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Chapter 7

Deep Neural Networks

I think the brain is essentially a computer and consciousness is like a computer program. It 
will cease to run when the computer is turned off. Theoretically, it could be re-created on a 
neural network, but that would be very difficult, as it would require all one’s memories.

—Stephen Hawking, Time magazine

Proposed in the 1940s as a simplified model of the elementary computing unit in the human cortex, artificial 
neural networks (ANNs) have since been an active research area. Among the many evolutions of ANN, 
deep neural networks (DNNs) (Hinton, Osindero, and Teh 2006) stand out as a promising extension of the 
shallow ANN structure. The best demonstration thus far of hierarchical learning based on DNN, along 
with other Bayesian inference and deduction reasoning techniques, has been the performance of the IBM 
supercomputer Watson in the legendary tournament on the game show Jeopardy!, in 2011.

This chapter starts with some basic introductory information about ANN then outlines the DNN 
structure and learning scheme.

Introducting ANNs
ANNs have been successfully used in many real-life applications, especially in supervised-learning modes. 
However, ANNs have been plagued by a number of notable challenges and shortcomings. Among the many 
challenges in supervised learning is the curse of dimensionality (Arnold et al. 2011), which occurs when 
the number of features and training points becomes significantly large. Big data thus makes ANN learning 
more difficult, owing to the overwhelming amount of data to process and the consequent memory and 
computational requirements. Another challenge in classification is the data nonlinearity that characterizes 
the feature overlap of different classes, making the task of separating the classes more difficult. Primarily 
for these reasons and the heuristic approach to select the appropriate network architecture, ANNs lagged 
through the 1990s and 2000s behind the widely adopted support vector machines (SVMs), which proved to 
be, in many respects, superior to ANNs.

Note ■  SVM offers a principled approach to machine learning problems because of its mathematical  
foundations in statistical learning theory. SVM constructs solutions as a weighted sum of support vectors, which 
are only a subset of the training input. Like ANN, SVM minimizes a particular error cost function, based on the 
training data set, and relies on an empirical risk model. Additionally, SVM uses structural risk minimization and 
imposes an additional constraint on the optimization problem, forcing the optimization step to find a model that 
will eventually generalize better as it is situated at an equal and maximum distance between the classes.
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With advancements in hardware and computational power, DNNs have been proposed as an extension 
of ANN shallow architectures. Some critics consider deep learning just another “buzzword for neural nets” 
(Collobert 2011). Although they borrow the concept of neurons from the biological brain, DNNs do not 
attempt to model it as cortical algorithms (CAs) or other biologically inspired machine learning  
approaches do. DNN concepts stem from the neocognitron model proposed by Fukushima (1980). Broadly 
defined as a consortium of machine learning algorithms that aims to learn in a hierarchical manner and 
that involves multiple levels of abstraction for knowledge representation, DNN architectures are intended to 
realize strong artificial intelligence (AI) models. These architectures accumulate knowledge as information 
propagates through higher levels in a manner such that the learning at the higher level is defined by and 
built on the statistical learning that happens at the lower-level layers.

With such a broad definition of deep learning in mind, we can construe the combinations of the 
backpropagation algorithm (available since 1974) with recurrent neural networks and convolution neural 
networks (introduced in the 1980s) as being the predecessors of deep architectures. However, it is only with 
the advent of Hinton, Osindero, and Teh’s (2006) contribution to deep learning training that research on 
deep architectures has picked up momentum. The following sections give a brief overview of ANN, along 
with introducing in more detail deep belief networks (DBNs) and restricted Boltzmann machines (RBMs).

Early ANN Structures
One of the first ANN attempts dates back to the late 1940s, when the psychologist Donald Hebb (Hebb 1949) 
introduced what is known today as Hebbian learning, based on the plasticity feature of neurons: when 
neurons situated on either side of a synapse are stimulated synchronously and recurrently, the synapse’s 
strength is increased in a manner proportional to the respective outputs of the firing neurons (Brown et al. 
1990), such that

w t w t x t x tij ij ij i j+( ) = ( ) + ( ) ( )1 h ,

where t represents the training epoch, w
ij
 is the weight of the connection between the ith and the jth 

neurons, x
i
 is the output of the ith neuron, and h

ij
 is a learning rate specific to the synapse concerned.

The Hebbian rule is an unsupervised-learning scheme that updates the weights of a network locally; 
that is, the training of each synapse depends on the weights of the neurons connected to it only. With its 
simple implementation the Hebbian rule is considered the first ANN learning rule, from which multiple 
variants have stemmed. The first implementations of this algorithm were in 1954, at the Massachusetts 
Institute of Technology, using computational machines (Farley and Clark, 1954).

The 1950s also saw the introduction of the perceptron, a two-layer neural network model for pattern 
recognition, using addition and subtraction operations (Rosenblatt 1958). The model consists of four 
components, as depicted in Figure 7-1. The retina, or input region, receives stimulus through sensory units. 
The connections are called localized because their origin points tend to cluster around a certain point or 
in a certain area. Although units in the projection area are identical to those in the association area, the 
projection area receives input through localized connections, whereas input to the association area emerges 
from the projection area through random connections; as if the input is generated from scattered areas. The 
A-units receive a set of transmitted impulses that may be excitatory or inhibitory. If the stimulus exceeds a 
certain threshold, the units respond by firing. The random connections between the association area and 
the response units are bidirectional. The feedforward connections transmit synapses from the association 
area to the responses, whereas the feedback connections transmit excitatory synapses to the source points 
in the association area from which the connection is generated. Inhibitory synapses complement the source 
points in the association areas that do not transmit to the response concerned.
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Classical ANN
The basic structure of an ANN is the artificial neuron shown in Figure 7-2, which resembles the biological 
neuron in its shape and function (Haykin 1994). 

Figure 7-1. A Rosenblatt perceptron structure

Figure 7-2. An artificial neuron

Note ■  In the human body’s nervous system, neurons generate, transmit, and receive electrical signals called 
action potential. A typical biological neuron has the following three basic components:

Cell body•	  : Can have a variety of sizes and shapes

•	 Dendrites: Numerous, treelike structures that extend from the cell body and that 
constitute the receptive portion of the neuron (i.e., the input site)

•	 Axon: A long, slender structure, with relatively few branches, that transmits electrical 
signals to connected areas

The inputs (X) are connected to the neuron through weighted connections emulating the dendrite’s 
structure, whereas the summation, the bias (b), and the activation function (q) play the role of the cell body, 
and the propagation of the output is analogous to the axon in a biological neuron.
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Mathematically, a neuron is equivalent to the function:
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which can be conveniently modeled, using a matrix form,
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The activation function shapes the output or state of the neuron. Multiple activation functions can be 
used, the most common of which are as follows:
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The bias shifts the activation function to the right or the left, as necessary for learning, and can in some 
cases be omitted.

A neural network is simply an association of cascaded layers of neurons, each with its own weight 
matrix, bias vector, and output vector. A layer of neurons is a “column” of neurons that operate in parallel, as 
shown in Figure 7-3. Each element of this column is a single neuron, with the output of the layer being the 
vector output, which is formed by  the individual outputs of neurons. If an input vector is constituted of N 
inputs and a layer of M neurons, W

ij
 represents the weight of the connection of the jth input to the ith neuron 

of the layer; Y
i
 and b

i
 are, respectively, the output of and the bias associated with the jth neuron.
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A layer of neurons can be conveniently represented, using matrix notation, as follows:
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The row index in each element of this matrix represents the destination neuron of the corresponding 
connection, whereas the column index refers to the input source of the connection.

Designating by Y the output of the layer, you can write
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Figure 7-3. A layer of neurons
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To aid in identifying the layer corresponding to a particular matrix, superscript indexes are used. Thus, Wij
k 

represents the weight of the connection between the jth neuron in layer k–1and the ith neuron in layer k, and 
Yi

k is the output of the ith neuron of the kth layer. The network output is the output of the last layer (also called 
the output layer), and the other layers are called hidden layers. A network with two hidden layers is illustrated 
in Figure 7-4. For generalization purposes, you designate by N

k
 the number of hidden neurons in the kth layer.

Figure 7-4. A three-layer ANN

The function achieved by this network is
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 Note ■  For the sake of simplicity, the same activation function q has been adopted in all layers. however, 
multiple activation functions can be used in different layers in a network. Also, the number of neurons per layer 
may not be constant throughout the network.

The optimal number of layers and neurons for best performance is a question yet to be answered 
decisively, because this number is application dependent. A layer of hidden neurons divides the input space 
into regions whose boundaries are defined by the hyperplanes associated with each neuron.

The smaller the number of hidden neurons, the fewer the subregions created and the more the 
network tends to cluster points and map them to the same output. The output of each neuron is a non linear 
transformation of a hyperplane. In the case of  classification, this separating curve formed by weighted 
inputs coming from the previous layer contributes, with other neurons in the same layer, in defining the 
final classification boundary. With a large number of neurons, the risk of overfitting increases, and the 
generalized performance decreases, because of overtraining. The network must be trained with enough data 
points to ensure that the partitions obtained at each hidden layer correctly separate the data.

ANN Training and the Backpropagation Algorithm
To enable an ANN to recognize patterns belonging to different classes, training on an existing dataset seeks 
to obtain iteratively the set of weights and biases that achieves the highest performance of the network  
(Jain, Mao, and Mohiuddin 1996).

In a network with M inputs, N output neurons, and L hidden layers, and given a set of labeled  
data—that is, a set of P pairs (X, T), where X is an M-dimensional vector, and T is an N-dimensional  
vector—the learning problem is reduced to finding the optimal weights, such that a cost function is 
optimized. The output of the network should match the target T

i
 and minimize the mean squared error,

E Y T
i

P

i i= -
=
å1

2 1

2 ,

where Y
i
 is the output obtained by propagating input X

i
 through the network.

ANNs can also use entropy as a cost function. Training requires at least a few epochs to update weights 
according to a weight update rule. It is to be noted that the backpropagation algorithm is widely adopted. It 
consists of the following steps:

 1. Initialization: This step initializes the weights of the network in a random, weak 
manner; that is, it assigns random values close to 0 to the connections’ weights.

 2. Feedforward: The input X
i
 is fed into the network and propagated to the output 

layer. The resultant error is computed.

 3. Feedback: The weights and biases are updated with:

W t W t
E

Wij
k

ij
k

ij
k
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¶

¶
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b t b t
E

bi
k

i
k

i
k

+( ) = ( ) -
¶
¶

1 a ,

where a is a positive, tunable learning rate. The choice of a affects whether the 
backpropagation algorithm converges and how fast it converges. A large learning 
rate may cause the algorithm to oscillate, whereas a small learning rate may lead 
to a very slow convergence.
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Because the update of the weights necessitates computing the gradient of the error (the cost 
function), it is essential for it to be differentiable. Failure to satisfy this condition prevents from using the 
backpropagation algorithm.

The computation of the gradient in the backpropagation algorithm can be simplified, using the chain 
rule, which calls for the following steps:

 1. For each output unit i N= ¼1 2, , , (in output layer L of Figure 7-4), the 
backpropagated error is computed, using

. ,di
L i

L

i i
L

d Y t

dt
T Y t=

( )( )
- ( )( )

where, T
i
 is the desired output; and, for the sigmoidal function,

d Y t

dt
Y t Y t

i
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i
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i
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resulting in the following expression:
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 2. For each hidden unit h Nk= 1 2, ,...,  (in a hidden layer k with N
k
 hidden units), and 

moving from layer L–1, backward to the first layer, the backpropagated error can 
be computed as shown:
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 3. The weights and biases are updated according to the following gradient descent:
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The network error is eventually reduced via this gradient-descent approach. For instance, considering 
a one-dimensional training point that belongs to class 1 (+1) and that is wrongly classified as class 2 (–1), the 
hyperplane should be moved away from class 1. Because, the hyperplane will be shifted to the left (decrease 
in Wij

k) if di
k

j
kY - >1 0, and it will be shifted to the right (increase in Wij

k) if di
k

j
kY - <1 0.

DBN Overview
DBNs, a deep architecture widely seen in the literature since the introduction of a fast, greedy training 
algorithm (Hinton, Osindero, and Teh 2006), are a network of stochastic neurons grouped in layers, with 
no intralayer neuron connections. The first two layers of the network contain neurons with undirected 
connections, which form an associative memory, analogous to biological neurons, whereas the remaining 
hidden layers form a directed acyclic graph, as displayed in Figure 7-5.
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Figure 7-5. DBN architecture

Although a DBN can be viewed as an ANN with more hidden layers, training a DBN, using 
backpropagation, does not produce a good machine learning model, because the explaining-away 
phenomenon makes inference more difficult in deep models. When training a network, the simplifying 
assumption that layers are independent. Explaining away (also called Berkson’s paradox or selection bias), 
makes this assumption invalid; the hidden nodes become anticorrelated. For example, if an output node 
can be activated by two equally rare and independent events with an even smaller chance of occurring 
simultaneously (because the probability of two independent events’ occurring simultaneously is the product 
of both probabilities), then the occurrence of one event negates (“explains away”) the occurrence of the 
other, such that a negative correlation is obtained between the two events. As a result of the difficulty of 
training deep architectures, DBNs lost popularity until Hinton and Salakhutdinov (2006) proposed a greedy 
training algorithm to train them efficiently. This algorithm broke down DBNs into sequentially stacked 
RBMs, which is a two-layer network constrained to contain only interlayer neuron connections, that is, 
connections between neurons that do not belong to the same layer.

As shown in Figure 7-6, connections between neurons in layer 1 are not allowed, and the same goes 
for layer 2; connections have to link a neuron from layer 1 to a neuron in layer 2 only. In a DBN the first 
two layers are allowed to have bidirectional connections, whereas the remaining layers have just directed 
connections. Therefore, interest in deep architectures was renewed, as training them became feasible and 
fast, involving training RBM units independently before adjusting the weights, using an up–down algorithm 
to avoid underfitting (Hinton, Osindero, and Teh 2006).
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Following is list of the DBN nomenclature adopted here:

DNN Nomenclature

Wi j
r
, : Weight of the edge connecting neuron i in layer r to neuron j in layer; r is suppressed when there are 

only two layers in the network

Wi
r: Weight vector of all connections leaving neuron i in layer r

Wr : Weight vector connecting layer r to layer r +1

m: Learning rate

k: Number of Gibbs sampling steps performed in contrastive divergence

n: Total number of hidden layer neurons

m: Total number of input layer neurons

Q(. | .): Conditional probability distribution

hr: Binary configuration of layer r

p(hr): Prior probability of hr under the current weight values

v0: Input layer datapoint v j
t( ) : binary configuration of neuron j in the input layer at sampling step t

H
i
: Binary configuration variable of neuron i in the hidden layer at sampling step t

hi
t( ) : Binary configuration value of neuron i in the hidden layer at sampling step t

b
j
: Bias term for neuron j in the input layer

c
i
: Bias term for neuron i in the hidden layer

Figure 7-6. Weight labeling
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Restricted Boltzmann Machines
Boltzmann machines (BMs) are two-layer neural network architectures composed of neurons connected 
in an interlayer and intralayer fashion. Restricted Boltzmann machines (RBMs), first introduced under the 
name Harmonium, by Smolensky (1986), are constrained to form a bipartite graph. A bipartite graph is a 
two-layer graph, in which the nodes of the two layers form two disjoint sets of neurons This is achieved 
by restricting intralayer connections, such that connections between nodes in the same layer are not 
permitted. This restriction is what distinguishes BMs from RBMs and makes RBMs simpler to train. An 
RBM with undirected connections between neurons of the different layers forms an autoassociative 
memory, analogous to neurons in the human brain. Autoassociative memory is characterized by feedback 
connections that allow the exchange of information between neurons in both directions (Hawkins 2007).

RBMs can be trained in a supervised and unsupervised fashion. The weight vector is updated, using 
Hinton’s contrastive divergence (CD) algorithm (Hinton 2002). CD is an algorithm that approximates the 
log-likelihood gradient and that requires fewer sampling steps than the Markov chain Monte Carlo (MCMC) 
algorithm (Hinton 2002). CD performs k steps of Gibbs sampling and gradient descent to find the weight vector 
that maximizes the objective function (Hinton 2010), which is the product of probabilities. As k increases, the 
performance of the learned model improves, however at the cost of a longer training time. A typical value for 
this parameter is k = 1 (Hinton 2010). The workflow of the training algorithm is shown in Table 7-1.

Table 7-1. RBM Training Algorithm Workflow, Using CD (Fischer and Igel, 2012)

1. Initialize the weights to 0.

2. For each sample from the training batch:

a. Apply the sample to the network input.

b. For 0 to k-1 sampling steps,

i. for each hidden layer neuron from 1 to n, sample h p hi
t

i
t( ) ( )( )~ |v ;

ii. for each input layer neuron from 1 to m, sample v p vj
t

j
t( ) ( )~ .( )|h

c. For each input and hidden layer neuron, compute

i. D = D + =( ) - =( )( ) ( )w w p H v v p H v vij ij i j i
k

j
k1 10 0| |( ) ( )

ii. D = D + -b b v vj j j j
k( ) ( )0

iii. D = D + =( ) - =( ) ( )c c p H v p H vi i i i
k1 10| ( | )

Based on the Gibbs distribution, the energy function or loss function used to describe the joint 
probability distribution is denoted in Equation 7-1, where w

ij
, b

j
, and c

i
 are real-valued weights, and h

i
 and v

j
 

can take values in the set (Aleksandrovsky et al. 1996):
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The joint probability distribution is thus computed using Equation 7-2:
     

p v h
e

eE v h
E v h, .

,
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hv

      
(7-2)
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DNN Training Algorithms
Backpropagation is one of the most popular algorithms used to train ANNs (Werbos 1974). Equation 7-3 
displays a simple formulation of the weight update rule, used in backpropagation:
     

w w
w1 1

1

r r
r

J
new old( ) = ( ) -

¶
¶

m

        

(7-3)

However, as the depth of the network increases, backpropagation’s performance degradation increases 
as well, making it unsuitable for training general deep architectures. This is due to the vanishing gradient 
problem (Horchreiter 1991; Horchreiter et al. 2001; Hinton 2007; Bengio 2009), a training issue in which the 
error propagated back in the network shrinks as it moves from layer to layer, becoming negligible in deep 
architectures and making it almost impossible for the weights in the early layers to be updated. Therefore, it 
would be too slow to train and obtain meaningful results from a DNN.

Because of backpropagation’s shortcomings, many attempts were made to develop a fast training 
algorithm for deep networks. Schmidhuber’s algorithm (Schmidhuber 1992) trained a multilevel hierarchy 
of recurrent neural networks by using unsupervised pretraining on each layer and then fine-tuning the 
resulting weights via backpropagation.

Interest in DNNs was renewed in 2006, when Hinton and Salakhutdinov (2006) proposed a greedy, 
layer-by-layer training algorithm for DBNs that attempts to learn simpler models sequentially and then  
fine-tune the results for the overall model. Using complementary priors to eliminate the explaining-away 
effect, the algorithm consists of two main steps:

 1. A greedy layer-wise training to learn the weights by

a. Tying the weights of the unlearned layers.

b. Applying CD to learn the weights of the current layer.

 2. An up-down algorithm for fine-tuning the weights

Instead of learning the weights of millions of connections across many hidden layers at once, this 
training scheme finds the optimal solution for a single layer at a time, which makes it a greedy algorithm. 
This is accomplished by tying all the weights of the following layers and learning only the weights of the 
current layer. Tying weights also serves to eliminate the explaining-away phenomenon, which results in 
poorly trained deep networks when adopting other training algorithms. As illustrated in Figure 7-7, the 
weights W

0
 between layers 1 and 2 are learned. The weights between all the following layers are tied to W

0
. 

Once CD learning has converged, the weights W
1
, between layers 2 and 3, are learned by tying the weights of 

all the following layers to W
1
 and fixing the weights between layers 1 and 2 that were learned in the previous 

stage to W
0
. Similarly, when the CD converges to the optimal values for W

1
, the weights of the third RBM 

block are untied from the second RBM block, and CD is used to learn the final set of weights W
2
.

Figure 7-7. Sequential training
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This process of tying, learning, and untying weights is repeated until all layers have been processed. 
DBNs with tied weights resemble RBMs. Therefore, as mentioned earlier, each RBM is learned, using CD 
learning. However, this algorithm can only be applied if the first two layers form an undirected graph, and 
the remaining hidden layers form a directed, acyclic graph.

The energy of the directed model is computing, using Equation 7-4, which is bounded by Equation 7-5. 
Tying the weights produces equality in Equation 7-5 and renders Q v(. | )0  and p v h( | )0 0

constant. The 
derivative of Equation 7-5 is simplified and equal to Equation 7-6. Therefore, tying the weights leads to a 
simpler objective function to maximize. Applying this rule recursively allows the training of a DBN (Hinton, 
Osindero, and Teh 2006).

        
E v h h v h0 0 0 0 0, log log( ) = - ( ) + ( )( )p p |

 
(7-4)
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(7-6)

Once the weights have been learned for each layer, a variant of the wake–sleep algorithm with the CD 
weight update rule is used to fine-tune the learned parameters. The up–down algorithm is used to backfit 
the obtained solution to avoid underfitting—an important concern when training in an unsupervised and 
greedy fashion. The up–down algorithm subjects lower-level layers, whose weights were learned early 
in the training, to the influence of the higher-level layers, whose weights were learned toward the end of 
training. In the bottom-up pass the generative weights on directed connections are adjusted by computing 
the positive phase probabilities, sampling the states, using the CD weight update rule, and running Gibbs 
sampling for a limited number of iterations. The top-down pass will stochastically activate each of the 
lower layers, using the top-down connections. This is done by computing the negative phase probabilities, 
sampling the states, and computing the predictions of the network. Appropriate adjustments to the 
generative and inference parameters as well as the top-layer weights are performed in a contrastive form of 
the wake–sleep algorithm, because it addresses issues in the sleep phase of the algorithm. The workflow for 
this algorithm is shown in Table 7-2.
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Despite its limitations when applied to DNNs, interest in the backpropagation algorithm was renewed, 
because of the surge in graphics processing unit (GPU) computational power. Ciresan et al. (2010) 
investigated the performance of the backpropagation algorithm on deep networks. It was observed that, 
even with the vanishing gradient problem, given enough epochs, backpropagation can achieve results 
comparable to those of other, more complex training algorithms.

It is to be noted that supervised learning with deep architectures has been reported as performing well 
on many classification tasks. However, when the network is pretrained in an unsupervised fashion, it almost 
always performs better than the scenarios where pretraining is omitted without the pretraining phase (Erhan 
et al. 2010). Several theories have been proposed to explain this phenomenon, such as that the pretraining 
phase acts as a regularizer (Bengio 2009; Erhan et al. 2009) and an aid (Bengio et al. 2007) for the supervised 
optimization problem.

DNN-Related Research
The use of DBN in various machine learning applications has flourished since the introduction of Hinton’s 
fast, greedy training algorithm. Furthermore, many attempts have been made to speed up DBN and address 
its weaknesses. The following sections offer a brief survey of the most recent and relevant applications 
of DBN, a presentation on research aimed at speeding up training as well as a discussion of several DBN 
variants and DNN architectures.

DNN Applications
DNN has been applied to many machine learning applications, including feature extraction, feature 
reduction, and classification problems, to name a few.

Feature extraction involves transforming raw input data to feature vectors that represent the input; raw 
data can be audio, image, or text. For example, DBN has been applied to discrete Fourier transform (DFT) 
representation of music audio (Hamel and Eck 2010) and found to outperform Mel frequency cepstral 
coefficients (MFCCs), a widely used method of music audio feature extraction.

Once features are extracted from raw data, the high-dimensional data representation may have to be 
reduced to alleviate the memory and computational requirements of classification tasks as well as enable 

Table 7-2. Up–Down Algorithm Workflow (Hinton and Salakhutdinov 2006)

1. In the bottom-up pass:

a. Compute positive phase probabilities.

b. Sample states.

c. Compute CD statistics, using the positive phase probabilities.

d.  Perform Gibbs sampling for a predefined number of iterations, based on the associative 
memory part of the network.

e.  Compute negative phase contrastive divergence statistics, using information from step 1d.

2. In the top-down pass:

a. Calculate negative phase probabilities.

b. Sample states.

c. Compute predictions.

3. Update generative parameters.

4. Update associative memory part of the network.

5. Update inference parameters.
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better visualization of the data and decrease the memory needed to store the data for future use. Hinton and 
Salakhutdinov (Hinton and Salakhutdinov 2006; Salakhutdinov and Hinton 2007) used a stack of RBMs to 
pretrain the network and then employed autoencoder networks to learn the low-dimensional features.

Extracting expressive and low-dimensional features, using DBN, was shown to be possible for fast 
retrieval of documents and images, as tested on some ever-growing databases. Ranzato and Szummer 
(2008) were able to produce compact representations of documents to speed up search engines, while 
outperforming shallow machine learning algorithms. Applied to image retrieval from large databases, 
DBN produced results comparable to state-of-the art algorithms, including latent Dirichlet allocation and 
probabilistic latent semantic analysis (Hörster and Lienhart 2008).

Transferring learned models from one domain to another has always been an issue for machine 
learning algorithms. However, DNN was able to extract domain-independent features (Bengio and Delalleau 
2011), making transfer learning possible in many applications (Collobert and Weston 2008; Glorot, Bordes, 
and Bengio 2011; Bengio 2012; Ciresan, Meier, and Schmidhuber 2012;Mesnil et al. 2012). DNNs have also 
been used for curriculum learning, in which data are learned is a specific order (Bengio et al. 2009).

DBN has been applied to many classification tasks in fields such as vision, speech, medical ailments, 
and natural language processing (NLP). Object recognition from images has been widely addressed, 
and DBN’s performance exceeded state-of-the-art algorithms (Desjardins and Bengio 2008; Uetz and 
Behnke 2009; Ciresan et al. 2010; Ciresan, Meier, and Schmidhuber 2012). For instance, Ciresan et al. 
(2010) achieved an error rate of 0.35 percent on the Mixed National Institute of Standards and Technology 
(MNIST) database. Nair and Hinton (2009) outperformed shallow architectures, including SVM, on 
three-dimensional object recognition, achieving a 6.5 percent error rate, on the New York University 
Object Recognition Benchmark (NORB) dataset, compared with SVM’s 11.6 percent. Considering speech 
recognition tasks, deep architectures have improved acoustic modeling (Mohamed et al. 2011; Hinton et al. 
2012), speech-to-text transcription (Seide, Li, and Yu 2011), and large-vocabulary speech recognition (Dahl 
et al. 2012; Jaitly et al. 2012; Sainath et al. 2011). On phone recognition tasks, DBN achieved an error rate of 
23 percent on the TIMIT database—better than reported errors, ranging from 24.4 percent to 36 percent, 
using other machine learning algorithms (Mohamed, Yu, and Deng 2010).

DBN produced classification results comparable to other machine learning algorithms in seizure 
prediction, using electroencephalography (EEG) signals, but reached those results in significantly faster 
times—between 1.7 and 103.7 times faster (Wulsin et al. 2011). McAfee (2008) adopted DBN for document 
classification and showed promise for succeeding on such databases.

Generating synthetic images—specifically facial expressions—from a high-level description of human 
emotion is another area in which DBN has been successfully applied, producing a variety of realistic facial 
expressions (Susskind et al. 2008).

NLP, in general, has also been investigated with deep architectures to improve on state-of-the-art 
results. Such applications include machine transliteration (Deselaers et al. 2009), sentiment analysis (Zhou, 
Chen, and Wang 2010; Glorot, Bordes, and Bengio 2011), and language modeling (Collobert and Weston 
2008; Weston et al. 2012)—including part-of-speech tagging, similar-word recognition, and chunking. 
The complexity of these problems requires a machine learning algorithm with more depth (Bengio and 
Delalleau 2011) to produce meaningful results. For example, machine transliteration poses a challenge to 
machine learning algorithms, because the words do not have a unified mapping, which leads to a many-
to-many mapping that does not exist in dictionaries. Additionally, the large number of source-to-target 
language-pair character symbols and different sound structures leading to missing sounds are just a few 
properties of transliteration that make it difficult for machines to do well.

Parallel Implementations to Speed Up DNN Training
Sequentially training a DBN layer by layer becomes more time-consuming as the layer and network sizes 
increase. Stacking the layers to form networks, called deep-stacking networks, and training the network on 
CPU clusters, as opposed to one supercomputer (Deng, Hutchinson, and Yu 2012), exploit the inherent 
parallelism in the greedy training algorithm to achieve significant training-time savings.
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However, this method does not speed up the training time per layer. This can be achieved by 
parallelizing the training algorithm for the individual RBM layers, using GPUs (Cai et al. 2012).

However, use of the large and sparse data commonly employed to train RBMs creates challenges for 
parallelizing this algorithm. Modifying the computations for matrix-based operations and optimizing the 
matrix–matrix multiplication code for sparse matrices make GPU implementation much faster than CPU 
implementation.

As opposed to speeding up training via software, attempts have been made to speed up training via 
hardware, using field-programmable gate arrays (FPGAs). Ly and Chow (2010) mapped RBMs to FPGAs 
and achieved significant speedup of the optimized software code. This work was extended to investigate the 
scalability of the approach by Lo (2010).

Deep Networks Similar to DBN
One variation of DBN, called modular DBN (M-DBN), trains different parts of the network separately, while 
adjusting the learning rate as training progresses (Pape et al. 2011), as opposed to using one training set for 
the whole network. This allows M-DBN to avoid forgetting features learned early in training, a weakness of 
DBN that can hinder its performance in online learning applications in which the data distribution changes 
dynamically over time.

Sparse DBN learns sparse features—unlike Hinton’s DBN, which learns nonsparse data 
representations—by adding a penalty in the objective function for deviations from the expected activation of 
hidden units in the RBM formulation (Lee, Ekanadham, and Ng 2007).

Convolutional DBN integrates translation invariance into the image representations by sharing 
weights between locations in an image, allowing inference to be done when the image is scaled up by using 
convolution (Lee et al. 2009). Therefore, convolutional DBN scales better to real-world-sized images without 
suffering from computational intractability as a result of the high dimensionality of these images.

DBNs are not the only deep architectures available. Sum product network (SPN) is a deep architecture 
represented as a graph with directed and weighted edges. SPN is acyclic (contains no loops), with variables 
on the leaves of the graph, and its internal nodes consist of sum and product operations (Poon and Domingo 
2011). SPN trains, using backpropagation and expectation maximization (EM) algorithms. These simple 
operations result in a network that is more accurate, faster to train, and more tractable than DBN.

Deep Boltzmann machines (DBMs) are similar to but have a more general deep architecture than DBNs. 
They are composed of BMs stacked on top of each others (Salakhutdinov and Hinton 2009). Although more 
complex and slower to train than DBNs, owing to the symmetrical connections between all neurons in the 
BM network, the two-way edges let DBMs propagate input uncertainty better than DBNs, making their 
generative models more robust. The more complex architecture requires an efficient training algorithm to 
make training feasible. The DBN greedy training algorithm was modified to achieve a more efficient training 
algorithm for DBM by using an approximate inference algorithm. However, this rendered DBM training 
approximately three times slower than DBN training (Salakhutdinov and Larochelle 2010).
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