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Abstract
In this work, we seek a more refined understanding of the complexity of local optimum computation
for Max-Cut and pure Nash equilibrium (PNE) computation for congestion games with weighted
players and linear latency functions. We show that computing a PNE of linear weighted congestion
games is PLS-complete either for very restricted strategy spaces, namely when player strategies are
paths on a series-parallel network with a single origin and destination, or for very restricted latency
functions, namely when the latency on each resource is equal to the congestion. Our results reveal a
remarkable gap regarding the complexity of PNE in congestion games with weighted and unweighted
players, since in case of unweighted players, a PNE can be easily computed by either a simple greedy
algorithm (for series-parallel networks) or any better response dynamics (when the latency is equal
to the congestion). For the latter of the results above, we need to show first that computing a
local optimum of a natural restriction of Max-Cut, which we call Node-Max-Cut, is PLS-complete.
In Node-Max-Cut, the input graph is vertex-weighted and the weight of each edge is equal to the
product of the weights of its endpoints. Due to the very restricted nature of Node-Max-Cut, the
reduction requires a careful combination of new gadgets with ideas and techniques from previous
work. We also show how to compute efficiently a (1 + ε)-approximate equilibrium for Node-Max-Cut,
if the number of different vertex weights is constant.
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1 Introduction

Motivated by the remarkable success of local search in combinatorial optimization, Johnson
et al. introduced [25] the complexity class Polynomial Local Search (PLS), consisting of local
search problems with polynomially verifiable local optimality. PLS includes many natural
complete problems (see e.g., [28, App. C]), with Circuit-Flip [25] and Max-Cut [33]
among the best known ones, and lays the foundation for a principled study of the complexity
of local optima computation. In the last 15 years, a significant volume of research on
PLS-completeness was motivated by the problem of computing a pure Nash equilibrium
of potential games (see e.g., [1, 34, 20] and the references therein), where any improving
deviation by a single player decreases a potential function and its local optima correspond to
pure Nash equilibria [29].

Computing a local optimum of Max-Cut under the flip neighborhood (a.k.a. Local-
Max-Cut) has been one of the most widely studied problems in PLS. Given an edge-weighed
graph, a cut is locally optimal if we cannot increase its weight by moving a vertex from one side
of the cut to the other. Since its PLS-completeness proof by Schäffer and Yannakakis [33],
researchers have shown that Local-Max-Cut remains PLS-complete for graphs with
maximum degree five [9], is polynomially solvable for cubic graphs [31], and its smoothed
complexity is either polynomial in complete [2] and sparse [9] graphs, or almost polynomial
in general graphs [7, 10]. Moreover, due to its simplicity and versatility, Max-Cut has
been widely used in PLS reductions (see e.g., [1, 20, 34]). Local-Max-Cut can also be
cast as a game, where each vertex aims to maximize the total weight of its incident edges
that cross the cut. Cut games are potential games (the value of the cut is the potential
function), which has motivated research on efficient computation of approximate equilibria for
Local-Max-Cut [3, 6]. To the best of our knowledge, apart from the work on the smoothed
complexity of Local-Max-Cut (and may be that Local-Max-Cut is P-complete for
unweighted graphs [33, Theorem 4.5]), there has not been any research on whether (and to
which extent) additional structure on edge weights affects hardness of Local-Max-Cut.

A closely related research direction deals with the complexity of computing a pure Nash
equilibrium (equilibrium or PNE, for brevity) of congestion games [32], a typical example
of potential games [29] and among the most widely studied classes of games in Algorithmic
Game Theory (see e.g., [15] for a brief account of previous work). In congestion games (or
CGs, for brevity), a finite set of players compete over a finite set of resources. Strategies are
resource subsets and players aim to minimize the total cost of the resources in their strategies.
Each resource e is associated with a (non-negative and non-decreasing) latency function,
which determines the cost of using e as a function of e’s congestion (i.e., the number of players
including e in their strategy). Researchers have extensively studied the properties of special
cases and variants of CGs. Most relevant to this work are symmetric (resp. asymmetric)
CGs, where players share the same strategy set (resp. have different strategy sets), network
CGs, where strategies correspond to paths in an underlying network, and weighted CGs,
where player contribute to the congestion with a different weight.
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Fabrikant et al. [12] proved that computing a PNE of asymmetric network CGs or
symmetric CGs is PLS-complete, and that it reduces to min-cost-flow for symmetric network
CGs. About the same time [17, 30] proved that weighted congestion games admit a (weighted)
potential function, and thus a PNE, if the latency functions are either affine or exponential
(and [23, 24] proved that in a certain sense, this restriction is necessary). Subsequently,
Ackermann et al. [1] characterized the strategy sets of CGs that guarantee efficient equilibrium
computation. They also used a variant of Local-Max-Cut, called threshold games, to
simplify the PLS-completeness proof of [12] and to show that computing a PNE of asymmetric
network CGs with (exponentially steep) linear latencies is PLS-complete.

On the other hand, the complexity of equilibrium computation for weighted CGs is not
well understood. All the hardness results above carry over to weighted CGs, since they
generalize standard CGs (where the players have unit weight). But on the positive side,
we only know how to efficiently compute a PNE for weighted CGs on parallel links with
general latencies [16] and for weighted CGs on parallel links with identity latency functions
and asymmetric strategies [19]. Despite the significant interest in (exact or approximate)
equilibrium computation for CGs (see e.g., [4, 5, 6, 27] and the references therein), we do
not understand how (and to which extent) the complexity of equilibrium computation is
affected by player weights. This is especially true for weighted CGs with linear latencies,
which admit a potential function and their equilibrium computation is in PLS.

Contributions. We contribute to both research directions outlined above. In a nutshell, we
show that equilibrium computation in linear weighted CGs is significantly harder than for
standard CGs, in the sense that it is PLS-complete either for very restricted strategy spaces,
namely when player strategies are paths on a series-parallel network with a single origin and
destination, or for very restricted latency functions, namely when resource costs are equal to
the congestion. Our main step towards proving the latter result is to show that computing a
local optimum of Node-Max-Cut, a natural and interesting restriction of Max-Cut where
the weight of each edge is the product of the weights of its endpoints, is PLS-complete.

More specifically, using a tight reduction from Local-Max-Cut, we first show, in
Section 3.1, that equilibrium computation for linear weighted CGs on series-parallel networks
with a single origin and destination is PLS-complete (Theorem 1). The reduction results
in games where both the player weights and the latency slopes are exponential. Our result
reveals a remarkable gap between weighted and standard CGs regarding the complexity of
equilibrium computation, since for standard CGs on series-parallel networks with a single
origin and destination, a PNE can be computed by a simple greedy algorithm [18].

Aiming at a deeper understanding of how different player weights affect the complexity
of equilibrium computation in CGs, we show, in Section 3.2, that computing a PNE of
weighted network CGs with asymmetric player strategies and identity latency functions is
PLS-complete (Theorem 2). Again the gap to standard CGs is remarkable, since for standard
CGs with identity latency functions, any better response dynamics converges to a PNE in
polynomial time. In the reduction of Theorem 2, Node-Max-Cut plays a role similar to
that of threshold games in [1, Sec. 4]. The choice of Node-Max-Cut seems necessary, in
the sense that known PLS reductions, starting from Not-All-Equal Satisfiability [12]
or Local-Max-Cut [1], show that equilibrium computation is hard due to the interaction
of players on different resources (where latencies simulate the edge / clause weights), while in
our setting, equilibrium computation is hard due to the player weights, which are the same
for all resources in a player’s strategy.
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Node-Max-Cut is a natural restriction of Max-Cut and settling the complexity of its
local optima computation may be of independent interest, both conceptually and technically.
Node-Max-Cut coincides with the restriction of Max-Cut shown (weakly) NP-complete
on complete graphs in the seminal paper of Karp [26], while a significant generalization of
Node-Max-Cut with polynomial weights was shown P-complete in [33].

A major part of our technical effort concerns reducing Circuit-Flip to Node-Max-
Cut, thus showing that computing a local optimum of Node-Max-Cut is PLS-complete
(Section 5). Since Node-Max-Cut is a very restricted special case of Max-Cut, we have
to start from a PLS-complete problem lying before Local-Max-Cut on the “reduction
paths” of PLS. The reduction is technically involved, due to the very restricted nature of
the problem. In Node-Max-Cut, every vertex contributes to the cut value of its neighbors
with the same weight, and differentiation comes only as a result of the different total weight
in the neighborhood of each vertex. To deal with this restriction, we combine some new
carefully constructed gadgets with the gadgets used by Schäffer and Yannakakis [33], Elsässer
and Tscheuschner [9]. and Gairing and Savani [20]. In general, as a very restricted special
case of Max-Cut, Node-Max-Cut is a natural and convenient starting point for future
PLS reductions, especially when one wants to show hardness of equilibrium computation for
restricted classes of games that admit weighted potential functions (e.g., as that in [17]). So,
our results may serve as a first step towards a better understanding of the complexity of
(exact or approximate) equilibrium computation for weighted potential games.

We also show that a (1+ε)-approximate equilibrium for Node-Max-Cut, where no vertex
can switch sides and increase the weight of its neighbors across the cut by a factor larger than
1 + ε, can be computed in time exponential in the number of different weights (Theorem 3).
Thus, we can efficiently compute a (1 + ε)-approximate equilibrium for Node-Max-Cut, for
any ε > 0, if the number of different vertex weights is constant. Since similar results are not
known for Max-Cut, Theorem 3 may indicate that approximate equilibrium computation for
Node-Max-Cut may not be as hard as for Max-Cut. An interesting direction for further
research is to investigate (i) the quality of efficiently computable approximate equilibria for
Node-Max-Cut; and (ii) the smoothed complexity of its local optima.

Related Work. Existence and efficient computation of (exact or approximate) equilibria for
weighted congestion games have received significant research attention. We briefly discuss
here some of the most relevant previous work. There has been significant research interest
in the convergence rate of best response dynamics for weighted congestion games (see e.g.,
[8, 4, 11, 13, 22]). Gairing et al. [19] presented a polynomial algorithm for computing a
PNE for load balancing games on restricted parallel links. Caragiannis et al. [6] established
existence and presented efficient algorithms for computing approximate PNE in weighted
CGs with polynomial latencies (see also [14, 21]).

Bhalgat et al. [3] presented an efficient algorithm for computing a (3 + ε)-approximate
equilibrium in Max-Cut games, for any ε > 0. The approximation guarantee was improved
to 2 + ε in [6]. We highlight that the notion of approximate equilibrium in cut games is
much stronger than the notion of approximate local optimum of Max-Cut, since the former
requires that no vertex can significantly improve the total weight of its incidence edges that
cross the cut (as e.g., in [3, 6]), while the latter simply requires that the total weight of the
cut cannot be significantly improved (as e.g., in [6]).

Johnson et al. [25] introduced the complexity class PLS and proved that Circuit-Flip is
PLS-complete. Subsequently, Schäffer and Yannakakis [33] proved that Max-Cut is PLS-
complete. From a technical viewpoint, our work is close to previous work by Elsässer and
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Tscheuschner [9] and Gairing and Savani [20], where they show that Local-Max-Cut in
graphs of maximum degree five [9] and computing a PNE for hedonic games [20] are PLS-
complete, and by Ackermann et al. [1], where they reduce Local-Max-Cut to computing a
PNE in network congestion games.

2 Basic Definitions and Notation

Polynomial-Time Local Search (PLS). A polynomial-time local search (PLS) problem L

[25, Sec. 2] is specified by a (polynomially recognizable) set of instances IL, a set SL(x) of
feasible solutions for each instance x ∈ IL, with |s| = O(poly(|x|) for every solution s ∈ SL(x),
an objective function fL(s, x) that maps each solution s ∈ SL(x) to its value in instance x,
and a neighborhood NL(s, x) ⊆ SL(x) of feasible solutions for each s ∈ SL(x). Moreover,
there are three polynomial-time algorithms that for any given instance x ∈ IL: (i) the first
generates an initial solution s0 ∈ SL(x); (ii) the second determines whether a given s is a
feasible solution and (if s ∈ SL(x)) computes its objective value fL(s, x); and (iii) the third
returns either that s is locally optimal or a feasible solution s′ ∈ NL(s, x) with better objective
value than s. If L is a maximization (resp. minimization) problem, a solution s is locally
optimal if for all s′ ∈ NL(s, x), fL(s, x) ≥ fL(s′, x) (resp. fL(s, x) ≤ fL(s′, x)). If s is not
locally optimal, the third algorithm returns a solution s′ ∈ NL(s, x) with f(s, x) < f(s′, x)
(resp. f(s, x) > f(s′, x)). The complexity class PLS consists of all polynomial-time local
search problems. By abusing the terminology, we always refer to polynomial-time local search
problem simply as local search problems.

PLS Reductions and Completeness. A local search problem L is PLS-reducible to a local
search problem L′, if there are polynomial-time algorithms φ1 and φ2 such that (i) φ1 maps
any instance x ∈ IL of L to an instance φ1(x) ∈ IL′ of L′; (ii) φ2 maps any (solution s′ of
instance φ1(x), instance x) pair, with s′ ∈ SL′(φ1(x)), to a solution s ∈ SL(x); and (iii) for
every instance x ∈ IL, if s′ is locally optimal for φ1(x), then φ2(s′, x) is locally optimal for x.

By definition, if a local search problem L is PLS-reducible to a local search problem L′, a
polynomial-time algorithm that computes a local optimum of L′ implies a polynomial time
algorithm that computes a local optimum of L. Moreover, a PLS-reduction is transitive. As
usual, a local search problem Q is PLS-complete, if Q ∈ PLS and any local search problem
L ∈ PLS is PLS-reducible to Q.

Max-Cut and Node-Max-Cut. An instance of Max-Cut consists of an undirected edge-
weighted graph G(V,E), where V is the set of vertices and E is the set of edges. Each
edge e is associated with a positive weight we. A cut of G is a vertex partition (S, V \ S),
with ∅ 6= S 6= V . We usually identify a cut with one of its sides (e.g., S). We denote
δ(S) = {{u, v} ∈ E : u ∈ S ∧ v 6∈ S} the set of edges that cross the cut S. The weight (or
the value) of a cut S, denoted w(S), is w(S) =

∑
e∈δ(S) we. In Max-Cut, the goal is to

compute an optimal cut S∗ of maximum value w(S∗).
In Node-Max-Cut, each vertex v is associated with a positive weight wv and the weight

of each edge e = {u, v} is we = wuwv, i.e. equal to the product of the weights of e’s endpoints.
Again the goal is to compute a cut S∗ of maximum value w(S∗). As optimization problems,
both Max-Cut and Node-Max-Cut are NP-complete [26].

In this work, we study Max-Cut and Node-Max-Cut as local search problems under the
flip neighborhood. Then, they are referred to as Local-Max-Cut and Local-Node-Max-
Cut. The neighborhood N(S) of a cut (S, V \S) consists of all cuts (S′, V \S′) where S and
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50:6 Node-Max-Cut and Equilibrium in Weighted Congestion Games

S′ differ by a single vertex. Namely, the cut S′ is obtained from S by moving a vertex from
one side of the cut to the other. A cut S is locally optimal if for all S′ ∈ N(S), w(S) ≥ w(S′).
In Local-Max-Cut (resp. Local-Node-Max-Cut), given an edge-weighted (resp. vertex-
weighted) graph, the goal is to compute a locally optimal cut. Clearly, both Max-Cut and
Node-Max-Cut belong to PLS. In the following, we abuse the terminology and refer to
Local-Max-Cut and Local-Node-Max-Cut as Max-Cut and Node-Max-Cut, for
brevity, unless we need to distinguish between the optimization and the local search problem.

Weighted Congestion Games. A weighted congestion game G consists of n players, where
each player i is associated with a positive weight wi, a set of resources E, where each resource
e is associated with a non-decreasing latency function `e : R≥0 → R≥0, and a non-empty
strategy set Σi ⊆ 2E for each player i. A game is linear if `e(x) = aex + be, for some
ae, be ≥ 0, for all e ∈ E. The identity latency function is `(x) = x. The player strategies are
symmetric, if all players share the same strategy set Σ, and asymmetric, otherwise.

We focus on network weighted congestion games, where the resources E correspond to the
edges of an underlying network G(V,E) and the player strategies are paths on G. A network
game is single-commodity, if G has an origin o and a destination d and the player strategies
are all (simple) o− d paths. A network game is multi-commodity, if G has an origin oi and a
destination di for each player i, and i’s strategy set Σi consists of all (simple) oi − di paths.
A single-commodity network G(V,E) is series-parallel, if it either consists of a single edge
(o, d) or can be obtained from two series-parallel networks composed either in series or in
parallel (see e.g., [35] for details on composition and recognition of series-parallel networks).

A configuration ~s = (s1, . . . , sn) consists of a strategy si ∈ Σi for each player i. The
congestion se of resource e in configuration ~s is se =

∑
i:e∈si

wi. The cost of resource e in ~s
is `e(se). The individual cost (or cost) ci(~s) of player i in configuration ~s is the total cost for
the resources in her strategy si, i.e., ci(~s) =

∑
e∈si

`e(se). A configuration ~s is a pure Nash
equilibrium (equilibrium or PNE, for brevity), if for every player i and every strategy s′ ∈ Σi,
ci(~s) ≤ ci(~s−i, s′) (where (~s−i, s′) denotes the configuration obtained from ~s by replacing si
with s′). Namely, no player can improve her cost by unilaterally switching her strategy.

Equilibrium Computation and Local Search. [17] shows that for linear weighted congestion
games, with latencies `e(x) = aex+ be, Φ(~s) =

∑
e∈E(aes2

e + bese) +
∑
i wi

∑
e∈si

(aewi + be)
changes by 2wi(ci(~s)− ci(~s−i, s′)), when a player i switches from strategy si to strategy s′
in ~s. Hence, Φ is a weighted potential function, whose local optimal (wrt. single player
deviations) correspond to PNE of the underlying game. Hence, equilibrium computation
for linear weighted congestion games is in PLS. Specifically, configurations corresponds to
solutions, the neighborhood N(~s) of a configuration ~s consists of all configurations (~s−i, s′)
with s′ ∈ Σi, for some player i, and local optimality is defined wrt. the potential function Φ.

Max-Cut and Node-Max-Cut as Games. Local-Max-Cut and Local-Node-Max-Cut
can be cast as cut games, where players correspond to vertices of G(V,E), strategies
Σ = {0, 1} are symmetric, and configurations ~s ∈ {0, 1}|V | correspond to cuts, e.g., S(~s) =
{v ∈ V : sv = 0}. Each player v aims to maximize wv(~s) =

∑
e={u,v}∈E:su 6=sv

we, that is the
total weight of her incident edges that cross the cut. For Node-Max-Cut, this becomes
wv(~s) =

∑
u:{u,v}∈E∧su 6=sv

wu, i.e., v aims to maximize the total weight of her neighbors
across the cut. A cut ~s is a PNE if for all players v, wv(~s) ≥ wv(~s−i, 1− sv). Equilibrium
computation for cut games is equivalent to local optimum computation, and thus, is in PLS.
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Figure 1 The series-parallel network Fij that corresponds to edge {i, j} ∈ A.

A cut ~s is a (1 + ε)-approximate equilibrium, for some ε > 0, if for all players v,
(1 + ε)wv(~s) ≥ wv(~s−i, 1− sv). Note that the notion of (1 + ε)-approximate equilibrium is
stronger than the notion of (1 + ε)-approximate local optimum, i.e., a cut S such that for all
S′ ∈ N(S), (1 + ε)w(S) ≥ w(S′) (see also the discussion in [6]).

3 Hardness of Computing Equilibria in Weighted Congestion Games

We next show that computing a PNE in weighted congestion games with linear latencies is
PLS-complete either for single-commodity series-parallel networks or for multi-commodity
networks with identity latency functions.

3.1 Weighted Congestion Games on Series-Parallel Networks
I Theorem 1. Computing a pure Nash equilibrium in weighted congestion games on single-
commodity series-parallel networks with linear latency functions is PLS-complete.

Proof sketch. Membership in PLS follows from the potential function argument of [17]. To
show hardness, we present a reduction from Local-Max-Cut.

Let H(V,A) be an instance of Local-Max-Cut with n vertices and m edges. Based on
H, we construct a weighted congestion game on a single-commodity series-parallel network
G with 3n players, where for every i ∈ [n], there are three players with weight wi = 16i.
Network G is a parallel composition of two identical copies of a simpler series-parallel network.
We refer to these copies as G1 and G2. Each of G1 and G2 is a series composition of m
simple series-parallel networks Fij , each corresponding to an edge {i, j} ∈ A. Network Fij
is depicted in Figure 1, where D is assumed to be a constant chosen (polynomially) large
enough. An example of the entire network G is shown in Figure 2.

In each of G1 and G2, there is a unique path that contains all edges with latency
functions `i(x) = Dx/4i, for each i ∈ [n]. We refer to these paths as pui for G1 and pli for
G2. In addition to the edges with latency `i(x), pui and pli include all edges with latencies
`ij(x) = wijx

wiwj
= wijx

16i+j , which correspond to the edges incident to vertex i in H.
Due to the choice of the player weights and the latency slopes, a player with weight wi

must choose either pui or pli in any PNE. We can prove this claim by induction on the player
weights. The players with weight wn = 16n have a dominant strategy to choose either pun or
pln, since the slope of `n(x) is significantly smaller than the slope of any other latency `i(x).
In fact, the slope of `n is so small that even if all other 3n− 1 players choose one of pun or
pln, a player with weight wn would prefer either pun or pln over all other paths. Therefore, we
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50:8 Node-Max-Cut and Equilibrium in Weighted Congestion Games

Figure 2 An example of the network G constructed in the proof of Theorem 1 for graph H(V, A),
with V = {1, 2, 3, 4} and A = {{1, 2}, {1, 3}, {1, 4}, {2, 4}}. G is a parallel composition of two parts,
each consisting of the smaller networks F12, F13, F14 and F24 (see also Figure 1) connected in series.

can assume that each of pun and pln are used by at least one player with weight wn in any
PNE, which would increase their latency so much that no player with smaller weight would
prefer them any more. The inductive argument applies the same reasoning for players with
weights wn−1, who should choose either pun−1 or pln−1 in any PNE, and subsequently, for
players with weights wn−2, . . . , w1. Hence, we conclude that for all i ∈ [n], each of pui and pli
is used by at least one player with weight wi.

Moreover, we note that two players with different weights, say wi and wj , go through the
same edge with latency `ij(x) = wijx

wiwj
in G only if the corresponding edge {i, j} is present

in H. The correctness of the reduction follows the fact that a player with weight wi aims
to minimize her cost through edges with latencies `ij in G in the same way that in the
Max-Cut instance, we want to minimize the weight of the edges incident to a vertex i
and do not cross the cut. Formally, we next show that a cut S is locally optimal for the
Max-Cut instance if and only if the configuration where for every k ∈ S, two players with
weight wk use puk and for every k 6∈ S, two players with weight wk use plk is a PNE of the
weighted congestion game on G.

Assume an equilibrium configuration and consider a player a of weight wk that uses puk
together with another player of weight wk (if this is not the case, vertex k is not included in
S and we apply the symmetric argument for plk). By the equilibrium condition, the cost of
player a on puk is at most her cost on plk, which implies that

m∑
k=1

2D16k

4k +
∑

j:{k,j}∈A

wkj(2 · 16k + xuj 16j)
16k+j ≤

m∑
k=1

2D16k

4k +
∑

j:{k,j}∈A

wkj(2 · 16k + xlj16j)
16k+j ,

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending on whether, for each vertex
j connected to vertex k in H, one or two players (of weight wj) use puj . Simplifying the
inequality above, we obtain that:∑

j:{k,j}∈A

wkj(xuj − 1) ≤
∑

j:{k,j}∈A

wkj(xlj − 1) (1)

Let S = {i ∈ V : xui = 2}. By hypothesis, k ∈ S and the left-hand side of (1) corresponds
to the total weight of the edges in H that are incident to k and do not cross the cut S.
Similarly, the right-hand side of (1) corresponds to the total weights of the edges in H that
are incident to k and cross the cut S. Therefore, (1) implies that we cannot increase the
value of the cut S by moving vertex k from S to V \ S. Since this or its symmetric condition
holds for any vertex k of H, the cut (S, V \ S) is locally optimal. To conclude the proof, we
argue along the same lines that any locally optimal cut of H corresponds to a PNE in the
weighted congestion game on G. J
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3.2 Weighted Congestion Games with Identity Latency Functions
We next prove that computing a PNE in weighted congestion games on multi-commodity
networks with identity latency functions is PLS-complete. Compared to Theorem 1, we
allow for a significantly more general strategy space, but we significantly restrict the latency
functions, only allowing for the player weights to be exponentially large.

I Theorem 2. Computing a pure Nash equilibrium in weighted congestion games on multi-
commodity networks with identity latency functions is PLS-complete.

Proof sketch. We use a reduction from Local-Node-Max-Cut, which as we show in
Theorem 4, is PLS-complete. Our construction draws ideas from [1].

Let H(V,A) be an instance of Node-Max-Cut. We construct a weighted congestion
game on a multi-commodity network G with identity latency functions `e(x) = x such that
equilibria of the congestion game correspond to locally optimal cuts of H.

At the conceptual level, each player i of the congestion game corresponds to vertex i ∈ V
and has weight wi (i.e., equal to the weight of vertex i in H). The key step is to construct
a network G such that for every player i ∈ [n], there are two paths, say pui and pli, whose
cost dominate the cost of any other path for player i. Therefore, in any equilibrium, player i
selects either pui or pli (which corresponds to vertex i selecting one of the two sides of a cut).
For every edge {i, j} ∈ A, paths pui and puj (resp. paths pli and plj) have an edge euij (resp.
elij) in common. Intuitively, the cost of pui (resp. pli) for player i is determined by the set of
players j, with j connected to i in H, that select path puj (resp. plj).

Let ~s be any equilibrium configuration of the weighted congestion game. Each player
i ∈ [n] selects either pui or pli in ~s. Let S = {i ∈ [n] : player i selects pui in ~s}. Applying the
equilibrium condition, we next show that S is a locally optimal cut.

We let Vi = {j : {i, j} ∈ A} be the neighborhood of vertex i in H. By the construction of
G, the individual cost of a player i on path pui (resp. pli) in ~s is equal toK+|Vi|wi+

∑
j∈S∩Vi

wj
(resp. K + |Vi|wi +

∑
j∈Vi\S wj), where K is a large constant that depends on the network

G only. Therefore, for any player i ∈ S, equilibrium condition for ~s implies that

K + |Vi|wi +
∑

j∈S∩Vi

wj ≤ K + |Vi|wi +
∑

j∈Vi\S

wj ⇒
∑

j∈S∩Vi

wj ≤
∑

j∈Vi\S

wj

Multiplying both sides by wi, we get that the total weight of the edges that are incident to i
and cross the cut S is no less than the total weight of the edges that are incident to i and do
not cross the cut. By the same reasoning, we reach the same conclusion for any player i 6∈ S.
Therefore, the cut (S, V \ S) is locally optimal for the Node-Max-Cut instance H(V,A).

To conclude the proof, we argue along the same lines that any locally optimal cut S for
the Node-Max-Cut instance H(V,A) corresponds to an equilibrium in the network G, by
letting a player i select path pui if and only if i ∈ S. J

4 Computing Approximate Equilibria for Node-Max-Cut

We complement our PLS-completeness proof for Node-Max-Cut, in Section 5, with an
efficient algorithm computing (1 + ε)-approximate equilibria for Node-Max-Cut, when
the number of different vertex weights is a constant. We note that similar results are not
known (and a similar approach fails) for Max-Cut. Investigating if stronger approximation
guarantees are possible for efficiently computable approximate equilibria for Node-Max-Cut
is beyond the scope of this work and an intriguing direction for further research.
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Given a vertex-weighted graph G(V,E) with n vertices and m edges, our algorithm, called
BridgeGaps, computes a (1 + ε)3-approximate equilibrium for a Node-Max-Cut, for any
ε > 0, in (m/ε)(n/ε)O(Dε) time, where Dε is the number of different vertex weights in G,
when the weights are rounded down to powers of 1 + ε. We next sketch the algorithm and
the proof of Theorem 3.

For simplicity, we assume that n/ε is an integer and that vertices are indexed in non-
decreasing order of weight, i.e., w1 ≤ w2 ≤ · · · ≤ wn. BridgeGaps first rounds down
vertex weights to the closest power of (1 + ε). Namely, each weight wi is replaced by weight
w′i = (1 + ε)blog1+ε wic. Clearly, an (1 + ε)2-approximate equilibrium for the new instance G′
is an (1 + ε)3-approximate equilibrium for the original instance G. The number of different
weights Dε, used in the analysis, is defined wrt. the new instance G′.

Then, BridgeGaps partitions the vertices of G′ into groups g1, g2, . . ., so that the vertex
weights in each group increase with the index of the group and the ratio of the maximum
weight in group gj to the minimum weight in group gj+1 is no less than n/ε. This can
be performed by going through the vertices, in nondecreasing order of their weights, and
assign vertex i+ 1 to the same group as vertex i, if w′i+1/w

′
i ≤ n/ε. Otherwise, vertex i+ 1

starts a new group. The idea is that for an (1 + ε)2-approximate equilibrium in G′, we only
need to enforce the (1 + ε)-approximate equilibrium condition for each vertex i only for i’s
neighbors in the highest-indexed group (that includes some neighbor of i). To see this, let
gj be the highest-indexed group that includes some neighbor of i and let ` be the lowest
indexed neighbor of i in gj . Then, the total weight of i’s neighbors in groups g1, . . . , gj−1
is less than εw′`. This holds because i has at most n− 2 neighbors in these groups and by
definition, w′q ≤ (ε/n)w′`, for any i’s neighbor q in groups g1, . . . , gj−1. Therefore, we can
ignore all neighbors of i in groups g1, . . . , gj−1, at the expense of one more 1 + ε factor in
the approximate equilibrium condition.

Since for every vertex i, we need to enforce its (approximate) equilibrium condition only
for i’s neighbors in a single group, we can scale down vertex weights in the same group
uniformly (i.e., dividing all the weights in each group by the same factor), as long as we
maintain the key property in the definition of groups (i.e., that the ratio of the maximum
weight in group gj to the minimum weight in group gj+1 is no less than n/ε). Hence, we
uniformly scale down the weights in each group so that (i) the minimum weight in group
g1 becomes 1; and (ii) for each j ≥ 2, the ratio of the maximum weight in group gj−1
to the minimum weight in group gj becomes exactly n/ε. This results in a new instance
G′′ where the minimum weight is 1 and the maximum weight is (n/ε)Dε . Therefore, a
(1 + ε)-approximate equilibrium in G′′ can be computed, in a standard way, after at most
(mε)(n/ε)2Dε ε-best response moves.

Putting everything together and using ε′ = ε/7, so that (1 + ε′)3 ≤ 1 + ε, for all ε ∈ (0, 1],
we obtain the following. We note that the running time of BridgeGaps is polynomial, if
Dε = O(1) (and quasipolynomial if Dε = poly(logn)).

I Theorem 3. For any vertex-weighted graph G with n vertices and m edges and any ε > 0,
BridgeGaps computes a (1 + ε)-approximate pure Nash equilibrium for Node-Max-Cut
on G in (m/ε)(n/ε)O(Dε) time, where Dε denotes the number of different vertex weights in
G, after rounding them down to the nearest power of 1 + ε.

5 PLS-Completeness of Node-Max-Cut

In this section we sketch the proof of Theorem 4 and highlight the main differences of our
reduction from known PLS reductions to Max-Cut [9, 20, 33].

I Theorem 4. Local-Node-Max-Cut is PLS-complete.
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Figure 3 The general structure of the Node-Max-Cut instance constructed in the proof of
Theorem 4. Rectangles denote the main gadgets, circles denote vertices that participate in multiple
gadgets, and circles with bold border denote groups of n such vertices. The small red triangles are
used to indicate the “information flow” through the instance.

As discussed in Section 2, the local search version of Node-Max-Cut is in PLS. To
establish the PLS-hardness of Node-Max-Cut, we present a reduction from Circuit-Flip.
We start with an outline of our construction and a brief discussion of its technical novelty.
Then, in Section 5.1, we discuss our gadget constructions in more detail and present the key
technical steps towards the proof of Theorem 4.

An Outline of the Construction. An instance of Circuit-Flip consists of a Boolean circuit
C with n inputs and m outputs (and wlog. only NOR gates). The value C(s) of an n-bit
input string s is the integer corresponding to the m-bit output string. The neighborhood
N(s) of s consists of all n-bit strings s′ at Hamming distance 1 to s (i.e., s′ is obtained
from s by flipping one bit of s). The goal is to find a locally optimal input string s, i.e., an
s with C(s) ≥ C(s′), for all s′ ∈ N(s). Circuit-Flip was the first problem shown to be
PLS-complete in [25].

Given an instance C of Circuit-Flip, we construct a vertex-weighted undirected graph
G(V,E) so that from any locally optimum cut of G, we can recover, in polynomial time, a
locally optimal input of C. The graph G consists of different gadgets (see Figure 3), which
themselves might be regarded as smaller instances of Node-Max-Cut. Intuitively, each of
these gadgets receives information from its “input” vertices, processes this information, while
carrying it through its internal part, and outputs the results through its “output” vertices.
Different gadgets are glued together through their “input” and “output” vertices.
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Our construction follows the flip-flop architecture (Figure 3), previously used e.g., in
[9, 20, 33], but requires more sophisticated implementations of several gadgets, so as to
conform with the very restricted weight structure of Node-Max-Cut. Next, we outline the
functionality of the main gadgets and how the entire construction works.

Given a circuit C, we construct two Circuit Computing gadgets C` (` always stands
for either A or B), which are instances of Node-Max-Cut that simulate circuit C in the
following sense: Each C` has a set I` of n “input” vertices, whose (cut) values correspond to
the input string of circuit C, and a set V al` of m “output” vertices, whose values correspond
to the output string of C on input I`. There is also a set Next` of n vertices whose values
correspond to a n-bit string in the neighborhood of I` of circuit value larger than that of I`
(if the values of Next` coincide with the values of I`, I` is locally optimal). Lastly, there is a
(set of) vertices Control` that control the behavior of the gadget.

The Circuit Computing gadgets operate in two different modes, determined by Control`:
the write mode, when Control` = 0, and the compute mode, when Control` = 1. If C` operates
in write mode, the input values of I` can be updated to the values of the complementary Next
set (i.e., IA is updated to NextB, and vice versa). When, C` operates in the compute mode,
C` simulates the computation of circuit C and the values of Next` and Val` are updated to
the corresponding values produced by C. Throughout the proof, we let Real-Val(I`) denote
the output string of circuit C on input I` (i.e., the input of C takes the cut values of the
vertices in I`), and let Real-Next(I`) denote a neighbor of I` with circuit value larger than
the circuit value of I`. If I` is locally optimal, Real-Next(I`) = I`.

Our Circuit Computing gadgets CA and CB are based on the gadgets of Schäffer and
Yannakakis [33] (see also Figure 4 for an abstract description of them). Their detailed
construction is described in the next section and their properties are summarized in Theorem 5.

The Comparator gadget compares ValA with ValB , which are intended to be Real-Val(IA)
and Real-Val(IB), respectively, and outputs 1, if ValA ≤ ValB , and 0, otherwise. The result of
the Comparator is stored in the value of the Flag vertex. If Flag = 1, the Circuit Computing
gadget CA enters its write mode and the input values in IA are updated to the neighboring
solution of IB, currently stored in NextB (everything operates symmetrically, if Flag = 0).
Then, in the next “cycle”, the input in IA leads CA to a ValA > ValB (and to a better
neighboring solution at NextA), Flag becomes 0, and the values of IB are updated to NextA.
When we reach a local optimum, IA and IB are stabilized to the same values.

The workflow above is implemented by the Copy and the Equality gadgets. The CopyB
(resp. CopyA) gadget updates the values of IA (resp. IB) to the values in NextB (resp.
NextA), if ValA ≤ ValB and Flag = 1 (resp. ValA > ValB and Flag = 0). When Flag = 1,
the vertices in TB take the values of the vertices in NextB. If the values of IA and NextB are
different, the Equality gadget sets the value of ControlA to 0. Hence, the Circuit Computing
gadget CA enters its write mode and the vertices in IA take the values of the vertices in
NextB. Next, ControlA becomes 1, because the values of IA and NextB are now identical,
and CA enters its compute mode. As a result, the vertices in ValA and NextA take the values
of Real-Val(IA) and Real-Next(IA), and we proceed to the next cycle.

A key notion used throughout the reduction is the bias that a vertex i experiences from a
vertex subset. The bias of vertex i from (or wrt.) V ′ ⊆ V is

∣∣∑
j∈V 1

i
∩V ′ wj −

∑
j∈V 0

i
∩V ′ wj

∣∣,
where V 1

i (resp. V 0
i ) denotes the set of i’s neighbors on the 1 (resp. 0) side of the cut.

Technical Novelty. Next, we briefly discuss the points where our reduction needs to deviate
substantially from known PLS reductions to Max-Cut. Our discussion is unavoidably
technical and assumes familiarity with (at least one of) the reductions in [9, 20, 33].
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Our Circuit Computing gadgets are based on similar gadgets used e.g., in [33]. A key
difference is that our Circuit Computing gadgets are designed to operate with wControl (i.e.,
weight of the Control` vertex) arbitrarily smaller than the weight of any other vertex in the
Circuit Computing gadget. Hence, the Control vertex can achieve a very small bias wrt. the
Circuit Computing gadget (see Theorem 5, Case 3), which in turn, allows us to carefully
balance the weights in the Equality gadget. The latter weights should be large enough, so as
to control the write and compute modes of C`, and at the same time, small enough, so as to
avoid interference with the values of the input vertices I`. The second important reason for
setting wControl sufficiently small is that we need the Control vertex to follow the “output”
of the Equality gadget, and not the other way around.

The discussion above highlights a key difference between Max-Cut and Node-Max-
Cut. Previous reductions to Max-Cut (see e.g., the reduction in [33]) implement Control’s
functionality using different weights for its incident edges. More specifically, Control is
connected with edges of appropriately large weight to the vertices of the circuit gadget,
so that it can control the gadget’s mode, and with edges of appropriately small weight to
vertices outside the circuit gadget, so that its does not interfere with its other neighbors.

For Node-Max-Cut, we need to achieve the same desiderata with a single vertex weight.
We manage to do so by introducing a Leverage gadget. Our Leverage gadget reduces the
influence of a vertex with large weight to a vertex with small weight and is used internally
in the Circuit Computing gadget. Hence, we achieve that Control has small bias wrt. the
circuit gadget and weight comparable to the weights of the circuit gadget’s internal vertices.

Another important difference concerns the implementation of the red marks (denoting
the information flow) between Flag and the Copy gadgets, in Figure 3. They indicate that
the value of Flag should agree with the output of the Comparator gadget. This part of the
information flow is difficult to implement, because the Comparator gadget and the Copy
gadgets receive input from NextA, NextB, ValA and ValB, where the vertex weights are
comparable to the weights of the output vertices in the Circuit Computing gadgets. As a
result, the weights of the vertices inside the Comparator gadget cannot become sufficiently
larger than the weights of the vertices inside the Copy gadgets. [33, 20, 9] connect Flag to
the Copy gadgets with edges of sufficiently small weight, which makes the bias of Flag from
the Copy gadgets negligible compared against its bias from Comparator. Again, the Leverage
gadget comes to our rescue. We use it internally in the Copy gadgets, in order to decrease
the influence of the vertices inside the Copy gadgets to Flag. As a result, Flag’s bias from
the Copy gadgets becomes much smaller than its bias from Comparator (see Lemma 10).

Another key technical difference concerns the design of the Comparator gadget. As
stated in Lemma 10 and explained below, the Comparator gadget manages to compute the
result of the comparison Real-Val(IA) ≤ Real-Val(IB), even if some input vertices may have
incosistent values. In previous work [33, 20, 9], the Comparator guarantees correctness of
the values in both NextB and ValB using appropriately chosen edge weights. With the
correctness of the input values guaranteed, the comparison is not hard to implement. It is
not clear if this decoupled architecture of the Comparator gadget can be implemented in
Node-Max-Cut, due to the special structure of edge weights. Instead, we implement a new
all at once Comparator, which ensures correctness to a subset of its input values enough to
perform the comparison correctly (see also the discussion after Lemma 11 on this point).

5.1 A Technical Overview of the Proof of Theorem 4
In this section, we outline the gadget constructions and the key technical claims used in the
proof of Theorem 4. As shown in Figure 3, our Node-Max-Cut instance consists of the
following gadgets:
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Figure 4 The Circuit Computing gadgets. The dashed circles, labeled I and O, represent all
input and output vertices, respectively.

1. Two Circuit Computing gadgets that calculate the values and next neighbors of solutions.
2. Two Copy gadgets that transfer the solution of one circuit to the other, and vice versa.
3. Two Equality gadgets that determine the (write or compute) mode in which the Circuit

Computing gadgets operate.
4. A Comparator gadget.

Unlike previous similar reductions in the literature (see e.g.,[33, 20, 9]), we introduce
each gadget separately rather than through types of diminishing weight. This is because
in Node-Max-Cut, weights are associated with vertices and each vertex may be part of
multiple gadgets.

The Circuit Computing Gadgets. The Circuit Computing gadgets CA and CB are the
basic primitives of our reduction. They are based on the gadgets introduced by Schäffer and
Yannakakis [33] to establish PLS-completeness of Max-Cut. This type of Circuit Computing
gadgets can be constructed so as to simulate any Boolean circuit C.

The most important vertices are those corresponding to the input and the output of the
simulated circuit C. Another important vertex is Control, which allows the gadget to switch
between the write and the compute mode of operation. Figure 4 is an abstract depiction
of the Circuit Computing gadgets. Theorem 5 describes the local optimum behavior of the
input vertices I` and output vertices Next`, Val` of the Circuit Computing gadgets C`.

I Theorem 5. At any local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:
1. If Control` = 1 and the vertices in Next`, Val` experience 0 bias from any other gadget

beyond C`, then Next` = Real-Next(I`) and Val` = Real-Val(I`).
2. If Control` = 0, then each vertex in I` experiences 0 bias from the internal vertices of C`.
3. Control` experiences wControl` bias from the internal vertices of C`.

Case 1 of Theorem 5 describes the compute mode of the Circuit Computing gadgets. At
any local optimum with ControlA = 1 and with the output vertices of CA being indifferent
wrt. other gadgets, CA computes its output correctly. Case 2 of Theorem 5 describes the
write mode. If at a local optimum ControlA = 0, the vertices in IA have 0 bias from the CA
gadget. As a result, their value is determined by the biases of the CopyB gadget and the
Equality gadget. Case 3 of Theorem 5 bounds the bias that the Equality gadget poses to the
Control vertices, so as to make the computing gadget flip from one mode to the other.

The Copy and Equality Gadgets. The Copy and Equality gadgets are responsible for
transferring the output of one Circuit Computing gadget to the other. More specifically, the
Equality gadget takes as input the nodes IA, IB , TA, TB and assures that the Control vertices



D. Fotakis, V. Kandiros, T. Lianeas, N. Mouzakis, P. Patsilinakos, and S. Skoulakis 50:15

always have the correct values. Recall that as shown in Theorem 5, Case 3, the bias that the
Equality gadget exerts is enough to dominate the values of the Control nodes. Using that,
we can prove the following lemma:

I Lemma 6. For any local optimum of the Node-Max-Cut instance in Figure 3, we have
that ControlA = (IA = TB) and ControlB = (IB = TA).

The Copy gadget transfers the values of the NextB and NextA to IA and IB , respectively,
when each gadget is in its write mode. This behavior is summarized by the following:

I Lemma 7. At any local optimum point of the Node-Max-Cut instance in Figure 3, the
following hold:
1. If Flag = 1, i.e., NextB writes on IA, then (i) TB = NextB, and (ii) if ControlA = 0,

then IA = TB = NextB.
2. If Flag = 0 i.e., NextA writes on IB, then (i) TA = NextA, and (ii) if ControlB = 0,

then IB = TA = NextA.

Additionally, the Copy gadget has the property of leaving the NextB and NextA vertices
unbiased, when Flag has certain values. This is necessary so that whenever a Circuit
Computing gadget is about to compute, the second condition of Theorem 5, Case 1, can
apply and allow the computation to take place.

I Lemma 8. At any local optimum of the Node-Max-Cut instance in Figure 3:
If Flag = 1, then any vertex in NextA experiences 0 bias from the CopyA gadget.
If Flag = 0, then any vertex in NextB experiences 0 bias from the CopyB gadget.

Having established the above properties of the Copy and Equality gadgets, we can show
the following theorem which asserts that at an local optimum, one of the two circuits has
taken the other’s output as input.

I Theorem 9. At any a local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:

If Flag = 1, then IA = NextB.
If Flag = 0, then IB = NextA.

Proof of Theorem 9. Let a local optimum in which Flag = 1. Let us assume that IA 6=
NextB. Then, by Case 1 of Lemma 7, TB = NextB. As a result, IA 6= TB, which implies
that ControlA = 0, by Lemma 6. Now, by Lemma 7, Case 1.ii, we have that IA = NextB,
which is a contradiction. The same analysis can be applied in case where Flag = 0. J

The Comparator Gadget. The last important gadget in our reduction is the Comparator,
whose construction is technically involved. We first recall that Next` and Val` denote the
actual values that the corresponding vertices have in our construction, while Real-Next(I`)
and Real-Val(I`) denote the values that these vertices are supposed to have, assuming that
the Circuit Computing gadgets operate correctly. We also recall that when Flag = 1 (resp.
Flag = 0), the Circuit Computing gadget CA (resp. CB) recomputes its output values, based
on the (possibly incorrect) outputs of the other Circuit Computing gadget CB (resp. CA).
The construction of the Comparator gadget and the following lemmas ensure that at any
local optimum of the Node-Max-Cut instance in Figure 3, the actual values of the vertices
in Next` and Val` are identical to Real-Next(I`) and Real-Val(I`).

First, connecting certain internal vertices of the Circuit Computing gadgets with the
vertices in NextA and NextB and in the Comparator, we obtain the following pair of lemmas.
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I Lemma 10. At any local optimum of the Node-Max-Cut instance in Figure 3, the
following hold:

If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB),
then Real-V al(IA) ≤ Real-V al(IB).
If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA),
then Real-V al(IB) ≤ Real-V al(IA).

I Lemma 11. At any local optimum of the Node-Max-Cut instance in Figure 3:
If Flag = 1, then NextB = Real-Next(IB).
If Flag = 0, then NextA = Real-Next(IA).

We should highlight that in the proofs of Lemma 10 and Lemma 11, in the first case
where Flag = 1 (the case where Flag = 0 is symmetric), the correctness of values of the
output vertices NextB (i.e., that NextB = Real-Next(IB), in the first case of Lemma 11) is
not guaranteed by Theorem 5 (as it happens with the correctness of the values of the output
vertices NextA and ValA in the hypothesis of the first case in Lemma 10), but from the
construction of the Comparator gadget. We should also highlight that Lemma 11 does not
imply anything about the correctness of the ValB values, as this cannot be guaranteed in
our construction. Hence, (the first case of) Lemma 10 does not assume anything about ValB
(in particular, it does not assume that ValB = Real-Val(IB), as one might have expected).
However, the Comparator gadget manages to output the right outcome of the comparison
Real-Val(IA) ≤ Real-Val(IB), even if ValB 6= Real-Val(IB). The connections from internal
vertices of the Circuit Computing gadgets to the vertices in NextA and NextB and in the
Comparator, in Figure 3, are crucial towards establishing this property. So, Lemma 10
ensures the robustness of the outcome of the Comparator, even with possibly inconsistent
values in the output vertices ValB . This property of the Comparator gadget is among the key
technical steps (and novelties) in our reduction and is indicative of the difficulty of showing
that Local-Node-Max-Cut is PLS-hard.

Furthermore, similarly to the Copy gadget, the Comparator gadget leaves the vertices of
the Circuit Computing gadgets unbiased wrt. certain values of the Flag vertex.

I Lemma 12. At any local optimum of the instance of Node-Max-Cut in Figure 3:
If Flag = 1, then all vertices of CA experience 0 bias from the Comparator gadget.
If Flag = 0, then all vertices of CB experience 0 bias from the Comparator gadget.

Now using Lemma 8 and Lemma 12, we can prove the correctness of the output vertices
NextA and ValA, when Flag = 1, and of the output vertices NextB and ValB , when Flag = 0.

I Lemma 13. At any local optimum of the instance of Node-Max-Cut of Figure 3:
If Flag = 1, then NextA = Real-Next(IA) and ValA = Real-Val(IA).
If Flag = 0, then NextB = Real-Next(IB) and ValB = Real-Val(IB).

Proof. We only consider the case where Flag = 1 (the same analysis applies to the case
where Flag = 0). By Theorem 9, IA = NextB, and by Lemma 7, TB = NextB. As a
result, IA = TB, and by Lemma 6, ControlA = 1. Then, Lemmas 8 and 12 ensure that the
vertices in NextA and ValA of the Computing Gadget CA experience 0 bias from all the other
gadgets. Therefore, since ControlA = 1, we can apply Theorem 5, Case 1, and conclude that
ValA = Real-Val(IA) and that NextA = Real-Next(IA). J
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Concluding the Proof of Theorem 4. The technical lemmas above are summarized by the
following key technical claim:

I Theorem 14. At any local optimum of the instance of Node-Max-Cut of Figure 3:
If Flag = 1, then (i) Real-Val(IA) ≤ Real-Val(IB), and (ii) NextB = Real-Next(IB).
If Flag = 0, then (i) Real-Val(IB) ≤ Real-Val(IA), and (ii) NextA = Real-Next(IA).

Proof of Theorem 14. We consider a local optimum of the instance in Figure 3 with Flag = 1
(the same argument applies when Flag = 0). By Lemma 11, NextB = Real-Next(IB), and
thus, (ii) is established. Moreover by Lemma 13, NextA = Real-Next(IA) and ValA =
Real-Val(IA). Consequently, by Lemma 10, we conclude Real-Val(IA) ≤ Real-Val(IB). J

With theorems 9 and 14 at hand, the PLS-completeness of Local-Node-Max-Cut
follows easily. For the sake of completeness, we show how we put everything together.

Proof of Theorem 4. For a given circuit C of Circuit-Flip, we construct in polynomial
time the instance of Node-Max-Cut in Figure 3. We next consider any local optimum of
this instance. Without loss of generality, we assume that Flag = 1. Then, by Theorem 9
and Theorem 14, IA = NextB, NextB = Real-Next(IB) and Real-Val(IA) ≤ Real-Val(IB).
Hence, we obtain that

Real-Val(IB) ≥ Real-Val(IA) = Real-Val(NextB) = Real-Val(Real-Next(IB)) .

If IB 6= Real-Next(IB), then Real-Val(IB) > Real-Val(Real-Next(IB)), which is a con-
tradiction. Therefore, IB = Real-Next(IB), meaning that the binary string defined by the
values of IB is a locally optimal solution for Circuit-Flip. J

6 Conclusions and Future Work

In this work, we showed that equilibrium computation in linear weighted congestion games
is PLS-complete either on single-commodity series-parallel networks or on multi-commodity
networks with identity latency functions, where computing an equibrium for (unweighted)
congestion games is known to be easy. The key step for the latter reduction is to show that
local optimum computation for Node-Max-Cut, a natural and significant restriction of
Max-Cut, is PLS-complete. The reductions in Section 3 are both tight [33], thus preserving
the structure of the local search graph. In particular, for the first reduction, we have that
(i) there are instances of linear weighted congestion games on single-commodity series-parallel
networks such that any best response sequence has exponential length; and (ii) that the
problem of computing the equilibrium reached from a given initial state is PSPACE-hard.

However, our reduction of Circuit-Flip to Node-Max-Cut is not tight. Specifically,
our Copy and Equality gadgets allow that the Circuit Computing gadget might enter its
compute mode, before the entire input has changed. Thus, we might “jump ahead” and reach
an equilibrium before Circuit-Flip would allow, preventing the reduction from being tight.

Our work leaves several interesting directions for further research. A natural first
step is to investigate the complexity of equilibrium computation for weighted congestion
games on series-parallel (or extension-parallel) networks with identity latency functions.
An intriguing research direction is to investigate whether our ideas (and gadgets) in the
PLS-reduction for Node-Max-Cut could lead to PLS-hardness results for approximate
equilibrium computation for standard and weighted congestion games (similarly to the results
of Skopalik and Vöcking [34], but for latency functions with non-negative coefficients). Finally,
it would be interesting to understand better the quality of efficiently computable approximate
equilibria for Node-Max-Cut and the smoothed complexity of its local optima.
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