1,089 research outputs found

    Computing Approximate Equilibria in Weighted Congestion Games via Best-Responses

    Full text link
    We present a deterministic polynomial-time algorithm for computing dd+o(d)d^{d+o(d)}-approximate (pure) Nash equilibria in weighted congestion games with polynomial cost functions of degree at most dd. This is an exponential improvement of the approximation factor with respect to the previously best deterministic algorithm. An appealing additional feature of our algorithm is that it uses only best-improvement steps in the actual game, as opposed to earlier approaches that first had to transform the game itself. Our algorithm is an adaptation of the seminal algorithm by Caragiannis et al. [FOCS'11, TEAC 2015], but we utilize an approximate potential function directly on the original game instead of an exact one on a modified game. A critical component of our analysis, which is of independent interest, is the derivation of a novel bound of [d/W(d/ρ)]d+1[d/\mathcal{W}(d/\rho)]^{d+1} for the Price of Anarchy (PoA) of ρ\rho-approximate equilibria in weighted congestion games, where W\mathcal{W} is the Lambert-W function. More specifically, we show that this PoA is exactly equal to Φd,ρd+1\Phi_{d,\rho}^{d+1}, where Φd,ρ\Phi_{d,\rho} is the unique positive solution of the equation ρ(x+1)d=xd+1\rho (x+1)^d=x^{d+1}. Our upper bound is derived via a smoothness-like argument, and thus holds even for mixed Nash and correlated equilibria, while our lower bound is simple enough to apply even to singleton congestion games

    Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure

    Full text link
    We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of (pure Nash) equilibria is guaranteed by potential function arguments. Unfortunately, this proof of existence is inefficient and computing equilibria is such games is a {\sf PLS}-hard problem. The situation gets worse when superlinear latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and equilibria may not even exist. Given these obstacles, we consider approximate equilibria as alternative solution concepts. Do such equilibria exist? And if so, can we compute them efficiently? We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ\Psi-games. This allows us to show that these games have d!d!-approximate equilibria, where dd is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate equilibria when dd is a constant. For games with linear latency functions, the approximation guarantee is 3+52+O(γ)\frac{3+\sqrt{5}}{2}+O(\gamma) for arbitrarily small γ>0\gamma>0; for latency functions with maximum degree d2d\geq 2, it is d2d+o(d)d^{2d+o(d)}. The running time is polynomial in the number of bits in the representation of the game and 1/γ1/\gamma. As a byproduct of our techniques, we also show the following structural statement for weighted congestion games with polynomial latency functions of maximum degree d2d\geq 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)d^{O(d^2)}-approximate equilibrium exist and can be efficiently identified in such games as long as dd is constant.Comment: 31 page

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Finding Any Nontrivial Coarse Correlated Equilibrium Is Hard

    Get PDF
    One of the most appealing aspects of the (coarse) correlated equilibrium concept is that natural dynamics quickly arrive at approximations of such equilibria, even in games with many players. In addition, there exist polynomial-time algorithms that compute exact (coarse) correlated equilibria. In light of these results, a natural question is how good are the (coarse) correlated equilibria that can arise from any efficient algorithm or dynamics. In this paper we address this question, and establish strong negative results. In particular, we show that in multiplayer games that have a succinct representation, it is NP-hard to compute any coarse correlated equilibrium (or approximate coarse correlated equilibrium) with welfare strictly better than the worst possible. The focus on succinct games ensures that the underlying complexity question is interesting; many multiplayer games of interest are in fact succinct. Our results imply that, while one can efficiently compute a coarse correlated equilibrium, one cannot provide any nontrivial welfare guarantee for the resulting equilibrium, unless P=NP. We show that analogous hardness results hold for correlated equilibria, and persist under the egalitarian objective or Pareto optimality. To complement the hardness results, we develop an algorithmic framework that identifies settings in which we can efficiently compute an approximate correlated equilibrium with near-optimal welfare. We use this framework to develop an efficient algorithm for computing an approximate correlated equilibrium with near-optimal welfare in aggregative games.Comment: 21 page

    Node-Max-Cut and the Complexity of Equilibrium in Linear Weighted Congestion Games

    Get PDF
    In this work, we seek a more refined understanding of the complexity of local optimum computation for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games with weighted players and linear latency functions. We show that computing a PNE of linear weighted congestion games is PLS-complete either for very restricted strategy spaces, namely when player strategies are paths on a series-parallel network with a single origin and destination, or for very restricted latency functions, namely when the latency on each resource is equal to the congestion. Our results reveal a remarkable gap regarding the complexity of PNE in congestion games with weighted and unweighted players, since in case of unweighted players, a PNE can be easily computed by either a simple greedy algorithm (for series-parallel networks) or any better response dynamics (when the latency is equal to the congestion). For the latter of the results above, we need to show first that computing a local optimum of a natural restriction of Max-Cut, which we call Node-Max-Cut, is PLS-complete. In Node-Max-Cut, the input graph is vertex-weighted and the weight of each edge is equal to the product of the weights of its endpoints. Due to the very restricted nature of Node-Max-Cut, the reduction requires a careful combination of new gadgets with ideas and techniques from previous work. We also show how to compute efficiently a (1+?)-approximate equilibrium for Node-Max-Cut, if the number of different vertex weights is constant

    The Quality of Equilibria for Set Packing Games

    Get PDF
    We introduce set packing games as an abstraction of situations in which nn selfish players select subsets of a finite set of indivisible items, and analyze the quality of several equilibria for this class of games. Assuming that players are able to approximately play equilibrium strategies, we show that the total quality of the resulting equilibrium solutions is only moderately suboptimal. Our results are tight bounds on the price of anarchy for three equilibrium concepts, namely Nash equilibria, subgame perfect equilibria, and an equilibrium concept that we refer to as kk-collusion Nash equilibrium

    Improving Approximate Pure Nash Equilibria in Congestion Games

    Get PDF
    Congestion games constitute an important class of games to model resource allocation by different users. As computing an exact or even an approximate pure Nash equilibrium is in general PLS-complete, Caragiannis et al. (2011) present a polynomial-time algorithm that computes a (2+ϵ2 + \epsilon)-approximate pure Nash equilibria for games with linear cost functions and further results for polynomial cost functions. We show that this factor can be improved to (1.61+ϵ)(1.61+\epsilon) and further improved results for polynomial cost functions, by a seemingly simple modification to their algorithm by allowing for the cost functions used during the best response dynamics be different from the overall objective function. Interestingly, our modification to the algorithm also extends to efficiently computing improved approximate pure Nash equilibria in games with arbitrary non-decreasing resource cost functions. Additionally, our analysis exhibits an interesting method to optimally compute universal load dependent taxes and using linear programming duality prove tight bounds on PoA under universal taxation, e.g, 2.012 for linear congestion games and further results for polynomial cost functions. Although our approach yield weaker results than that in Bil\`{o} and Vinci (2016), we remark that our cost functions are locally computable and in contrast to Bil\`{o} and Vinci (2016) are independent of the actual instance of the game
    corecore