931 research outputs found

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Deep Recurrent Learning for Efficient Image Recognition Using Small Data

    Get PDF
    Recognition is fundamental yet open and challenging problem in computer vision. Recognition involves the detection and interpretation of complex shapes of objects or persons from previous encounters or knowledge. Biological systems are considered as the most powerful, robust and generalized recognition models. The recent success of learning based mathematical models known as artificial neural networks, especially deep neural networks, have propelled researchers to utilize such architectures for developing bio-inspired computational recognition models. However, the computational complexity of these models increases proportionally to the challenges posed by the recognition problem, and more importantly, these models require a large amount of data for successful learning. Additionally, the feedforward-based hierarchical models do not exploit another important biological learning paradigm, known as recurrency, which ubiquitously exists in the biological visual system and has been shown to be quite crucial for recognition. Consequently, this work aims to develop novel biologically relevant deep recurrent learning models for robust recognition using limited training data. First, we design an efficient deep simultaneous recurrent network (DSRN) architecture for solving several challenging image recognition tasks. The use of simultaneous recurrency in the proposed model improves the recognition performance and offers reduced computational complexity compared to the existing hierarchical deep learning models. Moreover, the DSRN architecture inherently learns meaningful representations of data during the training process which is essential to achieve superior recognition performance. However, probabilistic models such as deep generative models are particularly adept at learning representations directly from unlabeled input data. Accordingly, we show the generalization of the proposed deep simultaneous recurrency concept by developing a probabilistic deep simultaneous recurrent belief network (DSRBN) architecture which is more efficient in learning the underlying representation of the data compared to the state-of-the-art generative models. Finally, we propose a deep recurrent learning framework for solving the image recognition task using small data. We incorporate Bayesian statistics to the DSRBN generative model to propose a deep recurrent generative Bayesian model that addresses the challenge of learning from a small amount of data. Our findings suggest that the proposed deep recurrent Bayesian framework demonstrates better image recognition performance compared to the state-of-the-art models in a small data learning scenario. In conclusion, this dissertation proposes novel deep recurrent learning pipelines, which utilize not only limited training data to achieve improved image recognition performance but also require significantly reduced training parameters

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    A Spatio-Temporal Probabilistic Framework for Dividing and Predicting Facial Action Units

    Get PDF
    This thesis proposed a probabilistic approach to divide the Facial Action Units (AUs) based on the physiological relations and their strengths among the facial muscle groups. The physiological relations and their strengths were captured using a Static Bayesian Network (SBN) from given databases. A data driven spatio-temporal probabilistic scoring function was introduced to divide the AUs into : (i) frequently occurred and strongly connected AUs (FSAUs) and (ii) infrequently occurred and weakly connected AUs (IWAUs). In addition, a Dynamic Bayesian Network (DBN) based predictive mechanism was implemented to predict the IWAUs from FSAUs. The combined spatio-temporal modeling enabled a framework to predict a full set of AUs in real-time. Empirical analyses were performed to illustrate the efficacy and utility of the proposed approach. Four different datasets of varying degrees of complexity and diversity were used for performance validation and perturbation analysis. Empirical results suggest that the IWAUs can be robustly predicted from the FSAUs in real-time and was found to be robust against noise

    Deep Neural Networks

    Get PDF

    Deep Neural Networks

    Get PDF

    A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold

    Full text link
    Although Deep Learning (DL) has achieved success in complex Artificial Intelligence (AI) tasks, it suffers from various notorious problems (e.g., feature redundancy, and vanishing or exploding gradients), since updating parameters in Euclidean space cannot fully exploit the geometric structure of the solution space. As a promising alternative solution, Riemannian-based DL uses geometric optimization to update parameters on Riemannian manifolds and can leverage the underlying geometric information. Accordingly, this article presents a comprehensive survey of applying geometric optimization in DL. At first, this article introduces the basic procedure of the geometric optimization, including various geometric optimizers and some concepts of Riemannian manifold. Subsequently, this article investigates the application of geometric optimization in different DL networks in various AI tasks, e.g., convolution neural network, recurrent neural network, transfer learning, and optimal transport. Additionally, typical public toolboxes that implement optimization on manifold are also discussed. Finally, this article makes a performance comparison between different deep geometric optimization methods under image recognition scenarios.Comment: 41 page
    • …
    corecore