2,326 research outputs found

    An Improved Deterministic SAT Algorithm for Small De Morgan Formulas

    Get PDF

    Mining Circuit Lower Bound Proofs for Meta-algorithms

    Get PDF
    We show that circuit lower bound proofs based on the method of random restrictions yield non-trivial compression algorithms for “easy ” Boolean functions from the corresponding circuit classes. The compression problem is defined as follows: given the truth table of an n-variate Boolean function f computable by some unknown small circuit from a known class of circuits, find in deterministic time poly(2n) a circuit C (no restriction on the type of C) computing f so that the size of C is less than the trivial circuit size 2n/n. We get non-trivial compression for functions computable by AC0 circuits, (de Morgan) formulas, and (read-once) branching programs of the size for which the lower bounds for the corresponding circuit class are known. These compression algorithms rely on the structural characterizations of “easy ” functions, which are useful both for proving circuit lower bounds and for designing “meta-algorithms” (such as Circuit-SAT). For (de Morgan) formulas, such structural characterization is provided by the “shrinkage under random restrictions ” results [Sub61, H̊as98], strengthened to the “high-probability ” version by [San10, IMZ12, KR13]. We give a new, simple proof of the “high-probability ” version of the shrinkage result for (de Morgan) formulas, with improved parameters. We use this shrinkage result to get both compression and #SAT algorithms for (de Morgan) formulas of size about n2. We also use this shrinkage result to get an alternative proof of the recent result by Komargodski and Raz [KR13] of the average-case lower bound against small (de Morgan) formulas. Finally, we show that the existence of any non-trivial compression algorithm for a circuit class C ⊆ P/poly would imply the circuit lower bound NEXP 6 ⊆ C; a similar implication is independently proved also by Williams [Wil13]. This complements Williams’s result [Wil10] that any non-trivial Circuit-SAT algorithm for a circuit class C would imply a superpolynomial lower bound against C for a language in NEXP

    Algorithms and lower bounds for de Morgan formulas of low-communication leaf gates

    Get PDF
    The class FORMULA[s]∘GFORMULA[s] \circ \mathcal{G} consists of Boolean functions computable by size-ss de Morgan formulas whose leaves are any Boolean functions from a class G\mathcal{G}. We give lower bounds and (SAT, Learning, and PRG) algorithms for FORMULA[n1.99]∘GFORMULA[n^{1.99}]\circ \mathcal{G}, for classes G\mathcal{G} of functions with low communication complexity. Let R(k)(G)R^{(k)}(\mathcal{G}) be the maximum kk-party NOF randomized communication complexity of G\mathcal{G}. We show: (1) The Generalized Inner Product function GIPnkGIP^k_n cannot be computed in FORMULA[s]∘GFORMULA[s]\circ \mathcal{G} on more than 1/2+Δ1/2+\varepsilon fraction of inputs for s=o ⁣(n2(k⋅4k⋅R(k)(G)⋅log⁥(n/Δ)⋅log⁥(1/Δ))2). s = o \! \left ( \frac{n^2}{ \left(k \cdot 4^k \cdot {R}^{(k)}(\mathcal{G}) \cdot \log (n/\varepsilon) \cdot \log(1/\varepsilon) \right)^{2}} \right). As a corollary, we get an average-case lower bound for GIPnkGIP^k_n against FORMULA[n1.99]∘PTFk−1FORMULA[n^{1.99}]\circ PTF^{k-1}. (2) There is a PRG of seed length n/2+O(s⋅R(2)(G)⋅log⁥(s/Δ)⋅log⁥(1/Δ))n/2 + O\left(\sqrt{s} \cdot R^{(2)}(\mathcal{G}) \cdot\log(s/\varepsilon) \cdot \log (1/\varepsilon) \right) that Δ\varepsilon-fools FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}. For FORMULA[s]∘LTFFORMULA[s] \circ LTF, we get the better seed length O(n1/2⋅s1/4⋅log⁥(n)⋅log⁥(n/Δ))O\left(n^{1/2}\cdot s^{1/4}\cdot \log(n)\cdot \log(n/\varepsilon)\right). This gives the first non-trivial PRG (with seed length o(n)o(n)) for intersections of nn half-spaces in the regime where Δ≀1/n\varepsilon \leq 1/n. (3) There is a randomized 2n−t2^{n-t}-time #\#SAT algorithm for FORMULA[s]∘GFORMULA[s] \circ \mathcal{G}, where t=Ω(ns⋅log⁥2(s)⋅R(2)(G))1/2.t=\Omega\left(\frac{n}{\sqrt{s}\cdot\log^2(s)\cdot R^{(2)}(\mathcal{G})}\right)^{1/2}. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n1.99]∘LTFFORMULA[n^{1.99}]\circ LTF. (4) The Minimum Circuit Size Problem is not in FORMULA[n1.99]∘XORFORMULA[n^{1.99}]\circ XOR. On the algorithmic side, we show that FORMULA[n1.99]∘XORFORMULA[n^{1.99}] \circ XOR can be PAC-learned in time 2O(n/log⁥n)2^{O(n/\log n)}

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Liveness of Randomised Parameterised Systems under Arbitrary Schedulers (Technical Report)

    Full text link
    We consider the problem of verifying liveness for systems with a finite, but unbounded, number of processes, commonly known as parameterised systems. Typical examples of such systems include distributed protocols (e.g. for the dining philosopher problem). Unlike the case of verifying safety, proving liveness is still considered extremely challenging, especially in the presence of randomness in the system. In this paper we consider liveness under arbitrary (including unfair) schedulers, which is often considered a desirable property in the literature of self-stabilising systems. We introduce an automatic method of proving liveness for randomised parameterised systems under arbitrary schedulers. Viewing liveness as a two-player reachability game (between Scheduler and Process), our method is a CEGAR approach that synthesises a progress relation for Process that can be symbolically represented as a finite-state automaton. The method is incremental and exploits both Angluin-style L*-learning and SAT-solvers. Our experiments show that our algorithm is able to prove liveness automatically for well-known randomised distributed protocols, including Lehmann-Rabin Randomised Dining Philosopher Protocol and randomised self-stabilising protocols (such as the Israeli-Jalfon Protocol). To the best of our knowledge, this is the first fully-automatic method that can prove liveness for randomised protocols.Comment: Full version of CAV'16 pape

    Improved Exact Algorithms for Mildly Sparse Instances of Max SAT

    Get PDF
    We present improved exponential time exact algorithms for Max SAT. Our algorithms run in time of the form O(2^{(1-mu(c))n}) for instances with n variables and m=cn clauses. In this setting, there are three incomparable currently best algorithms: a deterministic exponential space algorithm with mu(c)=1/O(c * log(c)) due to Dantsin and Wolpert [SAT 2006], a randomized polynomial space algorithm with mu(c)=1/O(c * log^3(c)) and a deterministic polynomial space algorithm with mu(c)=1/O(c^2 * log^2(c)) due to Sakai, Seto and Tamaki [Theory Comput. Syst., 2015]. Our first result is a deterministic polynomial space algorithm with mu(c)=1/O(c * log(c)) that achieves the previous best time complexity without exponential space or randomization. Furthermore, this algorithm can handle instances with exponentially large weights and hard constraints. The previous algorithms and our deterministic polynomial space algorithm run super-polynomially faster than 2^n only if m=O(n^2). Our second results are deterministic exponential space algorithms for Max SAT with mu(c)=1/O((c * log(c))^{2/3}) and for Max 3-SAT with mu(c)=1/O(c^{1/2}) that run super-polynomially faster than 2^n when m=o(n^{5/2}/log^{5/2}(n)) and m=o(n^3/log^2(n)) respectively

    Algorithms and Lower Bounds in Circuit Complexity

    Get PDF
    Computational complexity theory aims to understand what problems can be efficiently solved by computation. This thesis studies computational complexity in the model of Boolean circuits. Boolean circuits provide a basic mathematical model for computation and play a central role in complexity theory, with important applications in separations of complexity classes, algorithm design, and pseudorandom constructions. In this thesis, we investigate various types of circuit models such as threshold circuits, Boolean formulas, and their extensions, focusing on obtaining complexity-theoretic lower bounds and algorithmic upper bounds for these circuits. (1) Algorithms and lower bounds for generalized threshold circuits: We extend the study of linear threshold circuits, circuits with gates computing linear threshold functions, to the more powerful model of polynomial threshold circuits where the gates can compute polynomial threshold functions. We obtain hardness and meta-algorithmic results for this circuit model, including strong average-case lower bounds, satisfiability algorithms, and derandomization algorithms for constant-depth polynomial threshold circuits with super-linear wire complexity. (2) Algorithms and lower bounds for enhanced formulas: We investigate the model of Boolean formulas whose leaf gates can compute complex functions. In particular, we study De Morgan formulas whose leaf gates are functions with "low communication complexity". Such gates can capture a broad class of functions including symmetric functions and polynomial threshold functions. We obtain new and improved results in terms of lower bounds and meta-algorithms (satisfiability, derandomization, and learning) for such enhanced formulas. (3) Circuit lower bounds for MCSP: We study circuit lower bounds for the Minimum Circuit Size Problem (MCSP), the fundamental problem of deciding whether a given function (in the form of a truth table) can be computed by small circuits. We get new and improved lower bounds for MCSP that nearly match the best-known lower bounds against several well-studied circuit models such as Boolean formulas and constant-depth circuits

    Satisfiability Algorithm for Syntactic Read-kk-times Branching Programs

    Get PDF
    The satisfiability of a given branching program is to determine whether there exists a consistent path from the root to 1-sink. In a syntactic read-k-times branching program, each variable appears at most k times in any path from the root to a sink. We provide a satisfiability algorithm for syntactic read-k-times branching programs with n variables and m edges that runs in time Oleft(poly(n, m^{k^2})cdot 2^{(1-mu(k))n}right), where mu(k) = frac{1}{4^{k+1}}. Our algorithm is based on the decomposition technique shown by Borodin, Razborov and Smolensky [Computational Complexity, 1993]
    • 

    corecore