1,640 research outputs found

    Design of an embedded iris recognition system for use with a multi-factor authentication system.

    Get PDF
    This paper describes in detail the design, manufacturing and testing of an embedded iris scanner for use with a multifactor authentication system. The design process for this project included hardware design from part selection to board design to populating. Additionally, this process included the entirety of the software development, though the iris recognition process was largely based on other works. The functional requirements for the overall multi-factor authentication system were to have three authentication methods with a thirty second window to complete all three. The system acceptance accuracy was required to be greater than 75%. Those requirements therefore dictate that the iris scanner module must also have an acceptance accuracy higher than 75% and perform iris recognition in a few seconds so that the user can gain admittance in the allotted window of time. While the hardware has been verified and tested, further development and testing is necessary on the software and image processing. This work is funded by the Department of Energy’s Kansas City National Security Campus, operated by Honeywell Federal Manufacturing & Technologies, LLC under contract number DE-NA0002839

    Circle-based Eye Center Localization (CECL)

    Full text link
    We propose an improved eye center localization method based on the Hough transform, called Circle-based Eye Center Localization (CECL) that is simple, robust, and achieves accuracy on a par with typically more complex state-of-the-art methods. The CECL method relies on color and shape cues that distinguish the iris from other facial structures. The accuracy of the CECL method is demonstrated through a comparison with 15 state-of-the-art eye center localization methods against five error thresholds, as reported in the literature. The CECL method achieved an accuracy of 80.8% to 99.4% and ranked first for 2 of the 5 thresholds. It is concluded that the CECL method offers an attractive alternative to existing methods for automatic eye center localization.Comment: Published and presented at The 14th IAPR International Conference on Machine Vision Applications, 2015. http://www.mva-org.jp/mva2015

    UBSegNet: Unified Biometric Region of Interest Segmentation Network

    Full text link
    Digital human identity management, can now be seen as a social necessity, as it is essentially required in almost every public sector such as, financial inclusions, security, banking, social networking e.t.c. Hence, in today's rampantly emerging world with so many adversarial entities, relying on a single biometric trait is being too optimistic. In this paper, we have proposed a novel end-to-end, Unified Biometric ROI Segmentation Network (UBSegNet), for extracting region of interest from five different biometric traits viz. face, iris, palm, knuckle and 4-slap fingerprint. The architecture of the proposed UBSegNet consists of two stages: (i) Trait classification and (ii) Trait localization. For these stages, we have used a state of the art region based convolutional neural network (RCNN), comprising of three major parts namely convolutional layers, region proposal network (RPN) along with classification and regression heads. The model has been evaluated over various huge publicly available biometric databases. To the best of our knowledge this is the first unified architecture proposed, segmenting multiple biometric traits. It has been tested over around 5000 * 5 = 25,000 images (5000 images per trait) and produces very good results. Our work on unified biometric segmentation, opens up the vast opportunities in the field of multiple biometric traits based authentication systems.Comment: 4th Asian Conference on Pattern Recognition (ACPR 2017

    Deep Neural Network and Data Augmentation Methodology for off-axis iris segmentation in wearable headsets

    Full text link
    A data augmentation methodology is presented and applied to generate a large dataset of off-axis iris regions and train a low-complexity deep neural network. Although of low complexity the resulting network achieves a high level of accuracy in iris region segmentation for challenging off-axis eye-patches. Interestingly, this network is also shown to achieve high levels of performance for regular, frontal, segmentation of iris regions, comparing favorably with state-of-the-art techniques of significantly higher complexity. Due to its lower complexity, this network is well suited for deployment in embedded applications such as augmented and mixed reality headsets

    An enhanced iris recognition and authentication system using energy measure

    Get PDF
    In order to fight identity fraud, the use of a reliable personal identifier has become a necessity. Using Personal Identification Number (PIN) or a password is no longer secure enough to identify an individual. Iris recognition is considered to be one of the best and accurate form of biometric measurements compared to others, it has become an interesting research area. Iris recognition and authentication has a major issue in its code generation and verification accuracy, in order to enhance the authentication process, a binary bit sequence of iris is generated, which contain several vital information that is used to calculate the Mean Energy and Maximum Energy that goes into the eye with an adopted Threshold Value. The information generated can further be used to find out different eye ailments. An iris is obtained using a predefined iris image which is scanned through eight (8) different stages and wavelet packet decomposition is used to generate 64 wavelet packages bit iris code so as to match the iris codes with Hamming distance criteria and evaluate different energy values. The system showed 98% True Acceptance Rate and 1% False Rejection Rate and this is because some of the irises weren’t properly captured during iris acquisition phase. The system is implemented using UBIRIS v.1 Database.Keywords: Local Image Properties, Authentication Enhancement, Iris Authentication, Local Image, Iris Recognition, Binary Bit Sequenc

    A robustness verification system for mobile phone authentication based on gestures using Linear Discriminant Analysis

    Get PDF
    This article evaluates an authentication technique for mobiles based on gestures. Users create a remindful identifying gesture to be considered as their in-air signature. This work analyzes a database of 120 gestures of different vulnerability, obtaining an Equal Error Rate (EER) of 9.19% when robustness of gestures is not verified. Most of the errors in this EER come from very simple and easily forgeable gestures that should be discarded at enrollment phase. Therefore, an in-air signature robustness verification system using Linear Discriminant Analysis is proposed to infer automatically whether the gesture is secure or not. Different configurations have been tested obtaining a lowest EER of 4.01% when 45.02% of gestures were discarded, and an optimal compromise of EER of 4.82% when 19.19% of gestures were automatically rejected
    corecore