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Abstract. Congestion games constitute an important class of games to
model resource allocation by different users. As computing an exact [18]
or even an approximate [34] pure Nash equilibrium is in general PLS-
complete, Caragiannis et al. [9] present a polynomial-time algorithm that
computes a (2 + ε)-approximate pure Nash equilibria for games with lin-
ear cost functions and further results for polynomial cost functions. We
show that this factor can be improved to (1.61+ ε) and further improved
results for polynomial cost functions, by a seemingly simple modifica-
tion to their algorithm by allowing for the cost functions used during
the best response dynamics be different from the overall objective func-
tion. Interestingly, our modification to the algorithm also extends to effi-
ciently computing improved approximate pure Nash equilibria in games
with arbitrary non-decreasing resource cost functions. Additionally, our
analysis exhibits an interesting method to optimally compute universal
load dependent taxes and using linear programming duality prove tight
bounds on the PoA under universal taxation, e.g., 2.012 for linear conges-
tion games and further results for polynomial cost functions. Although
our approach yield weaker results than that in Bilò and Vinci [6], we
remark that our cost functions are locally computable and in contrast
to [6] are independent of the actual instance of the game.

Keywords: Congestion games · Approximate pure Nash equilibria ·
Price of anarchy · Universal taxes

1 Introduction

Congestion games constitute an important class of games that succinctly rep-
resents a game theoretic model for resource allocation among non-cooperative
users. A canonical example for this is the road transportation network, where
the time needed to commute is a function on the total amount of traffic in the
network. A congestion game is a cost minimization game defined by a set of
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resources E, a set of N players with strategies S1, . . . , SN ⊆ 2E , and for each
resource e ∈ E, a cost function fe : N �→ R+. Congestion games were first intro-
duced by Rosenthal [28], and using a potential function argument proved that it
belongs to a class of games in which a pure Nash equilibrium always exists, i.e.,
the game always consists of a self-emerging solution in which no user is able to
improve by unilaterally deviating.

Convergence to Pure Nash Equilibria. Fabrikant et al. [18] show that com-
puting a pure Nash equilibrium is PLS-complete. They show that regardless
of the order in which local search is performed, there are initial states from
where it could take exponential number of steps before the game converges to
a pure Nash equilibrium. Also, they show PLS-completeness for network con-
gestion games with asymmetric strategy spaces. As a positive result, Fabrikant
et al. [18] present a polynomial time algorithm to compute a pure Nash equi-
librium in certain restricted strategy spaces e.g., symmetric network congestion
games. Ackermann et al. [1] show that network congestion games with linear
cost functions are PLS-complete. However, if the set of strategies of each player
consists of the bases of a matroid over the set of resources, then they show that
the lengths of all best response sequences are polynomially bounded in the num-
ber of players and resources. This alludes to studying approximate pure Nash
equilibria in congestion games.

To our knowledge, the concept of α-approximate equilibria1 was introduced
by Roughgarden and Tardos [29] in the context of non-atomic selfish routing
games. An α-approximate pure Nash equilibrium is a state in which none of the
users can unilaterally deviate to improve by a factor of at least α. Orlin et al. [25]
show that every local search problem in PLS admits a fully polynomial time ε-
approximation scheme. Although their approach can be applied to congestion
games, this does not yield an approximate pure Nash equilibrium, but rather only
an approximate local optimum of the potential function. In case of congestion
games, Skopalik and Vöcking [34] show that in general for arbitrary cost func-
tions, finding a α-approximate pure Nash equilibrium is PLS-complete, for any
α > 1. However, for polynomial cost function (with non-negative coefficients) of
maximum degree d, Caragiannis et al. [9] present an approximation algorithm.
They present a polynomial-time algorithm that computes (2 + ε)-approximate
pure Nash equilibria for games with linear cost functions and an approximation
guarantee of dO(d) for polynomial cost functions of maximum degree d. Inter-
estingly, they use the convergence of subsets of players to a (1 + ε)-approximate
Nash equilibrium (of that subset) as a subroutine to generate a state which is
an approximation of the minimal potential function value (of that subset), e.g.
2 · opt for linear congestion games. This approximation factor of the minimal
potential then essentially turns into the approximation factor of the approxi-
mate equilibrium. Feldotto et al. [19] using a path-cycle decomposition technique
bound this approximation factor of the potential for arbitrary cost functions.

1 Here we refer to the multiplicative notion of approximation. There is also a additive
variant which is often denoted by ε-Nash.
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Our Contribution. In this paper we improve the approximation guarantee
achieved in the computation of approximate pure Nash equilibrium with the
algorithm in Caragiannis et al. [9], using a linear programming approach which
generalizes the smoothness condition in Roughgarden [30], to modify the cost
functions that users experience in the algorithm. Although we only make a seem-
ingly simple modification to their algorithm in [9], we would like to remark that
the analysis is significantly involved, and does not immediately follow from [9],
since the sub-game induced by the algorithm with the modified costs is not a
potential game anymore. Table 1 lists the results for resource cost functions that
are bounded degree polynomials of maximum degree d. Our main contribution
in this paper is presented as Theorem 1.

Table 1. Approximate pure Nash equilibria of congestion games with polynomial cost
functions of degree at most d.

d Previous Approx. [9,19] Our Approx. ρd + ε

1 2 + ε 1.61 + ε

2 6 + ε 3.35 + ε

3 20 + ε 8.60 + ε

4 111 + ε 27.46 + ε

5 571 + ε 98.14 + ε

Theorem 1. For every ε > 0, the algorithm computes a (ρd + ε)-approximate
equilibrium for every congestion game with non-decreasing cost functions that
are polynomials of maximum degree d in a number of steps which is polynomial
in the number of players and 1/ε.

Our approach also yields a simple and distributed method to compute load
dependent universal taxes that improves the inefficiency of equilibria in con-
gestion games. Table 2 lists our results for the price of anarchy (PoA) under
refundable taxation for resource cost functions that are bounded degree polyno-
mials. Bilò and Vinci [6] present an algorithm to compute load dependent taxes
that improve the price of anarchy e.g., for linear congestion games from 2.5 to 2.
Although our methods yield slightly weaker results, our cost functions are locally
computable and in contrast to [6] are independent of the actual instance of the
game. Furthermore, using linear programming duality we derive a reduction to
a selfish scheduling game on identical machines, which implies a matching lower
bound on the approximation factor. We would like to remark that our results
for PoA were achieved independently of that in Paccagnan et al. [26] by a very
similar technique.

2 Preliminaries

A strategic game denoted by the tuple
(N , (Su)u∈N , (cu)u∈N

)
consists of a finite

set of players N , and for each player u ∈ N , a finite set of strategies Su and
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Table 2. PoA under taxation in congestion games with polynomial cost functions of
degree at most d.

d PoA without taxes Optimal taxes Universal taxes Ψd

Aland et al. [2] Bilò and Vinci [6] Local search w.r.t ζsc

1 2.5 2 2.012

2 9.583 5 5.10

3 41.54 15 15.56

4 267.6 52 55.46

5 1514 203 220.41

a cost function cu : S → R+ mapping a state s ∈ S := S1 × S2 × · · · × SN to
the cost of player u ∈ N . A congestion game is a strategic game that succinctly
represents a decentralized resource allocation problem involving selfish users.

A congestion game denoted by G =
(N , E, (Su)u∈N , (fe)e∈E

)
consists of a

set of N players, N = {1, 2, . . . , N}, who compete over a set of resources E. Each
player u ∈ N has a set of strategies denoted by Su ⊆ 2E . Each resource e ∈ E has
a non-negative and non-decreasing cost function fe : N �→ R+ associated with it.
Let ne(s) denote the number of players on a resource e ∈ E in the state s, then
the cost contributed by a resource e ∈ E to each player using it is denoted by
fe(ne(s)). Therefore, the cost of a player u ∈ N in a state s = (s1, . . . , sN ) of the
game is given by cu(s) =

∑
e∈E:e∈su

fe(ne(s)). For a state s, cu(s′
u, s−u) denotes

the cost of player u, when only u deviates. A best-response move denoted by
BRu(s) is a move that minimizes a player’s cost while all the other players are
fixed to their strategy in s. With some abuse of notation, BRu(0) denotes the
best response of a player u assuming that no other player participates in the
game.

A state s ∈ S is a pure Nash equilibrium (PNE), if there exists no player who
could deviate to another strategy and decrease their cost, i.e., ∀u ∈ N , and ∀s′

u ∈
Su, cu(s) ≤ cu(s′

u, s−u). A weaker notion of PNE is the α-approximate pure Nash
equilibrium for α ≥ 1, which is a state s in which no player has an improvement
that decreases their cost by a factor of at least α, i.e, ∀u ∈ N , and ∀s′

u ∈ Su α ·
cu(s′

u, s−u) ≥ cu(s). For congestion games the exact potential function φ(s) =
∑

e∈E

∑ne(s)
i=1 fe(i), guarantees the existence of a PNE by proving that every

sequence of unilateral improving strategies converges to a PNE. We denote social
or global cost of a state s as c(s) =

∑
u∈N cu(s) and the state that minimizes

social cost is called the optimal, i.e., s∗ = arg mins∈S c(s). The inefficiency of
equilibria is measured using the price of anarchy (PoA) [22], which is the worst
case ratio between the social cost of an equilibrium and the social optimum.

A local optimum is a state s in which there is no player u ∈ N with an
alternative strategy s′

u such that c(s′
u, s−u) < c(s), and an α-approximate local

optimum is a state s in which there is no player u who has an α-move with
a strategy s′

u such that α · c(s′
u, s−u) < c(s). Let us remark that there is an
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interesting connection between a local optimum and a PNE. A PNE is a local
optimum of the potential function φ, and similarly, a local optimum is a Nash
equilibrium of a game in which we change the resource cost functions from f(x)
to the marginal contribution to social cost, e.g., to f ′(x) = xf(x)−(x−1)f(x−1).
Analogous to the PoA, the stretch of a congestion game is the worst case ratio
between the value of the potential function at an equilibrium and the potential
minimizer.

3 Approximate Equilibria in Congestion Games

In this section we aim at improving the approximation factor of an approximate
pure Nash equilibria in congestion games with arbitrary non-decreasing resource
cost functions. We extend an algorithm based on Caragiannis et al. [9] to compute
an approximate pure Nash equilibrium in congestion games with polynomial cost
functions with non-negative coefficients. A key element of this algorithm is the
so called stretch of a (sub-) game. This is the worst case ratio of the potential
function at an equilibrium and the global minimum of the potential.

This algorithm generates a sequence of improving moves that converges to
an approximate PNE in polynomial number of best-response moves. The idea is
to divide the players into blocks based on their costs and hence their prospective
ability to drop the potential of the game. In each phase of the algorithm, players
of two consecutive blocks are scheduled to make improving moves starting with
the blocks of players with high costs. One block only makes q-moves, which are
improvements by a factor of at least q which is close to 1. The other block does p-
moves, where p is slightly larger than the stretch of a q-approximate equilibrium,
and slightly smaller than the final approximation factor.

The key idea here is that blocks first converge to a q-approximate equilib-
rium, and thereby generate a state with a stretch of approximately p. Later,
when players of a block are allowed to do p-moves, there is not much poten-
tial left to move. In particular, there is no significant influence on players of
blocks that moved earlier possible. This finally results in the approximation fac-
tor of roughly p. We modify the algorithm in [9] by changing the cost seen by
the players during their q-moves to be the modified cost generated using a lin-
ear programming approach, to achieve a significantly smaller stretch, and this
results in an improved approximation factor. For the sake of completeness we
present the algorithm as Algorithm 1, but note that only the definition of θ(q)
using λ := maxe∈E λe, the definition of p in Line 1, and the use of the modified
cost functions in Line 11 has been changed. Before we analyze the correctness
of the algorithm, we describe how the modified cost functions can be computed.

Modified Cost Functions
After a long series of papers in which various authors (e.g. [2,3,14]) show upper
bounds on the price of anarchy, Roughgarden exhibited that most of them essen-
tially used the same technique, which is formalized as (λ, μ)-smoothness [30]. A
game is called (λ, μ)-smooth, if for every pair of outcomes s, s∗, it holds that,
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Algorithm 1. Computing a λ(1 + ε)-approximate pure Nash equilibria in con-
gestion games.
Input: Congestion game G =

(N , E, (Su)u∈N , (fe)e∈E

)
and ε > 0.

Output: A state of G in λ(1 + ε)-approximate pure Nash equilibrium.

1: Set q =
(
1 + 1

Nc

)
, p =

(
1

θ(q)
− 1+q+2λ

Nc

)−1

, c = 10 log
(

λ
ε

)
, Δ = maxe∈E

fe(N)
fe(1)

and

θ(q) = λ

1+ 1−q
q

Nλ
, where λ := maxe∈E λe

2: foreach u ∈ N do
3: set �u = cu (BRu (0));
4: end for
5: Set �min = minu∈N �u , �max = maxu∈N �u and ẑ = 1 + �log2ΔN2c+2 (�max/�min)�;
6: Assign players to blocks B1, B2, · · · , Bẑ such that

u ∈ Bi ⇔ �u ∈
(
�max

(
2ΔN2c+2

)−i
, �max

(
2ΔN2c+2

)−i+1
]
;

7: foreach u ∈ N do
8: set the player u to play the strategy su ← BRu (0);
9: end for

10: for phase i ← 1 to ẑ − 1 such that Bi �= ∅ do
11: while ∃u ∈ Bi with a p-move w.r.t the original cost f or ∃u ∈ Bi+1 with a

q-move w.r.t to modified cost f ′ do
12: u deviates to that best-response strategy su ← BR (s1, · · · , sn).
13: end while
14: end for

∑
u∈N cu(s∗

u, s−u) ≤ λ · c(s∗) + μ · c(s). The price of anarchy of a (λ, μ)-smooth
game with λ > 0 and μ < 1 is then at most λ

1−μ . Observe that the original
smoothness definition can be extended to allow for an arbitrary objective func-
tion h(s) instead of the social cost function c(s) =

∑
u∈N cu(s).

Definition 1. A game is (λ, μ)-smooth with respect to an objective function h,
if for every pair of outcome s, s∗, λ ·h(s∗) ≥ ∑

u∈N cu(s∗
u, s−u)−∑

u∈N cu(s)+
(1 − μ)h(s).

From the definition above, we restate the central smoothness theorem [30].

Theorem 2. Given a (λ, μ)-smooth game G with λ > 0, μ < 1, and an objective
function h, then for every equilibrium s and the global optimum s∗, h(s) ≤

λ
1−μh(s∗).

The proof is analogous to Roughgarden’s proof [30]. We remark that a vari-
ant to our extension of Roughgarden’s smoothness framework is independently
introduced as generalized smoothness in [11–13].

In the following we study games in which we change the cost functions cu

experienced by the players. By scaling the cost functions appropriately, we always
ensure that we can satisfy the above inequality with μ = 0. Observe that, given
a game G =

(N , (Su)u∈N , (cu)u∈N
)
, we can determine new cost functions c′

u

for which the value of λ is minimized, for all pairs of solutions s, s∗. However,
observe that since the state space S grows exponentially in the number of players,
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this would be computationally inefficient. Therefore, we typically have to work
with games in which the players’ costs and the objective function h can be
represented in a succinct way. In congestion games, the players cost and the
global objective function are implicitly defined by the resource cost function.
In the following, we allow for an arbitrary, additive objective function h(s),
i.e., of the form h(s) =

∑
e∈E he(ne(s)), and we can conveniently restate the

smoothness condition as follows.

Lemma 1. A congestion game is (λ, 0)-smooth with respect to an objective func-
tion h(s) =

∑
e∈E he(ne(s)), if for every non-decreasing cost function f ′

e : N �→
R+ and for every 0 ≤ n,m ≤ N, λ · he(m) ≥ mf ′

e (n + 1) − nf ′
e(n) + he(n).

Lemma 1 immediately gives rise to the following optimization problem: Given
an objective function h(s) =

∑
e∈E he(ne(s)), find functions f ′

e that minimize λ.
For a resource objective function he and a bound on the number of players N
this can be easily solved by the following linear program LPh with the variables
f ′

e(0), . . . , f ′
e(N + 1) and λe.

min λe

λe · he(m) − mf ′
e(n + 1) + nf ′

e(n) ≥ he(n) for all n ∈ [0, N ],m ∈ [0, N ]
f ′

e(n + 1) ≥ f ′
e(n) for all n ∈ [0, N ]

f ′
e(n) ≥ 0 for all n ∈ [0, N + 1]

Henceforth, we use f ′ = (f ′
e)e∈E whenever we refer to cost functions that are

the solution to an optimization problem and denote the players cost by c′
u(s) =∑

e∈su
f ′

e(ne(s)). Observe that LPh is compact, i.e, the number of constraints
and variables are polynomially bounded in the number of players. Hence, we
state the following theorem.

Theorem 3. Optimal resource cost functions f ′
e for objective functions he can

be computed in polynomial time.

Improving the Approximation Factor
In order to achieve a better approximation factor than that in Caragiannis
et al. [9] we modify the algorithm in [9] by changing the cost functions seen
by the players during their q-moves to be the modified cost generated by the
linear program LPφ arising from Lemma 1 with the potential as its objective
function. This results in an improved approximation factor λ(1 + ε) for ε > 0,
where λ := maxe∈E λe is the optimal solution value of LPφ that we state below.
Unfortunately, it is not possible to simply use the LP above with the potential
function as its objective function, since Algorithm 1 uses the potential func-
tion argument for a subset of players F ⊆ N . More precisely, it needs that
the approximation factor also holds for an arbitrary subset of players and its
induced subgame. Let us denote by nF

e (s) the number of players in F that use
the resource e in the state s. Define the potential of this subset as the potential in
the subgame induced by these players in s, i.e, φF (s) :=

∑nF
e (s)

i=1 fe(i+n
N\F
e (s)).

With slight abuse of notation, we remark that φF (s) and φF (s) are equiv-
alent. Now consider an arbitrary subset of players F ⊆ N and a state s.
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Then, GF
s := (F,E, (Su)u∈F , (fF

e )e∈E) is the subgame induced by freezing the
remaining players from N \F , with fF

e (x) := fe(x+n
N\F
e (s)), where n

N\F
e (s) is

the number of players outside of F on resource e in the state s. Henceforth, for our
purposes, the following definition is a stronger notion of the (λ, 0)-smoothness.

Definition 2. A strategic game is strongly (λ, 0)-smooth with respect to an
objective function h, and for some λ > 0, if for every subset F ⊆ N and for
every s, s∗ ∈ S, λ · hF (s∗) ≥ ∑

u∈F c′
u(s∗

u, s−u) − ∑
u∈F c′

u(s) + hF (s), where
hF (s) :=

∑
e∈E he(ne(s)) − he(n

N\F
e (s)).

We would like to remark that all future references to (λ, 0)-smoothness in Sect. 3
imply strong (λ, 0)-smoothness. As a consequence of Definition 2, we state the
following lemma.

Lemma 2. For every congestion game G with non-decreasing cost functions
f ′

e : N �→ R+, which is (λ, 0)-smooth with respect to the potential function φe for
every subgame GF

s induced by an arbitrary subset F ⊆ N , and arbitrary states
s, s∗ ∈ S, i.e., λ · φF

e (s∗) − nF
e (s∗) · f ′

e(ne(s) + 1) + nF
e (s) · f ′

e(ne(s)) ≥ φF
e (s),

with λ > 0, is also strongly (λ, 0)-smooth.

This subset property is of particular importance for the algorithm to compute
an approximate equilibrium, but may be of independent interest as well. We are
not aware of other approximation algorithms that can guarantee this property
as well. From Lemma 2, for any resource e ∈ E, the modified cost functions f ′

e

are computed by the following linear program LPφ.

min λe

λe

m+z∑

i=z+1

fe(i) − mf ′
e(n + z + 1) + nf ′

e(n + z) ≥
n+z∑

i=z+1

fe(i) ∀(n + z),m ∈ [0, N ]

f ′
e(n + 1) ≥ f ′

e(n) ∀n ∈ [0, N ]
f ′

e(n) ≥ 0 ∀n ∈ [0, N + 1]

We are now ready to prove Theorem 1, by restating it as follows.

Theorem 4. For every constant ε > 0, Algorithm 1 computes a λ (1 + ε)-
approximate equilibrium for every congestion game with non-decreasing cost
functions, and λ = maxe∈E λe, in number of steps which is polynomial in the
number of players, Δ := f(N)

f(1) and 1/ε.

The proof of the theorem follows the proof scheme of Caragiannis et al. [9],
which we have to rework to accommodate for our modification. The complete
proof of the theorem is omitted due to space constraints (see full version [33]).
Note that for cost functions which are polynomials of maximum degree d with
non negative coefficients, Δ is polynomial in the number of players. In the fol-
lowing, we sketch the main proof idea. Here, we have to take into account that
the game played by the players from Bi ∪Bi+1 in phase i is no longer a potential
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game as the players use different cost functions. However, we can show that the
strong smoothness constraints of the LP guarantees that the values of the new
cost functions can be conveniently bounded.

Lemma 3. Let f ′ to be the modified cost functions generated by the LPφ and f
to be the original cost functions. Then for all i ≥ 1, fe(i) ≤ f ′

e(i) ≤ λfe(i).

To bound the stretch of any (sub-)game in a q-approximate equilibrium the
following lemma is useful. We remark that for this lemma, the property that the
induced subgames are also smooth (Lemma 2) is crucial.

Lemma 4. Let s be any q-approximate equilibrium with respect to the modified
cost function, and s∗ be a strategy profile with minimal potential. Then for every
F ⊆ N , φF (s) ≤ θ(q) · φF (s∗).

We now bound the potential of the set of players Ri ⊆ Bi ∪ Bi+1 that move in
phase i. Most importantly, the players of Bi, were in an q-approximate equilib-
rium with respect to c′

u at the end of the previous round. Hence, for every subset
of Bi, we can exploit Lemma 4 to obtain a small upper bound on the potential
amongst players Ri participating in a phase i at the beginning of the phase. For
a phase i, let bi := 	max

(
2ΔN2c+2

)−i+1 and si denote the state of the game
after the execution of phase i.

Lemma 5. For every phase i ≥ 2, it holds that φRi
(si−1) ≤ bi

Nc .

To analyze convergence, we have to take into account the fact that players use
different latency functions. However, it turns out that the Rosenthal potential
with respect to the modified cost functions can serve as an approximate potential
function, i.e., it also decreases for the p-moves of players using the original cost
functions.

Lemma 6. Let u ∈ N be a player that makes a p-move with respect to the
original cost function f . Then, p · cu(s′

u, s−u) − cu(s) ≥ q · c′
u(s′

u, s−u) − c′
u(s),

where cu and c′
u are the cost of the player u with respect to f and f ′, respectively.

Using Lemma 5 and Lemma 6, we can bound the runtime which has to be
slightly larger and has to depend on Δ to allow for arbitrary non-decreasing
functions.

Lemma 7. The algorithm terminates after at most O(λΔ3N5c+5) best-response
moves.

The next lemma shows that when players involved in phases i ≥ 2 make their
moves, they do not increase the cost of players in the blocks B1, B2, · · · , Bi−1

significantly.

Lemma 8. Let u be a player in the block Bt, where t ≤ ẑ−2. Let s′
u be a strategy

different from the one assigned to u by the algorithm at the end of the phase t.
Then, for each phase i ≥ t, it holds that, cu(si) ≤ p·cu(s′

u, si
−u)+ 2p+1

Nc

∑i
k=t+1 bk.
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As no players’ costs and alternatives is significantly influenced by moves in
later blocks, they remain in an approximate equilibrium which can be used to
finally prove the correctness of the algorithm.

Lemma 9. The state computed by the algorithm is a p
(
1 + 5

Nc

)
-approximate

equilibrium.

Linear and Polynomial Cost Functions. We now turn to the important class
of polynomial cost functions with non-negative coefficients. We can show that
for polynomials of small degree, it is sufficient to restrict the attention to the
first K = 150 values of the cost functions. Hence, we only need to solve a linear
program of constant size. The following lemma states that for the larger values
of n and appropriate values of λd and ν, we can easily obtain (λd, 0)-smoothness
by choosing f ′(n) = νnd. We further note, that for a given λd > 0, and for each
n and z we only need to consider a limited range for m.

Lemma 10. For d ≤ 5 and n ≥ 150, the function f ′(n) = νnd with ν = d+1
√

λd

is (λd, 0)-smooth with respect to the potential function φ for an appropriate λd.

Lemma 11. For fixed n, z, if λd · ∑m+z
i=z+1 id − mf ′(n + z + 1) + nf ′(n + z) ≥

∑n+z
i=z+1 id is true ∀m ≤ (n+z+1)2(d+1), it also holds ∀m > (n+z+1)2(d+1).

By Lemma 10 and 11 it remains to solve a linear program of constant size to
obtain our results ρd as listed in Table 1 for d ≤ 5.

Corollary 1. For every congestion game with polynomial cost functions of
degree d ≤ 5, and for every constant ε > 0, the algorithm computes a (ρd + ε)-
approximate pure Nash equilibrium in polynomial time.

Lower Bound. Any feasible solution to the linear program LPh emerging from
Lemma 1 are cost functions f ′

e : N �→ R+ that guarantees that the objective
value associated with the function h is at most λ. We can show that this is in
fact optimal. That is, LPh is not only optimizing the smoothness inequality, but
also that there exists no other resource cost function that can guarantee a smaller
objective value than λ. To that end, we consider the dual of LPh (LPDh) and
show that for every feasible solution of the dual, we can construct an instance of
a selfish scheduling game on identical machines with an objective value that is
equal to the value of the dual LP solution, regardless of the actual cost function
of the game.

Lemma 12. Every optimal solution of LPDh with objective value λ can be
turned into an instance of selfish scheduling on identical machines with an objec-
tive value of λ − ε for an arbitrary ε > 0.
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4 Extensions

The smoothness framework introduced by Roughgarden [30] also extends to
equilibrium concepts such as mixed Nash and (coarse) correlated equilibria. The
same is true for our variant with respect to an arbitrary objective function h. We
now look at an extension of Lemma 1 for computing load dependent universal
taxes in congestion games.

Load Dependent Universal Taxes. One of the many approaches used to
improve the PoA is the introduction of taxes. For a set of resources E, the load
dependent tax function t, is the excess cost incurred by the user on a resource
e ∈ E with cost f(x), e.g., f ′(x) = f(x) + t(x). We remark that the taxes we
consider in this work are refundable, and do not contribute to the overall cost
of the game.

Meyers and Schulz [24] studied the complexity of computing an optimal
solution in a congestion game and prove NP-hardness. Makarychev and Sviri-
denko [23] give the best known approximation algorithm using randomized
rounding on a natural feasibility LP with approximation factor Bd+1 which is
the d + 1th Bell number, where d is the maximum degree of the polynomial cost
function. Interestingly, the same was later achieved using load dependent taxes
by Bilò and Vinci [6], where they apply the primal-dual method [4] to upper
bound the PoA under refundable taxation in congestion games. They deter-
mine a load specific taxation to show that the PoA is at most [O(d/log d)]d+1

under refundable taxation. However, we remark that the load dependent taxes
computed in [6] aren’t universal, i.e, they are sensitive to the instance of the
game.

We give a rather simple approach to locally (on resource) compute load
dependent universal taxes. Table 2 lists the improved PoA bounds under refund-
able taxation using our technique for congestion games with resource cost func-
tions that are bounded degree polynomials of maximum degree d. By the smooth-
ness argument [30] the new bounds immediately extends to mixed, (coarse) corre-
lated equilibria and outcomes generated by no-regret sequences. Moreover, since
the linear program that computes the cost or tax function does only depend on
the original cost function of that resource, the computed taxes are robust against
perturbations of the instance such as adding or removing of resources or players.

Optimal Universal Taxes. We seek to compute universal load dependent taxes
that minimize the PoA under refundable taxation. We consider the following
optimization problem. For an objective function h(s) =

∑
e∈E ne(s) · fe(ne(s)),

find functions f ′
e that satisfies Lemma 1 minimizing λ. For a resource objective

function he(ne(s)) = ne(s) · fe(ne(s)) and a bound on the number of players N ,
this can be easily solved by the following linear program LPsc with the variables
f ′

e(0), . . . , f ′
e(N + 1) and λe.

min λe

λe · he(m) − mf ′
e(n + 1) + nf ′

e(n) ≥ he(n) for all n ∈ [0, N ],m ∈ [0, N ]
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f ′
e(n + 1) ≥ f ′

e(n) ∀n ∈ [0, N ]
f ′

e(n) ≥ 0 for all n ∈ [0, N + 1]

Observe that we can solve LPsc locally for each resource with cost function fe.
For the LP solution λe and f ′

e(n), define the tax function as te(n) := f ′
e(n) −

fe(n). The resulting price of anarchy under taxation is then λ := maxe∈E λe.
From Lemma 12 we remark that the taxes computed by LPsc are optimal. Evi-
dently our lower bound of 2.012 for congestion games with linear cost func-
tions matches the price of anarchy bound for selfish scheduling games on iden-
tical machines [10]. For any (distributed) local search algorithm (such as Bjelde
et al. [8]) that seeks to minimizes the social cost c(s) =

∑
e∈E ne(s)fe(ne(s)), we

define ζsc(s) :=
∑

e∈E

∑ne(s)
i=1 f ′

e(i) as a pseudo-potential function. Then, from
Lemma 1 it is guaranteed that every local optimum with respect to ζsc(s) has
an approximation factor of at most λ := maxe∈E λe with respect to the social
cost c(s). Using approximate local search by Orlin et al. [25], we can compute a
solution close to that in polynomial time, and more so to state the following.

Corollary 2. For every congestion game the ε-local search algorithm using
ζsc(s), produces a λ(1 + ε) local optimum in running time polynomial in the
input length and 1/ε.

Linear and Polynomial Cost Functions. For the interesting case of polyno-
mial resource cost functions of maximum degree d, similar to Sect. 3, we show
that for polynomials of small degree, it is sufficient to restrict the attention to
the first 1154 values of the cost functions. Hence, we only need solve a linear
program of constant size. We further note, that for a fixed λd > 0, and for each
n we only need to consider a limited range for m in the LPsc.

Lemma 13. For d ≤ 5 and n ≥ 1154, the function f ′(n) = νnd with ν =
d+1

√
(d + 1)λd is (λd, 0)-smooth with respect to h(n) = nd+1 and an appropriate

λd.

Lemma 14. For a fixed n, if λd · md+1 − mf(n + 1) + nf(n) ≥ nd+1 is true for
all m ≤ (n + 1)2, it also holds for all m > (n + 1)2.

As a consequence of Lemma 13 and 14 it only remains to solve a linear
program of constant size for each d ≤ 5 to obtain our results Ψd (listed in
Table 2). Our results match the recent results that were obtained independently
by Paccagnan et al. [26].

Corollary 3. For every congestion game with polynomial cost functions of
degree d ≤ 5, each cost function f ′

e can be computed in constant time and the
resulting game is (Ψd, 0)-smooth with respect to social cost.

5 Conclusion and Open Problems

The most interesting question which was the initial motivation for this work
is the complexity of approximate equilibria. We find it very surprising that
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the technique yields such a significant improvement, e.g., for linear congestion
games from 2 to 1.61, by using essentially the same algorithm of Caragiannis
et al. [9]. However, the algorithmic technique is limited only by the lower bound
for approximation factor of the stretch implied in Roughgarden [31]. Hence, fur-
ther significant improvements may need new algorithmic ideas. On the lower
bound side, not much is known for linear or polynomial congestion games. The
only computational lower bound for approximate equilibria is from Skopalik and
Vöcking [34] using unnatural, and very steep cost functions.

We believe that the technique of perturbing the instance of an (optimization)
problem such that a simple local search heuristic (or an equilibrium) guarantees
an improved approximation ratio can be applied in other settings as well. It
would be interesting to see, whether one can achieve similar results for variants
and generalizations of congestion games such as weighted [3], atomic- or integer-
splittable [27,32] congestion games, scheduling games [16,17,20], etc. Consid-
ering other heuristics such as greedy or one-round walks [5,7,15,21] would be
another natural direction.
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34. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceed-
ings of the 40th Annual ACM Symposium on Theory of Computing. STOC (2008)

https://arxiv.org/abs/2007.15520

	Improving Approximate Pure Nash Equilibria in Congestion Games
	1 Introduction
	2 Preliminaries
	3 Approximate Equilibria in Congestion Games
	4 Extensions
	5 Conclusion and Open Problems
	References




