303 research outputs found

    Frequency-Selective PAPR Reduction for OFDM

    Get PDF
    We study the peak-to-average power ratio (PAPR) problem in orthogonal frequency-division multiplexing (OFDM) systems. In conventional clipping and filtering based PAPR reduction techniques, clipping noise is allowed to spread over the whole active passband, thus degrading the transmit signal quality similarly at all active subcarriers. However, since modern radio networks support frequency-multiplexing of users and services with highly different quality-of-service expectations, clipping noise from PAPR reduction should be distributed unequally over the corresponding physical resource blocks (PRBs). To facilitate this, we present an efficient PAPR reduction technique, where clipping noise can be flexibly controlled and filtered inside the transmitter passband, allowing to control the transmitted signal quality per PRB. Numerical results are provided in 5G New Radio (NR) mobile network context, demonstrating the flexibility and efficiency of the proposed method.Comment: Accepted for publication as a Correspondence in the IEEE Transactions on Vehicular Technology in March 2019. This is the revised version of original manuscript, and it is in press at the momen

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Novel PAPR Reduction in Filter Bank Multi-Carrier (FBMC) with Offset Quadrature Amplitude Modulation (OQAM) Based VLC Systems

    Get PDF
    The peak to average power ratio (PAPR) is one of the major problem with multicarrier-based systems. Due to its improved spectral efficiency and decreased PAPR, Filter Bank Multicarrier (FBMC) has recently become an effective alternative to the orthogonal multiplexing division (OFDM). For filter bank multicarrier communication/offset quadrature amplitude modulation-Visible light communication (FBMC/OQAM-VLC) systems is proposed a PAPR reduction technique. The suggested approach overlaps the proposed FBMC/OQAM-based VLC data signal with the existing signals. Non-redundant signals and data signals do not overlap in the frequency domain because data signals are scattered on odd subcarriers whereas built signals use even subcarriers. To reduce the effects of large-amplitude signal reduction, the suggested technique converts negative signals into positive signals rather than clipping them off as in conventional FBMC-based VLC systems. The PAPR reduction and bit error rate (BER) are realized using a scaling factor in the transformed signals. Complementary cumulative distribution function(CCDF) and BER are used to calculate the performance of the proposed approach. The presented study found that FBMC/OQAM-VLC systems to achieve a good trade-off between PAPR reduction and BER

    New technique combining the Tone Reservation method with Clipping technique to reduce the Peak-to-Average Power Ratio

    Get PDF
    Nonlinear distortions and impairments appear in multicarrier signal with high fluctuations when amplified by a Radio Frequency Power Amplifier (RF PA). Clipping (CL) technique offers a simple way to reduce these fluctuations in Orthogonal Frequency Division Multiplexing (OFDM) Technique, but may degrade seriously the transmission quality. This is why the new mobile standards propose other methods, like the Tone Reservation (TR) technique in the Digital Video Broadcasting-Terrestrial (DVB-T), that reduce the Peak-to-Average Power Ratio (PAPR) without reaching optimal performances. This paper deals with how we can use the TR technique, which exploits null sub-carriers for generating corrective signal, in combining to CL technique in order to improve PAPR reduction without data loss. Also, we show some comparison results on the PAPR reduction obtained with proposed scheme and other techniques. Experiments using a simulated example on a complete WiMax 802.16e transmitter have been made in order to investigate the PAPR reduction performances on presence of the non-linear Power Amplifier model based on gain compression response and phase distortion

    OFDM PAPR reduction for image transmission using improved tone reservation

    Get PDF
    High peak to average power ration (PAPR) in orthogonal frequency division multiplexing (OFDM) is an important problem, which increase the cost and complexity of high power amplifiers. One of the techniques used to reduce the PAPR in OFDM system is the tone reservation method (TR). In our work we propose a modified tone reservation method to decrease the PAPR with low complexity compared with the conventional TR method by process the high and low amplitudes at the same time. An image of size 128Ă—128 is used as a source of data that transmitted using OFDM system. The proposed method decrease the PAPR by 2dB compared with conventional method with keeping the performance unchanged. The performance of the proposed method is tested with several numbers of subcarriers; we found that the PAPR is reduced as the number of subcarriers decreased
    • …
    corecore