the
methods are not limited to these. With the advances in hyperspectral
and multispectral image processing, these methods are also being
renewed day by day. The methods we describe in this article are
limited to the papers we have reviewed that perform tree species
detection with existing hyperspectral and multispectral images.

Data acquisition: Acquire hyperspectral or multispectral data (or
both) of the study area using a remote sensing instrument.

Pre-processing: Perform necessary preprocessing steps on the
both data, such as atmospheric correction, noise reduction, and
radiometric correction. Many operations such as size reduction for
hyperspectral data and cloudmasking for multispectral data can also
be added to this step depending on the data type.

Feature extraction: Extract relevant features from the corrected
hyperspectral and multispectral data. This can include calculating
vegetation indices, principle component analysis (PCA), and
transforming the data into the wavelength domain.

Classification: Use machine learning algorithms such as decision
trees, random forests, and support vector machines to classify tree
types based on extracted features, or use deep learning algorithms
such as U-net, AlexNet, which is seen as a subset of machine
learning. These are just a few of the most up-to-date methods, of
course, traditional methods or different algorithms that are being
developed can also be used.

Validation: Validate the accuracy of the classification results
using an independent dataset or by applying an accuracy assessment
technique, such as confusion matrix or k-fold cross-validation.

Visualization: Create maps and visualizations to display the
results of the tree species classification.

4 Review of tree classification studies

4.1 Tree detection with MSI, HSI

Data providing MS image and containing visible (VIS), near
infrared (NIR) and short-wave infrared (SWIR) bands provide
detailed information, making it very easy to distinguish between
different tree species. In particular, their multi-time availability
makes them preferable for tree detection. When tree detection
studies conducted with multispectral images since 2012 were
examined, it was seen that most of them benefited from multi-
temporal images (Persson et al., 2018; Immitzer et al., 2019;
Grabska et al., 2020; Xi et al., 2021). We classified the bands
used in the studies we review within the scope of the review study
into 3 main types. These are VIS (400–700 nm), NIR
(700–1300 nm) and SWIR (1300–2500 nm). The information on
how often the tapes are used alone and together in studies can be
found in Figure 6.

FIGURE 5
Tree type classification and visualalization workflow.
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Leaves absorb light due to the chlorophyll they contain. The way
the incoming photons are distributed in the mesophyll within the
leaf depends on the structure of the leaf. Due to the lignin molecule,
cellulose and nitrogen it contains, more reflection is expected in the
SWIR band, but unfortunately this is not possible in living leaves.
Because the water contained in living leaves reduces the reflection.
However, since there is no water in the dry leaves, they will show
more reflection in the SWIR band (Persson et al., 2018).

This makes it easy to distinguish between deciduous and
evergreen trees using multi-time images.

Sentinel-2 has a wider stripe width than other multispectral
image providers. In this way, it does not take long for him to visit the
same place again. Cloud-free image capture becomes easier with
more frequent visits. It facilitates tree species identification thanks to
its three red edge bands (Vegetation Red Edge), which are used to
measure chlorophyll levels. This explains the reason why it is most
preferred in studies with time series analysis (Hościło and
Lewandowska, 2019; Immitzer et al., 2019; Grabska et al., 2020).

The high resolution of the panchromatic band of the VHR
sensors of the WV-3 satellite provides clear visualization of
individual tree crowns. Thanks to the SWIR bands, the canopies
can be easily detected. For this reason, Ferreira et al. (2019) preferred
the WV-3 satellite to detect individual trees in tropical forests.
Immitzer et al. (2012) produced spectral signatures for 10 tree
species in his study in Austrian forests and as a result reflection
values of broad-leaved tree species in the Red Edge and NIR bands
were higher than those of conifers. Cypresses were the conifer tree
with the highest reflectance value in the NIR band, followed by fir,
larch, yellow pine, and spruce. While NIR bands can make the
distinction between broadleaf and coniferous trees sharper, it has
not been successful enough in determining the subspecies among
themselves.

One of the most important reasons for using hyperspectral
images for tree species detection is that it can distinguish two
different subspecies of the same species from each other thanks
to its high spectral resolution (Hati et al., 2021). In studies to detect
tree species, it has been seen that hyperspectral data are obtained by
different platforms and sensors such as unmanned aerial vehicles

(UAV), aircraft, terrestrial cameras, satellites (Hycza et al., 2018;
Abbas et al., 2021; Hati et al., 2021; La Rosa et al., 2021). The use of
hyperspectral images obtained from unmanned aerial vehicles has
become increasingly applicable in the field of forestry. Because
unmanned aerial vehicles are safer compared to aircraft, flight
plans can be adjusted more flexibly and the cost is lower
(Franklin and Ahmed, 2018). Due to the chemical content of the
trees, it is normal for each of them to give a different reflection in
different bands, these reflections allow us to distinguish between
individual tree crowns as well as stand-based tree discrimination.
These distinctions are often not clearly detectable with broadband
multispectral images. However, individual tree crowns can be
distinguished sharply thanks to the narrow bands of
hyperspectral images (Hycza et al., 2018).

Sensors are selected in accordance with the classification
character. For example, a higher spectral resolution sensor is
needed to distinguish between two different tree species that give
very close spectral reflections (Richter et al., 2016).

AVIRIS-NG data, the successor of AVIRIS, was used in the
mangrove species detection study. AVIRIS-NG is a joint project of
the Indian Space Research Organization (ISRO) and NASA and
provides detailed data frommany different parts of India (Hati et al.,
2021).

La Rosa et al. (2021), on the other hand, carried out a study of
tree species determination in dense forest areas with a CMOSIS
CMV400 sensor camera with bands in the range of 500 nm and
900 nm attached to a Quadcopter Unmanned Aerial Vehicle (UAV).
Specim brand Finnish imaging products are one of the most
commonly used imaging systems in the article we reviewed. A
handheld camera named Specim IQ of this system, Eagle and
Hawk sensors of AISA imaging systems, one of the aerial
systems, were used separately and together in tree species
detection studies (Hycza et al., 2018; Abbas et al., 2021).
Collecting spectral signatures from tree leaves, Harrison et al.
(2018) used the Agilent 4100 ExoScan FTIR (Fourier transform
infrared) portable spectrometer to determine the diffuse reflection
spectrum of leaves.

Because urban landscapes contain so many species,
classification is more difficult compared to other stand
forests. Therefore, it is necessary to take advantage of the
high spectral resolution of hyperspectral images. For this
purpose, AVIRIS satellite images were also used to detect
trees of urban forests at the single tree level (Xiao et al.,
2004). The bands around 970 nm were removed because they
were in the transition region between the sensors and had low
signal content. The bands below 400 nm and above 2400 nm are
excluded from the image because they are noise bands. Studies
were carried out in the remaining bands between 450–2400 nm.
Vaglio Laurin et al. (2016) who has exploited the AISA Eagle
sensor, has removed noisy bands in the range of 400–450 nm and
900–1000 nm. Due to the low signal, he removed the bands
between 759–766 in the range of 450–900 nm and worked with
186 bands in this range (Figure 7).

A minimum noise fraction (MNF) has been applied to eliminate
or reduce each pixel market. They retained the MNF components,
where the crowns were noise-free and clearly visible. After this
transformation, it was converted to its original scale in order to
calculate vegetative indexes.

FIGURE 6
Venn diagram of the use of multispectral sensor bands alone or
together in studies.
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Hyperspectral and multispectral images as well as simultaneous
aerial photographs were used to determine the crowns precisely. The
simulation was done by considering the hyperspectral band gaps to
be used while simulating theWv-3 data. These bands were simulated
with Spectral Response Functions (SRF) (Vaglio Laurin et al., 2016).

4.1.1 Pre-processing methods
After leaving the Sun, solar radiation travels to the Earth and

from there to the satellite sensor. During this journey, it is affected by
some factors such as radiation absorption and scattering by gases
and aerosols, causing the reflection values to be different from what
they are (López-Serrano et al., 2016). In some classification
processes, when training samples and data are taken over the
same satellite image, correction is not required, but when using
multi-time data, since the atmospheric effect on the two data will be
different, it becomes necessary to make corrections (Song et al.,
2001).

Improvements should be made in studies involving detailed
classification, such as tree species detection, because atmospheric
effects increase spectral confusion between two different tree species
(Pu and Landry, 2012). Most satellite instrument providers perform
their own atmospheric correction deployment. For example, while
the European Space Agency (ESA) provided its own atmospheric
correction for Sentinel-2, the National Aeronautics and Space
Administration (NASA) also introduced Ledaps and LaSRC
corrections for its satellite mission Landsat (Rumora et al., 2020).
Among the studies we reviewed, atmospheric correction of Sentinel-
2 images was done with the Sen2Cor plug-in provided by ESA
(Wessel et al., 2018; Immitzer et al., 2019; Axelsson et al., 2021; Xi
et al., 2021). Atmospheric effects of WV-2, WV-3 and IKONOS
satellite images were corrected with DigitalGlobe (Pua and Landry,
2012; Ferreira et al., 2019). Corrections of some satellite images were
also made with FLAASH using the Envi module.

Another problem after these fixes is cloudy weather conditions.
Whatever our classification problem, one of our most fundamental
problems is cloud-covered satellite images. For this reason, while the
studies are carried out, cloudy weather is chosen where there is no
cloud as much as possible or there is little enough to not prevent
classification (Grabska et al., 2019). Images from previous or following
years can also be used instead of images that cannot be obtained
without a cloud (Xi et al., 2021). Removing non-forest areas from
forest areas before classification shortens the classification process.

For this purpose, the normalized difference vegetation index
(NDVI) and other vegetation indices were used (Pu and Landry,
2012). These indices also have the ability to reduce atmospheric
problems (Xi et al., 2021). In addition to vegetation indices, machine
learning methods were also used to apply forest masks (Grabska
et al., 2019). Pan sharpening is a method applied to increase the
spatial resolution of spectrally rich multispectral images (Wang
et al., 2022). There are many types of algorithms categorized as
Component Replacement (CS-based), Multiple Resolution Analysis
(MRA), Variational Optimization-based (VO), and Hybrid (Javan
et al., 2021). Among the studies we reviewed, three tree-detection
studies pan-sharpened the multispectral images it used (Pu and
Landry, 2012; Ferreira et al., 2019; Lassalle et al., 2022). This method
is especially preferred for tree crown detection because it provides a
clearer image compared to the unsharpened image (Pu and Landry,
2012). Ferreira et al. (2019) combined the images he used with the
relevant bands to be used in tree detection using the Gram-Schmidt
transform. He explained that the reason for choosing this method is
that images with low spatial resolution preserve their spectral values
and that it is beneficial in tree detection studies done before.

The Nearest Neighbor Diffusion (NNDiffuse) algorithm pan-
sharpen images by exploiting the spectral response of neighboring
pixels based on spectral mix analysis. Lassalle et al. (2022) sharpened
the bands to be used in images taken from WV-3 and WV-4
satellites using the Nearest Neighbor Diffusion (NNDiffuse)
algorithm in ENVI® (L3Harris Geospatial, Boulder, CO,
United States of America). Pu and Landry (2012) used
FieldSpec®3, Analytical Spectral Devices on site and took spectral
measurements from the locations they identified with IKONOS and
WV-2. Using these measurements, he calibrated the ground
reflection and applied a pan-sharpening between the respective
bands. Hyperspectral data contains a large number of correlated
data. Sometimes this is perceived as an advantage, but sometimes it
increases the noise. Increasing the number of spectral bands also
introduces computational complexity. This is also known as the
curse of dimensionality. According to this phenomenon, the
increase in the number of bands causes an exponential increase
in the training data (Dabiri and Lang, 2018). Therefore, one of the
most basic preprocessing steps of hyperspectral data is size reduction
and noise reduction. Principal component analysis (PCA) is widely
used to achieve these (Hycza et al., 2018). Hati et al. (2021) made the
atmospheric correction of the data received from the AVIRIS-NG

FIGURE 7
Bands extracted and used in hyperspectral images.
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sensor on the model he developed using the Aerosol Optical Depth
(AOD) and absorption depth values. He manually removed the
bands he found bad from the data. The larger the data, the longer
and more laborious it will be to process, thus reducing the size of the
data with Principal Component Analysis (PCA). Radiometric and
dark signal correction was made with the help of Hyperspectral
Imager software of the images of the CMOSIS CMV400 sensor
mounted on the UAV vehicle (Abbas et al., 2021). Radiometric
correction and georeferencing of hyperspectral data acquired with
SPECIM imaging systems were performed with the CaliGeo Pro
application integrated with ENVI (Richter et al., 2016). After
atmospheric and geographical corrections are made, forest and
non-forest masking should be applied to the data to reduce the
size of the data to be processed and to protect it from
misclassification. These masking processes can be done by
manually processing the training data from satellite images with
machine learning methods (Hycza et al., 2018), by taking the
coordinates of trees with terrestrial acquisition techniques (Jing
et al., 2012) or by making use of forest inventories (Richter et al.,
2016) can be done.

An Augmented Linear Mixing Model (ALMM) is a type of
hyperspectral unmixing technique that can contribute to tree species
identification studies by improving the accuracy and robustness of
the analysis. Hyperspectral unmixing is the process of estimating the
fractional abundance of endmember spectra present in a
hyperspectral image. This information can be used to identify
different tree species based on their unique spectral signatures.
The ALMM approach addresses the issue of spectral variability,
which occurs when the same tree species can have different spectral
signatures due to variations in factors such as age, physiology, or
environmental conditions. The ALMM approach models this
spectral variability by augmenting the traditional linear mixing
model with additional information, such as spectral libraries or
prior knowledge of the species, to improve the accuracy and
robustness of the unmixing results (Hong et al., 2018). Although
not used in the studies we reviewed, By using the ALMM approach,
researchers can obtain more accurate and reliable information on
the spectral signatures of different tree species, which can improve
the accuracy and robustness of tree species identification studies in
remote sensing.

4.1.2 Multi-sensor fusion
The combined use of hyperspectral and multispectral images

contributed to tree species detection studies. In the studies, band
combinations of multispectral and hyperspectral sensors were made
and used together by comparing the accuracy rates provided by both
platforms (Ferreira et al., 2016; Hati et al., 2021; Yang et al., 2022).
Some adaptations have to be made for the combined use of
hyperspectral and multispectral sensor data. For this,
hyperspectral data simulates multispectral bands by spectral
resampling. Narrow band gaps used in hyperspectral data are
adapted to multispectral images by filtering (Ferreira et al., 2016).

Yang et al. (2022) tried to choose cloud-free images as much as
possible and therefore kept the data diversity very much.

Hati et al. (2021) also conducted a mangrove species detection
study, and for this study Landsat-8, Sentinel-2 multispectral imaging
systems, Hyperion, AVIRIS hyperspectral imaging systems were
used. In order tomake uniform patch detections, samples were taken

with a hand-held spectroradiometer (ASD FieldSpec®) in the study
area, as well as the satellite platforms it uses. As a result of these
examples, the average product created a patch spinning and used it
for classification.

450–2400 nm wavelength hyperspectral (SPECIM, Aisa) and
simulated multispectral data (WW-3) were used to distinguish and
map tree species in tropical seasonal semi-deciduous forests. In
addition to these, vegetation indices were also used to identify
individual tree species (Ferreira et al., 2016).

The combined use of multispectral and hyperspectral data
provides great advantages in tree species detection. Some of the
articles we reviewed used these two data for comparison, while
others used them together by simulating methods such as Spectral
Response Functions (SRF) (Vaglio Laurin et al., 2016). Spectral
Response Functions (SRFs) refer to the sensitivity of a remote
sensing instrument to different wavelengths of light. SRFs
describe how much energy a sensor detects at each wavelength in
the electromagnetic spectrum and are used to convert the raw digital
numbers (DNs) obtained from the sensor into physical units, such as
reflectance (D’Odorico et al., 2013).

CoSpace method, which is a method that we have not
encountered in reviwed studies, is also seen as a promising
approach in tree species detection. The CoSpace method,
which is a method of using multispectral and hyperspectral
data together, involves finding the information shared among
the data and projecting both sources into a common subspace.
This allows the information from both sources to be effectively
combined, resulting in improved classification performance. It
enables the effective use of both hyperspectral and multispectral
data, and reduces the dimensionality of the data, making it easier
to process and analyze (Hong et al., 2019). The use of CoSpace in
tree classification is a promising approach that has the potential
to provide improved results compared to using either source
alone.

FIGURE 8
Machine learning algorithms used in articles.
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4.2 Classification methods

4.2.1 Machine learning
The machine learning algorithms used in the reviewed articles

are as in Figure 8.
Support Vector Machine (SVM); It is one of the most commonly

used supervised learning algorithms for classification and regression
solutions. The main purpose in support vector machines is to assign
the new data obtained to the class it belongs to. For this, we need to
produce the best lines and decision lines that separate the classes
from each other. The best decision class here is the hyperplane.

Objects are assigned to their new classes based on their
proximity and distance from the hyperplane. In order to create
this plane, support vectors in extreme states are selected
(Mountrakis et al., 2011). Since the SVM algorithm finds the best
decision hyperplane in multidimensional data, it is a reliable method
used in the detection of tree species.

When we classify big data, whether it is a tree detection or a land
surface classification, most of the time the data cannot be classified
in a linear way (Xi et al., 2021).

Random Forest (RF); contains many decision trees. These trees
are trained with training examples to solve the classification
problem. Training samples consist of percentage 70 randomly
selected data from the total number of samples. Trees are used as
large as possible, and classification is made according to the majority
of votes. RF is robust against overfitting, insensitive to noise. It is a
frequently preferred method in tree species classification and can be
applied successfully. In order for the algorithm to give more reliable
results in big data, the most important parameters should be
selected. For this, the mean decrease in accuracy (MDA) is used
(Xi et al., 2021).

Maximum likelihood (ML); It is a decision rule based on the
conditional probabilities of different classes (Axelsson et al., 2021). It
is a parametric supervised classification algorithm, based on
Bayesian equation. Data of unknown class is assigned to the
corresponding class by calculating the probability of belonging. It
gives more accurate results for normally distributed data compared
to other parametric classifications (Otukei and Blaschke, 2010).

Extreme Gradient Boosting (XGB); In this method, which is a
gradient tree increment method, it predicts the new member class in
an additive way after each classification. Its additiveness helps it
correct previous classification errors and make more accurate
decisions. The final classification that takes place is the most
dominant, as all trees have additive growth. The limitation of
overfitting is the most important feature that caused it to be
selected for classification (Georganos et al., 2018).

Linear Discriminant Analysis (LDA); It is a supervised learning
technique that works by finding a linear transformation matrix.
Thanks to the criteria in the method, the distance between class
means and variances are minimized (Bandos et al., 2009). Although
this analysis method gives good results, some disadvantages of
classical discriminant analysis arise when it comes to
multispectral hyperspectral images. It is not an expert at
handling badly located data. Due to the curse of dimensionality,
HSI cannot succeed in processing. The application of data reduction
methods can also lead to the elimination of necessary data. The
method assumes that the data samples have a Gaussian distribution
and share equal covariances across all classes, but this is

unfortunately not always possible for HSI. Therefore,
classification boundaries can be difficult to find. Many new
approaches have been proposed to overcome these difficulties of
the classical method (Chen et al., 2018).

Maximum Likelihood (ML); It is a method that maximizes the
number of classes in the training data and the distance between these
classes to find the hyperplane that separates the classes from each
other. Misclassifications are minimized thanks to this method
(Vaglio Laurin et al., 2016).

Minimum Distance (MD); It is a method that calculates the
Euclidean distance of the pixels to be classified to the average vector
consisting of the average of the end pixels. In this method, each pixel
whose class is to be defined is assigned to the group with the closest
distance. Its bad feature is that pixels that are equidistant or whose
distance cannot be calculated are not classified.

K- Nearest Neighbor (k-NN); It is a method that calculates the
distance metric and the number of nearest neighbors k) and assigns
the pixel whose class is tried to be found to the correct class
according to the weights of the neighbors. Euclidean distance is
often used as a distance metric. Because it can be used in multi-class
data, it is frequently used to produce contiguous estimates of forest
features (Meng et al., 2007; Chirici et al., 2016).

Spectral Angle Mapper; It is a supervised classification technique
that calculates the spectral angle similarity between the pixel in the
training set and the pixel whose class is sought. SAM is often used in
classification problems because it is simple and fast to implement.
Suppresses shadow effects to bring out the reflection properties of
the target. This makes it a powerful classifier (Petropoulos et al.,
2013).

Regression Tree; It is a non-parametric method based on the
preparation of a binary decision tree created with training data
samples. It needs big training data sample to get good results. In
decision trees, complex classification problems are divided into

FIGURE 9
Artificial Intelligence, Machine Learning and Deep Learning
relationship.
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simpler al problems. The user is involved in the process because he
can interfere with the nodes of the tree (Bittencourt and Clarke,
2003).

4.2.2 Deep learning
Deep learning, which is a sub-step of machine learning in our

developing world (Figure 9), is a system that imitates our brain with
the help of artificial neural networks.

With the help of this system, classification problems in remote
sensing data can be solved. Compared to classical neural network
models, DL, which has more cascading neural layers, was more
successful in revealing complex relationships (Kattenborn et al.,
2021). Convolutional neural network (CNN); They are arranged in
layers and have neurons that can learn sequential representations.
Weights and biases are used to connect neurons between layers. It
has hidden layers to match the input properties with the output
properties. These layers must contain at least one convolutional
layer to take advantage of the patterns. Convolutional layers contain
many filters. The number of these filters gives us the CNN depth.
The layer used as input in one layer can be the output data of another
layer. Thus, as a result of many operations between layers,
classification accuracy increases compared to classical methods.
The first input layer is hyperspectral or multispectral images,
while the last output layer is their versions classified according to
tree types. CNN, which is designed to learn spatial features, is
frequently used in studies due to its success in revealing spatial
features, whether in determining individual tree crowns or in stand-
based tree species detection studies (Kattenborn et al., 2021; Gazzea
et al., 2022). CNN layers such as convolutional or pooling layers can
be combined in different ways to solve the problem. These
combinations are defined as CNN architecture. There are
numerous CNN architectures. The architectures used in the
detection of tree species are listed below.

Conv1D architecture; It is a one-dimensional (1D)
convolutional neural network model. It uses the convolution
kernel to grasp the temporal pattern or shape of the inputs. In
this model, which has more than one convolutional layer, features
are removed gradually. Activation functions are used to speed up the
training process and prevent overfitting. It is very convenient to be
used in the time series method (Xi et al., 2021).

AlexNet; It is a two-dimensional (2D) CNNmodel. It consists of
five convolutional and three full layers. It collects images in different
classes using the Softmax classifier. It drops units from the neural
network by applying the drop function to remove overfitting (Xi
et al., 2021).

Long Short-Term Memory (LSTM); It is a model from the
family of Recurrent neural networks. Due to its structure, it repeats a
lot, thanks to these repetitions, the input information can be kept
inside for a long time.

UNet architecture; It is one of the most common methods used
for image segmentation, which includes two ways as encoder and
decoder. The encoder consists of convolution and pooling units,
while the decoder consists of transpose convolutions. Since it was
first used in 2015, many new versions have been adapted to improve
accuracy. One of them Unet++ has two big variants compared to the
classical method. In tree detection processes, especially when
hyperspectral images are used, the training data is inserted into
the training piecemeal, not in bulk, in order to train the weights of

the architecture. The Unet++ model aims to reduce overfitting and
strengthen model generalization by making weight adjustments
(Bolyn et al., 2022).

DeepLabv3+ architecture; It is an improved version of the
DeepLabv3 architecture used for segmentation by adding a
decoder. This decoder greatly improves segmentation results.
DeepLabv3+ based Multi-Task Encoder-Decoder (MT-EDv3)
architecture has also been used in tree species detection studies
on the basis of crown (La Rosa et al., 2021; Lassalle et al., 2022).

Residual Networks (Resnet); There are many new versions of
these architectures, which are widely used in image processing, with
changes on them. It has hundreds of layers much deeper. There are
jumps over some layers (La Rosa et al., 2021).

3-D CNN; It is a three-dimensional convolutional neural
network used to capture spatial and temporal information.
When used with hyperspectral data, the entire image is not
inserted into the layer as the input layer, instead the pixel cubes
enter the training (the curse of dimensionality). It is often the
preferred method to prevent excessive loss of login information.
Here, the number of layers is related to the spatial dimension of the
cube (Zhang et al., 2020).

Graph Convolutional Networks, which is a relatively new deep
learning technique that we have not encountered in studies on tree
species detection, is specially designed to process graphically
structured data. In the context of tree detection, GCN can be
used to model the relationships between pixels in a remote sensing
image, where each pixel is represented as a node in a graph. By
convolving the graph structure, GCN can learn to extract
meaningful features that are indicative of the presence of trees
in the image. To implement GCN for tree detection, the first step is
to convert the remote sensing image into a graph structure. This
can be done by constructing a graph where each pixel is a node and
the edges represent the relationships between pixels. For example,
the edges can represent the spatial proximity or color similarity
between pixels. Next, the graph is convolved using multiple GCN
layers, where each layer aggregates information from its neighbors
to update the node representations (Zhang et al., 2019). The final
node representations can then be fed into a classifier to make the
final tree detection decision. In addition to the GCN layers, other
techniques such as multi-scale feature extraction and attention
mechanisms can also be incorporated to improve the performance
of the tree detection system (Wan et al., 2019). For example, multi-
scale feature extraction can help capture the different scales of tree
structures in the image, while attention mechanisms can help focus
on the most important parts of the image. In conclusion, GCN is a
powerful technique for tree detection in remote sensing images, as
it can handle the graph-structured data in a natural way and
extract meaningful features for the task. By combining GCN with
other techniques, it is possible to build a robust and accurate tree
detection system that can help in mapping and tracking the growth
and distribution of trees.

SpectralSWIN method aims to extract features without
distorting spectral information. It proposes a transformer
backbone using the swin-spectral module (SSM) to handle spatial
and spectral features simultaneously. In the study, the application
was made on two different data sets and it was seen that it was more
successful than the commonly used classification methods (Ayas
and Tunc-Gormus, 2022).
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4.3 Evaluation of the review results

The results obtained from the studies we examined in this review
study are explained by grouping them according to the tree type,
material used and classification method accuracy. Since accuracies
were calculated by different methods between studies, F1 scores and
user accuracies (UA) are shown here to avoid confusion. Apart from
these, the authors’ work can be consulted for detailed information
(product matrix, manufacturer’s accuracy, etc.).

When we first look at the table of pine, supruce, larch, birch and
poplar species that we have classified within the Boreal forest type
(Figure 10); The highest accuracy for pine and spruce was obtained
by UA scores of 0.96, 0.99 (Grabska et al., 2019). The highest
accuracy for larches and poplar was found by Xi et al. (2021)
with F1 scores of 0.85–0.87. The highest accuracy for Birch was
obtained by Illarionova et al. (2021) with an F1 score of 0.91.

When these high accuracy materials and classification methods
are compared, it is seen that all of them use MSI but use different
classification methods. This showed how the classification method
made a difference in the accuracy of tree species detection
(Figure 11).

Whenwe examined the accuracies for the Temperate forest type, the
highest accuracywas obtained byHościło and Lewandowska (2019) with
0.91 and 0.93 F1 scores for Oak and Beech. The highest accuracy for Fir
was found by Grabska et al. (2020) with a UA score of 0.85 (Figure 12).

Although three researchers used the same methods and
materials, one achieved higher accuracy in both species (Figure 13).

He explained the reason for this Hościło and Lewandowska
(2019) by fusing the multi-time sentinel-2 data with the topographic
data of the land, especially the elevation data.

When we look at the species identification studies in mangrove
forests, F1 scores with which we can compare the accuracy are not
given in the articles, so the truth table of these studies was not
prepared. However, when we reviewed the studies, Hati et al. (2022)
used hyperspectral images to distinguish between mangrove species
and determined pure mangrove classes with the SAM classification
method (Avicennia alba, Avicennia marina, Avicennia officinalis,
Excoecaria agallocha, Pheonix paludosa, Aegialitis rotundifolia and
Heritiera). Thanks to AVIRIS’s 5 m spatial and 5 nm spectral
resolution, it was able to distinguish between the two species
with ease. He was even able to distinguish the levels of a single
species in different ages. The effects of classical machine learning
classification techniques (RF, SVM, etc.) and advanced CNNmodels
on the mangrove type were also examined and it was seen that they
were more successful in advanced CNN classification (La Rosa et al.,
2021).

In mangrove mapping, La Rosa et al. (2021) conducted species
identification studies on the basis of individual crowns. As a result of
his studies, he succeeded in separating the crown from the areas
without a crown, but the method they proposed could not provide
the expected success in species identification.

Unlike others, Yang et al. (2022) used mangrove vegetation
indices. On hyperspectral images, Mangrove Recognition Index

FIGURE 10
Comparison of classification accuracies of boreal forest trees.

FIGURE 11
Data and classification methods used in tree species detection
with the highest accuracy (Boreal Forest).

FIGURE 12
Comparison of classification accuracies of temperate forest
trees.

FIGURE 13
Comparison of classification accuracies of temperate forest
trees.
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(MRI), Mangrove Index (MI), Normalized Difference Mangrove
Index (NDMI), Mangrove Probability Vegetation Index (MPVI),
Mangrove Recognition Index (CMRI), Submerged Mangrove
Recognition Index (SMRI), Mangrove Forest Index (MFI) and
similar classifications have been carried out. In the same region,
the same data were classified by SVM and compared with index
classification. As a result of this comparison, it has been reported
that the classification made with SVM results in less pixel missing
than indices.

Ferreira et al. (2019) tried to determine the effect of humidity by
taking images in wet and dry seasons in a study he carried out in a
tropical forest. However, there was no big difference in average
accuracies. The main hypothesis of they study, SWIR positively
determined the effect of tapes on tree depiction. The average
accuracy of the classification was 7.9 percent higher in the SWIR
band than in the NIR band. By including the SWIR band in the
classification, it made positive improvements in all species except
one. The average accuracy of the Cecropia hololeuca type decreased
slightly, not even 1 percent.

5 Conclusion

As a result of the articles examined, it has been observed that the
contributions of multispectral and hyperspectral images are quite
high in stand-based classification and individual tree species
determination. Hyperspectral images have made positive
contributions especially in the detection of individual tree species
and in the detection of multiple subspecies of the same species.
Multispectral images, on the other hand, have been frequently used
by researchers as they are free and easily available and have made
significant contributions to the literature. While machine learning
algorithms are very common in publications, deep learning
classification algorithms are relatively rare in the literature. The
contribution of developing machine learning technologies to tree
species detection has been observed to be quite high. It is expected
that deep learning algorithms, which give more precise results, will
find more space in the literature in the future.

It is inevitable that another factor affecting the results as well as
the selected image type and classification method is the

preprocessing steps. For this reason, researchers who will carry
out tree species determination studies should give importance to the
pre-processing steps at least as much as other factors. According to
the results of two researchers who carried out tree species detection
studies using the same sensor type, same forest type and same
classification method; It may be misleading to use only the spectral
reflections of trees while detecting. It has been observed that not
ignoring the connection of the forest with the topography and
therefore including the topography criterion in the species
determination studies will increase the classification accuracy.

Althoughmachine learning methods and deep learning methods
used in classification studies are promising, advanced methods such
as Graph Convolutional Networks are expected to be applied in
classification. It is expected that state-of-the-art applications such as
the use of the CoSpace method in the fusion of more than one sensor
and the An Augmented Linear Mixing Model (ALMM) for healthier
creation of spectral signatures will be included in new studies.
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