2,319 research outputs found

    Redundant neural vision systems: competing for collision recognition roles

    Get PDF
    Ability to detect collisions is vital for future robots that interact with humans in complex visual environments. Lobula giant movement detectors (LGMD) and directional selective neurons (DSNs) are two types of identified neurons found in the visual pathways of insects such as locusts. Recent modelling studies showed that the LGMD or grouped DSNs could each be tuned for collision recognition. In both biological and artificial vision systems, however, which one should play the collision recognition role and the way the two types of specialized visual neurons could be functioning together are not clear. In this modeling study, we compared the competence of the LGMD and the DSNs, and also investigate the cooperation of the two neural vision systems for collision recognition via artificial evolution. We implemented three types of collision recognition neural subsystems – the LGMD, the DSNs and a hybrid system which combines the LGMD and the DSNs subsystems together, in each individual agent. A switch gene determines which of the three redundant neural subsystems plays the collision recognition role. We found that, in both robotics and driving environments, the LGMD was able to build up its ability for collision recognition quickly and robustly therefore reducing the chance of other types of neural networks to play the same role. The results suggest that the LGMD neural network could be the ideal model to be realized in hardware for collision recognition

    Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

    Get PDF
    Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research

    Multi-scale Evolutionary Neural Architecture Search for Deep Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function

    A computational framework for multidimensional parameter space screening of reaction-diffusion models in biology

    Get PDF
    Reaction-diffusion models have been widely successful in explaining a large variety of patterning phenomena in biology ranging from embryonic development to cancer growth and angiogenesis. Firstly proposed by Alan Turing in 1952 and applied to a simple two-component system, reaction-diffusion models describe spontaneous spatial pattern formation, driven purely by interactions of the system components and their diffusion in space. Today, access to unprecedented amounts of quantitative biological data allows us to build and test biochemically accurate reaction-diffusion models of intracellular processes. However, any increase in model complexity increases the number of unknown parameters and thus the computational cost of model analysis. To efficiently characterize the behavior and robustness of models with many unknown parameters is, therefore, a key challenge in systems biology. Here, we propose a novel computational framework for efficient high-dimensional parameter space characterization of reaction-diffusion models. The method leverages the LpL_p-Adaptation algorithm, an adaptive-proposal statistical method for approximate high-dimensional design centering and robustness estimation. Our approach is based on an oracle function, which describes for each point in parameter space whether the corresponding model fulfills given specifications. We propose specific oracles to estimate four parameter-space characteristics: bistability, instability, capability of spontaneous pattern formation, and capability of pattern maintenance. We benchmark the method and demonstrate that it allows exploring the ability of a model to undergo pattern-forming instabilities and to quantify model robustness for model selection in polynomial time with dimensionality. We present an application of the framework to reconstituted membrane domains bearing the small GTPase Rab5 and propose molecular mechanisms that potentially drive pattern formation

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing

    Study of the role of plant nuclear envelope and lamina-like components in nuclear and chromatin organisation using 3D imaging

    Get PDF
    The linker of nucleoskeleton and cytoskeleton (LINC) complex is an evolutionarily well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data supports its function in nuclear morphology and meiosis, its implication for chromatin organisation has been less studied in plants. The fi aim of this work was to develop NucleusJ a simple and user-friendly ImageJ plugin dedicated to the characterisation of nuclear morphol- ogy and chromatin organisation in 3D. NucleusJ quantifies 15 parameters including shape and size of nuclei as well as intra-nuclear objects and their position within the nucleus. A step-by-step documentation is available for self-training, together with data sets of nuclei with diff t nuclear organisation. Several improvements are ongoing to release a new version of this plugin. In a second part of this work, 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the plant model Arabidopsis thaliana in which heterochromatin domains cluster in conspicuous chromatin regions called chromo- centres. Chromocentres form a repressive chromatin environment contributing to the transcriptional silencing of repeated sequences a general mechanism needed for genome stability. Quantitative measurements of 3D position of chromocentres in the nucleus indicate that most chromocentres are situated in close proximity to the periphery of the nucleus but that this distance can be altered according to nuclear volume or in specific mutants affecting the LINC complex. Finally, the LINC com- plex is proposed to contribute at the proper chromatin organisation and positioning since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences. The last part of this work takes ad- vantage of available genomic sequences and RNA-seq data to explore the evolution of NE proteins in plants and propose a minimal requirement to built the simplest functional NE. Altogether, work achieved in this thesis associate genetics, molecular biology, bioinformatics and imaging to better understand the contribution of the nuclear envelope in nuclear morphology and chromatin organisation and suggests the functional implication of the LINC complex in these processes

    Meta-KANSEI modeling with Valence-Arousal fMRI dataset of brain

    Get PDF
    Background: Traditional KANSEI methodology is an important tool in the field of psychology to comprehend the concepts and meanings; it mainly focusses on semantic differential methods. Valence-Arousal is regarded as a reflection of the KANSEI adjectives, which is the core concept in the theory of effective dimensions for brain recognition. From previous studies, it has been found that brain fMRI datasets can contain significant information related to Valence and Arousal. Methods: In this current work, a Valence-Arousal based meta-KANSEI modeling method is proposed to improve the traditional KANSEI presentation. Functional Magnetic Resonance Imaging (fMRI) was used to acquire the response dataset of Valence-Arousal of the brain in the amygdala and orbital frontal cortex respectively. In order to validate the feasibility of the proposed modeling method, the dataset was processed under dimension reduction by using Kernel Density Estimation (KDE) based segmentation and Mean Shift (MS) clustering. Furthermore, Affective Norm English Words (ANEW) by IAPS (International Affective Picture System) were used for comparison and analysis. The data sets from fMRI and ANEW under four KANSEI adjectives of angry, happy, sad and pleasant were processed by the Fuzzy C-Means (FCM) algorithm. Finally, a defined distance based on similarity computing was adopted for these two data sets. Results: The results illustrate that the proposed model is feasible and has better stability per the normal distribution plotting of the distance. The effectiveness of the experimental methods proposed in the current work was higher than in the literature. Conclusions: mean shift can be used to cluster and central points based meta-KANSEI model combining with the advantages of a variety of existing intelligent processing methods are expected to shift the KANSEI Engineering (KE) research into the medical imaging field
    corecore