8 research outputs found

    Reduced major axis approach for correcting GPM/GMI radiometric biases to coincide with radiative transfer simulation

    Get PDF
    Correcting radiometric biases is crucial prior to the use of satellite observations in a physically based retrieval or data assimilation system. This study proposes an algorithm - RARMA (Radiometric Adjustment using Reduced Major Axis) for correcting the radiometric biases so that the observed radiances coincide with the simulation of a radiative transfer modeL The RARMA algorithm is a static bias correction algorithm, which is developed using the reduced major axis (RMA) regression approach, NOAA\u27s Community Radiative Transfer Model (CRTM) has been used as the basis of radiative transfer simulation for adjusting the observed radiometric biases. The algorithm is experimented and applied to the recently launched Global Precipitation Measurement (GPM) mission\u27s GPM Microwave Imager (GMI), Experimental results demonstrate that radiometric biases are apparent in the GMI instrument, The RARMA algorithm has been able to correct such radiometric biases and a significant reduction of observation residuals is revealed while assessing the performance of the algorithm, The experiment is currently tested on clear scenes and over the ocean surface, where, surface emissivity is relatively easier to model. with the help of a microwave emissivity model (FASTEM-5)

    The role of Advanced Microwave Scanning Radiometer 2 channels within an optimal estimation scheme for sea surface temperature

    Get PDF
    We present an analysis of information content for sea surface temperature (SST) retrieval from the Advanced Microwave Scanning Radiometer 2 (AMSR2). We find that SST uncertainty of ∼0.37 K can be achieved within an optimal estimation framework in the presence of wind, water vapour and cloud liquid water effects, given appropriate assumptions for instrumental uncertainty and prior knowledge, and using all channels. We test all possible combinations of AMSR2 channels and demonstrate the importance of including cloud liquid water in the retrieval vector. The channel combinations, with the minimum number of channels, that carry most SST information content are calculated, since in practice calibration error drives a trade-off between retrieved SST uncertainty and the number of channels used. The most informative set of five channels is 6.9 V, 6.9 H, 7.3 V, 10.7 V and 36.5 H and these are suitable for optimal estimation retrievals. We discuss the relevance of microwave SSTs and issues related to them compared to SSTs derived from infra-red observations

    Observation of absorbing aerosols above clouds over the South-East Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign

    Get PDF
    This is the final version. Available on open access from Copernicus Publications via the DOI in this recordData availability: The SEVIRI data used for this study are available from the corresponding author, Fanny Peers, upon reasonable request. MODIS above-cloud data products are available from Kerry G. Meyer ([email protected]) upon request. The FAAM aircraft data are available at the Centre for Environmental Data Analysis from http://data.ceda.ac.uk/badc/faam/data/ (CEDA, 2021).To evaluate the SEVIRI retrieval for aerosols above clouds presented in Part 1 of the companion paper, the algorithm is applied over the south-east Atlantic Ocean during the CLARIFY-2017 field campaign period. The first step of our analysis compares the retrieved aerosol and cloud properties against equivalent products from the MODIS MOD06ACAERO retrieval (Meyer et al., 2015). While the correlation between the two satellite retrievals of the above-cloud aerosol optical thickness (AOT) is good (R = 0.78), the AOT retrieved by SEVIRI is 20.3 % smaller than that obtained from the MODIS retrieval. This difference in AOT is attributed mainly to the more absorbing aerosol model assumed for the SEVIRI retrieval compared to MODIS. The underlying cloud optical thickness (COT) derived from the two satellites is in good agreement (R = 0.90). The cloud droplet effective radius (CER) retrieved by SEVIRI is consistently smaller than MODIS by 2.2 µm, which is mainly caused by the use of different spectral bands of the satellite instruments. In the second part of our analysis, we compare the forecast water vapour profiles used for the SEVIRI atmospheric correction as well as the aforementioned aerosol and cloud products with in situ measurements made from the Facility for Airborne Atmospheric Measurements (FAAM) aircraft platform during the CLARIFY-2017 campaign. Around Ascension Island, the column water vapour used to correct the SEVIRI signal is overestimated by 3.1 mm in the forecast compared to that measured by dropsondes. However, the evidence suggests that the accuracy of the atmospheric correction improves closer to the African coast. Consistency is observed between the SEVIRI above-cloud AOT and in situ measurements (from cavity ring-down spectroscopy instruments) when the measured single-scattering albedo is close to that assumed in the retrieval algorithm. On the other hand, the satellite retrieval overestimates the AOT when the assumed aerosol model is not absorbing enough. Consistency is also found between the cloud properties retrieved by SEVIRI and the CER measured by a cloud droplet probe and the liquid water path derived from a microwave radiometer. Despite the instrumental limitations of the geostationary satellite, the consistency obtained between SEVIRI, MODIS and the aircraft measurements demonstrates the ability of the retrieval in providing additional information on the temporal evolution of the aerosol properties above clouds.Natural Environment Research Council (NERC)Research Council of Norwa

    Development of a cloud radiation database for EPS-SG ICI

    Get PDF
    This document is composed of technical reports written for each of the three tasks comprising the study Development of a cloud radiation database for EPS-SG ICI. The objective of the study was the development of a cloud radiation retrieval database to be used operationally by EUMETSAT upon launch of the Ice Cloud Imager (ICI). The database will be used within the retrieval algorithm to perform retrievals of cloud ice products, including ice water path (IWP)

    An Improved Fast Microwave Water Emissivity Model

    No full text
    corecore