54,498 research outputs found

    Triangle areas in line arrangements

    Get PDF
    A widely investigated subject in combinatorial geometry, originated from Erd\H{o}s, is the following. Given a point set PP of cardinality nn in the plane, how can we describe the distribution of the determined distances? This has been generalized in many directions. In this paper we propose the following variants. Consider planar arrangements of nn lines. Determine the maximum number of triangles of unit area, maximum area or minimum area, determined by these lines. Determine the minimum size of a subset of these nn lines so that all triples determine distinct area triangles. We prove that the order of magnitude for the maximum occurrence of unit areas lies between Ω(n2)\Omega(n^2) and O(n9/4)O(n^{9/4}). This result is strongly connected to both additive combinatorial results and Szemer\'edi--Trotter type incidence theorems. Next we show a tight bound for the maximum number of minimum area triangles. Finally we present lower and upper bounds for the maximum area and distinct area problems by combining algebraic, geometric and combinatorial techniques.Comment: Title is shortened. Some typos and small errors were correcte

    The number of unit-area triangles in the plane: Theme and variations

    Get PDF
    We show that the number of unit-area triangles determined by a set SS of nn points in the plane is O(n20/9)O(n^{20/9}), improving the earlier bound O(n9/4)O(n^{9/4}) of Apfelbaum and Sharir [Discrete Comput. Geom., 2010]. We also consider two special cases of this problem: (i) We show, using a somewhat subtle construction, that if SS consists of points on three lines, the number of unit-area triangles that SS spans can be Ω(n2)\Omega(n^2), for any triple of lines (it is always O(n2)O(n^2) in this case). (ii) We show that if SS is a {\em convex grid} of the form A×BA\times B, where AA, BB are {\em convex} sets of n1/2n^{1/2} real numbers each (i.e., the sequences of differences of consecutive elements of AA and of BB are both strictly increasing), then SS determines O(n31/14)O(n^{31/14}) unit-area triangles

    Lower Bound for Convex Hull Area and Universal Cover Problems

    Full text link
    In this paper, we provide a lower bound for an area of the convex hull of points and a rectangle in a plane. We then apply this estimate to establish a lower bound for a universal cover problem. We showed that a convex universal cover for a unit length curve has area at least 0.232239. In addition, we show that a convex universal cover for a unit closed curve has area at least 0.0879873.Comment: 12 pages, 9 figure

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    The Average-Case Area of Heilbronn-Type Triangles

    Get PDF
    From among (n3) {n \choose 3} triangles with vertices chosen from nn points in the unit square, let TT be the one with the smallest area, and let AA be the area of TT. Heilbronn's triangle problem asks for the maximum value assumed by AA over all choices of nn points. We consider the average-case: If the nn points are chosen independently and at random (with a uniform distribution), then there exist positive constants cc and CC such that c/n3<μn<C/n3c/n^3 < \mu_n < C/n^3 for all large enough values of nn, where μn\mu_n is the expectation of AA. Moreover, c/n3<A<C/n3c/n^3 < A < C/n^3, with probability close to one. Our proof uses the incompressibility method based on Kolmogorov complexity; it actually determines the area of the smallest triangle for an arrangement in ``general position.''Comment: 13 pages, LaTeX, 1 figure,Popular treatment in D. Mackenzie, On a roll, {\em New Scientist}, November 6, 1999, 44--4
    corecore